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Abstract: Facial morphing, if applied to a biometric portrait intended for an identity document application, 
compromises further identity verification by means of the issued document. An electronic machine readable 
travel document is a prime target of a face morphing attack because a successful attack allows a wanted 
criminal for illicit border crossing. The open question is whether human examiners and algorithms can be 
fooled only by professionally created manual morphs or even by automatically generated morphs with 
evident visual artifacts. In this paper, we introduce a border control simulation to examine the ability of 
humans in recognizing morphed passport photographs as well as in mismatching morphed passport 
photographs against "live" faces of travelers. The error rates of humans are compared with those of 
algorithms to emphasize the necessity for computer-aided support of border guards. 

1 INTRODUCTION 

The traveler identity verification done by border 
guards is slow and prone to errors (White et al., 
2014). The recent trend to speed up border crossing 
and save expensive manpower is the deployment of 
Automated Border Control (ABC) systems also 
known as electronic gates. Modern ABC systems 
rely on two-factor identity verification including an 
authenticity and integrity check of an electronic 
Machine Readable Travel Document (eMRTD) and 
biometric authentication of a traveler. As early as 
2002 the International Civil Aviation Organization 
(ICAO) selected face to be the primary biometric 
trait used with eMRTD (ICAO, 2004). Technically, 
an automated face recognition (AFR) system that is 
integrated in electronic gates captures a "live" face 
and compares it with a digital passport photograph 
stored on a chip of an eMRTD.  

An automation of border control attracted the 
interest of security experts due to the risk that 
wanted criminals practice presentation or morphing 
attacks for illicit border crossing. While the 
biometric research community has for a long while 
been concerned with the face presentation attack 
(Raghavendra and Busch, 2017), the face morphing 
attack is a novel and more sophisticated fraud whose 
potential harm significantly exceeds that of the face 
presentation attack (Kraetzer et al., 2017).  

The face morphing attack includes two steps. Let 
us assume that Mallory is an attacker and Allice is 
her accomplice. First, Alice applies for a new 
identity document with a morphed face image of her 
and Mallory's faces. If an officer accepts the image, 
the issued document is authentic and perfectly 
regular. Second, Mallory uses the document for 
identity verification claiming to be Alice.  

A morphed face image is a key to a successful 
morphing attack. It is shown in (Ferrara et al., 2016) 
that manually created morphs preserve facial charac-
teristics of all contributing faces so that both humans 
and algorithms often falsely match a morphed image 
against genuine images of any of contributing faces. 
Visually faultless facial morphs can be generated 
even automatically, and humans are almost unable to 
recognize these as such (Makrushin et al., 2017).  

It is clear that high-quality morphs pose a threat 
to the identity verification process no matter whether 
it is completely automated or maintained by human 
examiners. The open question is whether automati-
cally generated morphs with visual artifacts bear the 
risk of being accepted by humans and algorithms. 
For instance, the study in (Robertson et al., 2017) 
demonstrates that the error rates of humans with 
automatically generated low-quality morphs are not 
as dramatic as in (Ferrara et al., 2016) with manually 
generated high-quality morphs.  
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Aiming at answering this question we created an 
experiment that simulates a border control scenario. 
First, we let people perform morphing detection 
namely to judge whether a face image is morphed or 
genuine and compare the results with those of 
forensic morphing detectors. Second, we let people 
perform biometric matching of a potentially 
morphed passport photograph with a "live" face and 
compare the results with those of AFR systems.  

Our main contribution is an implementation and 
deployment of the ongoing web-based experiment 
which attracted more than 400 participants within 
the first two days after start. The evaluation of the 
exp. results allows us for the following conclusions:  

- biometric matching is significantly more 
prone to errors than morphing detection; 

- skilled participants perform on average 
slightly better than unskilled; 

- algorithms demonstrate lower error rates 
than humans in both tasks.  

Hereafter, we summarize papers addressing human 
experiments with facial morphs in Section 2. In 
Section 3, we describe our border control simulation 
in detail. Section 4 comprises description of AFR 
systems and morphing detectors used as a reference. 
In Section 5, we compare error rates of humans and 
algorithms. Section 6 concludes the paper with the 
summary of results. 

2 STATE OF THE ART 

Considering a questioned passport photograph, there 
are two tasks that arise: (i) matching against a person 
who presents the photograph and (ii) morphing 
detection. The former one (i) is a well-studied task 
from the field of biometrics for which the 
recognition performances of humans and AFR 
systems have been compared in different scenarios 
(Phillips and O’Toole 2014) including border 
control (del Rio et al., 2016). The latter task (ii) is 
new so that there is a lack of studies comparing 
morphing detection performances of humans and 
automated detectors.  

Morphing detection could be "blind", meaning it 
is based solely on the presented photograph, or could 
rely on a reference face image. Note that in almost 
all scenarios, it is possible to take a reference face 
image. However, many detection algorithms ignore 
this option. Technically, the setups for biometric 
matching and morphing detection with a reference 
does not differ. Both processes operate on two 
images (a document image and a "live" image) and 
as a result either accept or reject a person. The only 

difference is the reason of rejection - no match or 
morphed. Since a border guard solves both tasks 
simultaneously, these can be fused in an experiment.  

The first study on comparison of humans and 
algorithms to perform biometric matching with 
morphed face images is conducted in (Ferrara et al., 
2016). The authors generated 80 morphs and asked 
44 border guards and 543 laymen to match those 
against original faces. Surprisingly, border guards 
did not perform better than laymen. They accepted 
on average slightly more genuine trials (91.67% vs. 
87.76%) but also significantly more morphing trials 
(74.92% vs. 57.55%). All in all, both border guards 
and laymen have demonstrated unacceptably high 
morph acceptance rates (MAR). Three commercial 
AFR systems were examined with the same images. 
The MAR values were dramatically high, revealing 
the complete inability of the systems to reject 
morphed faces. Later on, high MAR of two AFR 
systems were confirmed in (Scherhag et. al, 2017). 
However, we believe that this estimation of MAR is 
pessimistic because the images of a person used for 
morphing and matching are very similar (no 
variance regarding pose and illumination). The 
images are also not as rich in detail as biometric face 
images intended for documents, making morphing 
artifacts (e.g. ghosting) visually less perceptible.  

A realistic experiment would require "live" 
images with random background and illumination 
for matching. Such experiments have been 
conducted in (Robertson et al., 2017) and (Robertson 
et al., 2018). In the former study, test participants 
first matched face images having two options: accept 
or reject a verification trial mixing up biometric 
matching and morphing detection with a reference, 
and then having three options: accept, reject because 
of no match, and reject because the passport image 
is morphed. The MAR dropped from 68% in the first 
experiment to 21% in the second. This reveals the 
fact that if examiners are aware of potential 
morphing in passport photographs, the acceptance of 
impostor trials is less probable. In the latter study, 
the authors investigate how much human error rates 
drop after coaching.  

The study in (Makrushin et al., 2017) reports the 
results of the first human experiment on blind 
morphing detection. The participants should detect 
morphing in photographs printed with a passport 
dimension of 35x45 mm. The resulting average 
MAR was 44.6% and the FRR 43.64% which is not 
far from random guessing. The high FRR can be 
explained by reluctance of participants to skip 
morphed images. 
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In general, all aforementioned studies manifest 
the necessity for automated morphing detectors to 
support staff at document issuing offices to prevent 
issuing of double-identity documents as well as at 
document checking stations to withdraw double-
identity documents from circulation. Nonetheless, 
the development of dedicated morphing detectors is 
in its early phase, but researchers have already made 
remarkable progress in designing prototypes. An 
overview of recently introduced face morphing 
detectors is given in (Makrushin and Wolf, 2018). 

Although some human experiments have been 
conducted, it is still unclear how successful human 
examiners can be in detecting facial morphs and 
matching unfamiliar faces having in mind that one 
of both could have been morphed and whether 
algorithms perform worse or better. We try to fill 
this gap with our experiment. 

3 THE BORDER CONTROL 
EXPERIMENT 

Since we want to know how easy is it on average to 
deceive human examiners with a morphed face 
image, the main objective of our experiment is a 
realistic simulation of a border control from the 
viewpoint of a border guard. Our experiment is 
implemented as a web-based questionnaire and is 
available online at: https://bit.ly/2JdgvII. A smart-
phone, a tablet or a regular computer could be used 
equally well to complete it. Going online allowed us 
to reach a large number of participants.  

Assuming that border guards are trained to 
recognize the morphing attack, participants of the 
experiment should have at least basic knowledge of 
facial morphing. Therefore, the experiment starts 
with the brief explanation of the morphing process 
followed by a tutorial on how to detect morphed face 
images. Figure 1 shows two face images with typical 
morphing artifacts presented during the tutorial. The 
first one demonstrates the ghosting artifacts in the 
hair, at the temples, on the clothes and in the eyes/ 
irises, and the second one a "swimming cap" effect - 
an edge on a forehead resulting from the "non-
optimal" splicing of a morphed face into the original 
background as well as ghosting artifacts in the eyes. 

The questionnaire is divided into two parts, 15 
questions each. In the first one (see Section 3.1), an 
examiner is asked whether the face on a passport 
photograph is morphed or not. In the second one 
(see Section 3.2), a passport photograph is presented 
to an examiner together with a video of a traveler 

approaching the passport check desk and the 
examiner is asked to match a person on the passport 
photograph against a person shown in the video.  

Figure 1: Examples of morphing artifacts: spurious 
shadows (ghosting) in hair, eyes and clothes regions, 
apparent transition between brow ridges and a forehead; 
Orig.images from http://pics.stir.ac.uk/2D_face_sets.htm. 

The passport photographs are compliant with the 
Portrait Quality Standard for reference facial images 
for MRTD maintained by ICAO (ISO/IEC JTC1 
SC17 WG3, 2018). This means that a face is in 
frontal position, in-plate rotation angle does not 
exceed 5%, facial expression is neutral, face is in the 
middle of the image, the face size is in the certain 
proportion to the image size, and the illumination is 
uniform. In the first part of the experiment, we use 
high-resolution raw images and, in the second, the 
images scaled to 531x413 pixels to simulate 
photographs stored on the chip of an MRTD. The 
morphed face images used as passport photographs 
are generated automatically using the approaches 
from (Makrushin et al., 2017) and (Neubert et al., 
2018). The morphed images have not undergone any 
retouching or post-processing and, therefore, may 
include apparent visual artifacts. We deliberately 
include morphs of different quality.  

We split the human examiners to the groups of 
skilled and unskilled ones according to whether they 
are familiar with the morphing issue and compare 
the group performances. After the test is finished, 
we asked the examiners which face regions 
contributed the most to the decision. It helps us to 
better understand the human intuition about 
abnormalities in a face. To avoid biased decisions, 
we filter out examiners who know one or more 
donors of the photographs. We store neither personal 
data nor meta data of test participants except for the 
time required for each decision. 

One month after launching, the final number of 
test participants exceeded 450. However, only 282 
examiners know no one of the photograph donors. 
Among them there are 49 skilled, 230 unskilled and 
3 provided no information on their experience. 
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3.1 Detection Experiment 

Here, we challenge the humans to "blindly" detect 
morphed face images. An examiner looks at a 
passport photograph and decides whether it is 
morphed without any further knowledge about a 
person. In a real-life identity verification process, an 
examiner can make use of a meta data of the person. 
However, our idea is to avoid any biases and let 
people decide solely based on visual morphing 
artifacts. Two morphed images from the experiment 
are shown in Figure 2. The fist one (a), representing 
a transgender face, was correctly detected by approx. 
97% of examiners and the second (b), representing a 
female face, by approx. 67%.  

 
(a) (b) 

Figure 2: Morphing detection in a passport photograph: (a) 
an "easy" morph M9 and (b) a challenging morph M2. 

The 15 questions in the first part include 5 genuine 
(G1, G2, ..., G5) and 10 morphed face images (M1, 
M2,..., M10). The image resolution spread from 2.8 
to 6.4 megapixels with one exception of 531x413 
pixels. If human examiners would constantly 
achieve high recognition performance in this or a 
similar experiment, it could lead to a requirement to 
store high-resolution digital images on a chip of an 
MRTD. This part of the experiment can be seen as a 
kind of training for the next part - identity 
verification with potentially morphed photographs. 

3.2 Matching Experiment 

Here, we simulate a border control scenario. The 
humans are challenged to match passport images 
against "live" faces having in mind that the passport 
image could have been morphed. An examiner looks 
at a passport photograph and watches the video in 
which a traveler approaches the passport check desk 
and decides whether the person should be accepted 
or rejected. The decisions here are biased by the first 
part of the experiment because obvious morphing 
artifacts in a passport image would lead to rejection 

without comparing the faces. Two samples from the 
experiment are shown in Figure 3. The first one (a) 
was correctly rejected by approx. 72% of examiners 
and the second (b) by approx. 55%.  

(a) 

(b) 

Figure 3: Matching of a potentially morphed passport 
photograph against a "live" face: (a) a less challenging 
sample and (b) a more challenging sample. 

The 15 questions in the second part include 
matching trials with 6 genuine (G1, G2, ..., G6) and 
9 morphed passport photographs (M1, M2, ..., M9). 
The resolution of all passport photographs is 
531x413 pixels. The video resolution is 320x240 
pixels. There was no special reason to select such a 
small resolution and we believe that the experiment 
could benefit from videos of higher resolution. The 
poor matching performance of human examiners in 
this or a similar experiment should discomfort the 
authorities responsible for security issues at border 
control and motivate them to make use of AFR 
systems and dedicated morphing detectors. 

4 ALGORITHMS 

In the following, we describe two established AFR 
systems and two recently introduced morphing 
detectors whose error rates will be compared with 
error rates of human examiners.  

4.1 AFR Systems 

As proponents of AFR systems, we selected one 
commercial off-the-shelf (COTS) solution - Luxand 
FaceSDK (https://www.luxand.com/facesdk/) and a 
face recognition tool provided in the Dlib - an open 
source programming library (http://dlib.net/). 
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We use the Luxand FaceSDK 6.5.1 released in 
June 2018. For two incoming face images, the 
outcome of the matcher is a score in the interval 
from 0 to 1. Higher scores are for more similar 
faces. Based on the proprietary experiments, the 
SDK provides decision thresholds at which the False 
Acceptance Rate (FAR) does not exceed 1% and 
0.1%. These are 0.99 and 0.999 respectively. Up to 
the version 6.5, the maintainer reports the True 
Acceptance Rate (TAR) of 99.85% at the FAR of 
0.1% according to NIST FRGC testing (Luxand, 
2018). Note that the FAR of less than 0.1% is 
recommended for ABC in (FRONTEX, 2015).  

Starting from the release 19.3 in February 2017, 
the Dlib library includes a face recognition tool 
(King, 2018). The face classification model is built 
upon the slightly modified ResNet-34 network 
having 29 convolutional layers with half the number 
of filters in a layer (dlib_face_recognition_resnet_ 
model_v1). The network is trained from scratch 
using about three million images gathered from Face 
Scrub and VGG datasets as well as some images 
from internet. Prior to feeding into the network, the 
face images are geometrically aligned and scaled to 
150x150 pixels. The network maps images to a 128-
dim vector space in which all identities are supposed 
to be represented by non-overlapping balls of radius 
0.6. The images of the same identity should be close 
to each other and images of different identities far 
apart. The distances d returned by the matcher are in 
the interval from 0 to 1. With the distance threshold 
of 0.6, the model obtains an accuracy of 99.38% on 
the Labeled Faces in the Wild benchmark, which is 
as good as other state-of-the-art face recognition 
methods as of beginning 2017. We replace distances 
by similarity scores s=1-d to make the matchers 
comparable. The decision threshold becomes 0.4. 

4.2 Morphing Detectors 

As the development of dedicated morphing detectors 
is in its early phase, there are currently no mature 
solutions on the market. However, researchers have 
already made remarkable progress in designing 
prototypes. Since the morphing detectors based on 
Deep Convolutional Neural Networks (DCNN) are 
confirmed to perform the best (Raghavendra et al., 
2017), we examine a DCNN-based detector from 
(Seibold et al., 2018) and compare it with the 
keypoint-based detector from (Kraetzer et al., 2017). 

The keypoint-based morphing detector relies on 
the assertion that the blending operation, which is an 
indispensable part of the morphing process, causes a 
reduction of face details. Hence, the number of 

significant corners and edge pixels is expected to 
become lower in morphed images in comparison to 
genuine ones. The detector comprises five keypoint 
detectors and two edge detectors: 
 Scale Invariant Feature Transform (SIFT); 
 Speed Up Robust Feature (SURF); 
 Features from Accelerated Segment Test 

(FAST); 
 Oriented FAST and rotated Binary Robust 

Independent Elementary Features (ORB); 
 Adaptive and Generic Accelerated Segment 

Test (AGAST); 
 Canny edge detector; 
 Sobel edge detector for horizontal and vertical 

edges. 
A feature is a number of keypoints/edge pixels 
detected in the face region that is a convex hull of 
the 68 facial landmarks extracted from the image by 
the Dlib shape predictor. Each feature is normalized 
by the natural logarithm of the number of pixels in 
the face region. This step is essential because the 
number of detected keypoints non-linearly increases 
with a face size. The normalization makes features 
invariant to image scaling. The 8 aforementioned 
features are extracted from an original image and 
from the same image after JPEG compression with 
the quality factor 0.75. The idea behind this is that 
for genuine images the compression leads to 
significant loss of details and for morphed images 
does not. The last set of 8 features comprises the 
ratios of the features in compressed and non-
compressed images. Hence, an image is represented 
by a 24-dim feature vector. The linear support vector 
machine is trained based on a proprietary dataset of 
2000 genuine and 2000 morphed high-resolution 
passport images. Facial morphs are created using 
approaches from (Makrushin et al., 2017) and 
(Neubert et al., 2018). 

The DCNN-based morphing detector considered 
here is referred to as "naive" in the original paper. It 
is built upon the VGG19 network originally trained 
to classify images within the ILSVRC challenge and 
modified to a binary classifier by applying transfer 
learning. The training dataset includes approx. 1900 
face images of different individuals gathered from 
several public databases and from the internet. 
Morphed face images were created from pairs of 
faces using two different approaches from (Seibold 
et al., 2017) taking into account that images are from 
the same database, individuals have the same gender 
and each image was used with equal frequency. The 
set of training images was augmented by the filtered 
versions of images applying the following filters: 
Motion blur, Gaussian blur, Salt-and-pepper noise, 
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and Gaussian noise. The numbers of genuine and 
morphed images in the training set are equal. Prior 
to feeding a face image into the network, it is 
rotated, such that the eyes are on the horizontal line, 
cropped to keep the region between eye brows and 
mouth and between the outer pairs of the eyes only, 
and scaled to 224×224 pixels.  

5 EVALUATION 

By August 6th, 2018, 9:00 a.m., the number of test 
participants was 477 resulting in 477 test protocols. 
We take this snapshot as a basis for the evaluation. 
Only 282 participants out of 477 know no one of the 
photograph donors, reducing the number of further 
processed test protocols. This filtering is important 
because any degree of familiarity between a border 
guard and a traveler is very unlikely and would lead 
to unwelcome bias in decisions. Out of 282 unbiased 
participants, 49 claimed to have some knowledge on 
face morphing (we call these participants skilled 
examiners), 230 claimed to encounter face morphing 
for the first time (we call these participants unskilled 
examiners), and 3 participants did not disclose their 
experience. Matching takes on average a little bit 
longer than detection - 16.7 vs. 13.4 seconds per 
sample. Skilled examiners are slightly faster than 
unskilled in detecting morphs and there is no clear 
trend who is faster in matching faces. 

5.1 Biometric Matching Performance 

The metrics for matching performance are adopted 
from biometrics. These are False Reject Rate/True 
Accept Rate (FRR/TAR) for genuine and Morph 
Accept Rate/True Reject Rate (MAR/TRR) for 
morphing trials. For AFR systems we also use Equal 
Error Rate (EER). 

The matching rates of human examiners are 
introduced in Figure 4. On average, all examiners 
correctly rejected 65.35% of morphing trials. The 
skilled examiners with the average TRR of 67.57% 
performed only slightly better than unskilled 
examiners with the average TRR of 64.88%. The 
matching rates for genuine trials are noticeably 
better. On average, all human examiners correctly 
accepted 77.30% of genuine trials. The difference in 
matching rates between skilled examiners (average 
TAR of 78.23%) and unskilled examiners (average 
TAR of 77.10%) is negligible. The surprisingly low 
TAR resulting from our experiment is not far from 
those reported in the study on recognition of 
unfamiliar faces (Hancock et al., 2000) confirming 

once again that people are bad at matching 
unfamiliar faces. 

 

Figure 4: Matching rates of skilled (green), unskilled (red) 
and all (grey) human examiners; TRR for morphing trials 
M1-M9 and TAR for genuine trials G1-G6. 

The error rates of Luxand FaceSDK and Dlib face 
recognition are shown in Figure 5. The EER of 
former one is 0% at the decision threshold of 0.9335 
which means that the system would make correct 
decisions in all 15 trials. However, with the 
recommended threshold of 0.999, the system 
correctly rejects all morphing trials, but also falsely 
rejects 3 out of 6 genuine trials. The EER latter one 
is approx. 11.11% at the decision threshold of 
0.4927. With the recommended threshold of 0.4, the 
system correctly accepts all genuine trials, but also 
falsely accepts 6 out of 9 morphing trials. At 
thresholds from 0.4824 to 0.4926, the detector 
makes no false rejections and falsely accepts only 
one morphing trial. 

Luxand FaceSDK 6.5.1 Dlib face recognition 
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Figure 5: FRR/MAR curves of AFR systems. 

Figure 6: DET curves of Luxand FaceSDK and Dlib face 
recognition along with error rates of human examiners. 

The DET diagram in Figure 6 shows the difference 
in matching rates of AFR systems and human 
examiners. Luxand FaceSDK has better matching 
performance than Dlib face recognition. With the 
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properly set decision thresholds both AFR systems 
significantly outperform human examiners. 
However, with the standard decision thresholds the 
matching performance of AFR systems is on the 
same level or even worse than that of humans. 

5.2 Morphing Detection Performance 

Since morphing detection is a binary classification 
task, the standard metrics are used: True Positive 
Rate (TPR)/False Negative Rate (FNR) for morphed 
images, and True Negative Rate (TNR)/False 
Positive Rate (FPR) for genuine images. Note that 
morphed images are seen as entities of the positive 
class. We also use Half Total Error Rate (HTER) to 
compare performances in an easier way. 

The matching rates of human examiners are 
shown in Figure 7. On average, all human examiners 
correctly detected 84.59% morphed images. The 
skilled examiners with the average TPR of 88.78% 
performed noticeably better than unskilled with the 
average TPR of 83.70%. The detection rate also 
strongly depends on the quality of a morphed image. 
For instance, the "easy" morph M9 in Figure 2a was 
correctly detected by 89.57% unskilled and by 
95.92% skilled examiners, while the challenging 
morph M2 in Figure 2b by only 67.39% unskilled 
and 67.35% skilled examiners. Note that for the 
challenging morph, the detection rates of skilled and 
unskilled examiners do not differ significantly. 
Based on this result, we conclude that special 
training could improve the human ability to detect 
morphs, but cannot be seen as a panacea, since for 
many high quality morphs the detection rates of 
skilled and unskilled examiners are similar. For 
genuine face images, the average detection rates of 
skilled and unskilled examiners are very close to 
each other yielding 83.27% and 82.35% TNR 
respectively. As morphing indicators, successful 
examiners most frequently selected artifacts on eyes 
followed by artifacts in a forehead/temple region, 
and only few examiners pointed to artifacts in hair, 
clothes and background. 

 

Figure 7: Detection rates of skilled (green), unskilled (red) 
and all (grey) human examiners; TPR for morphing trials 
M1-M10 and TNR for genuine trials G1-G5. 

The estimate for the EER of the keypoint-based 
detector is 10% obtained with the decision threshold 
of 0.9735 (see Figure 8). In our test, however, using 
this threshold leads to 9 (out of 10) correctly 
detected morphs, and 1 (out of 5) false alarm for 
genuine images. The minimal Half Total Error Rate 
(HTER) of 5% can be achieved with a threshold 
between 0.9739 and 0.9790 meaning no errors for 
genuine images (100% TNR) and 9 (out of 10) 
correct decisions for morphs (90% TPR). With the 
recommended decision threshold of 0.5, the detector 
yields 100% TPR, but only 20% TNR. 

Figure 8: Error rate curves of the Keypoint-based detector. 

The DCNN-based detector produces scores in 
the interval [0; 0.000000015] for the genuine images 
and in the interval [0.9997; 1] for the morphed 
images, allowing for a clear separation with almost 
any threshold deviating from 0 and 1. With the 
recommended threshold of 0.5, the detector makes 
literally no mistakes and can be seen as a very robust 
tool for morphing detection. 

The DET diagram in Figure 9 demonstrates the 
difference in error rates between the two considered 
morphing detectors and the averages of skilled and 
unskilled human examiners. Considering HTER, the 
performance of skilled examiners is approx. 14% 
and of unskilled examiners approx. 17%. The HTER 
of keypoint-based detector at the decision threshold 
of 0.975 is 5%. The DCNN-based morphing detector 
perfectly solves the problem yielding the HTER of 
0%. Hence, with the properly set decision 
thresholds, both morphing detectors significantly 
outperform human examiners. 
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Figure 9: DET curves of Keypoint- and DCNN-based 
detectors along with error rates of humans. 
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6 CONCLUSION 

Our study has once again confirmed the limited 
capability of human examiners to match unfamiliar 
faces as well as differentiate between morphed and 
genuine face photographs. We deliberately used 
automatically generated morphs with evident visual 
artifacts to demonstrate that human examiners can 
be deceived not only by professionally created 
manual morphs. Our experiment simulating a border 
control reveals the average MAR of 34.65% in the 
face matching scenario and the average FNR (miss 
rate) of 15.41% in the morphing detection scenario. 
In contrast, at least one of the algorithms used in our 
experiment is able to perfectly distinguish genuine 
and morphing trials in the matching experiment, or 
genuine and morphed images in the detection 
experiment, provided that a proper decision 
threshold has been selected. We understand that, due 
to the low number of samples, the error rates of 
algorithms resulting from our evaluation cannot be 
seen as reliable performance indicators and, 
therefore, cannot be generalized in any sense. We 
also understand that the error rates of our test 
participants might deviate from those of experienced 
border guards. Nonetheless, the experiment has 
shown clear trends and revealed general deficiencies 
of manual identity verification. Hence, we conclude 
that the manual processing of a document photo-
graph constitutes the bottle neck of the concept of 
identity verification with a photo-ID, indicating the 
necessity for computer-aided support of photo-ID 
checking staff (e.g. border guards) in the field and at 
document issuing offices. 
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