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Abstract: The Esscher premium principle provides an important framework for allocating a certain loaded premium for
some claim (risk) in order to manage the risks of insurance companies. In this paper, we show how to model the
celebrated Esscher premium principle for a system of elliptically distributed dependent risks, where each risk
is greater or equal than its value-at-risk. Furthermore, we present calculations of the proposed multivariate risk
measure, investigate its properties and formulas, and show how special elliptical models can be implemented
in the theory.

1 INTRODUCTION

Recently, there is a growing interest in multivariate
risk measures. The motivation behind considering a
multivariate risk measure is that it provides more ac-
curate measurements of risks that are mutually de-
pendent on each other. There are several attempts
to obtain such multivariate measures (Jouini et al.,
2004; Molchanov and Cascos, 2016; Cousin and
Di Bernardino, 2014; Feinstein and Rudloff, 2017;
Landsman et al., 2016; Shushi, 2018). For instance,
Landsman et al. (2016) introduced the multivariate
tail conditional expectation (MTCE) with the follow-
ing form

MTCEq(X) = E (X|X >VaRq (X)) .

Here X =(X1,X2, ...,Xn)
T is n × 1 vec-

tor of risks that are mutually depend-
ing on each other, and VaRq (X) =
(VaRq1 (X1) ,VaRq2 (X2) , ...,VaRqn (Xn))

T is n × 1
vector, where VaRqi (Xi) is the value at risk of Xi
under the qi− th quantile, qi ∈ (0,1). In this notation,
for two n-variate random vectors X and Y, X≥ Y
means that {Xi ≥a.s. Yi, i = 1, ...,n}. The multivariate
tail covariance measure was also introduced in the
literature by (Landsman et al., 2018), and obtained
for the class of elliptical distributions. The Esscher
premium principle is a widely used measure in risk
measurement and portfolio theory, which allows
to quantify insurance premiums (Kamps, 1998;

Van Heerwaarden et al., 1989; Landsman, 2004;
Shushi, 2017; Chi et al., 2017). In the theory of
risks there exist vast number of different models
to calculate insurance premiums (Goovaerts et al.,
1984; Wang and Dhaene, 1998; Déniz et al., 2000)
. The Esscher premium was first introduced in the
seminal paper of Buhlmann (Bühlmann, 1980). In his
paper, Buhlmann claimed that actuaries think about
premiums as a measure of risks, which are considered
random. Unlike actuarial premiums, economical
premiums depend also on market conditions which
can be characterized by another random risk. In this
paper we focus on actuarial premiums, and thus we
are not taking into account any market conditions.

Let X be a random risk. Then, the Esscher pre-
mium of X takes the following form

πλ (X) =
E
(
XeλX

)
MX (λ)

, (1)

where λ > 0, MX (λ) = E
(
eλX
)

is the moment gener-
ating function (MGF) of X , and E

(
XeλX

)
< ∞.

The Wang’s premium (Wang et al., 2002) intro-
duced as an exponential tilting of some risk, X , in-
duced by another risk, Y ,

πλ (X ,Y ) =
E
(
XeλY

)
MY (λ)

, (2)

and the Esscher premium is the special case of
πλ (X ,X) = πλ (X) . Furthermore, (2) has actuarial
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sense behind the quantitative measure. For a portfolio
consisting n×1 risks, X, the measure πλ (Xi,S) quan-
tifies the amount of risk of Xi to the aggregate risks,
which is the sum of the risks, i.e., S = X1 +X2 + ...+
Xn.

In Shushi (2018), a multivariate conditional ver-
sion of the Esscher premium has been introduced
which takes into account only the tail of the multivari-
ate distribution of the vector of risks. In this paper,
we generalize the Esscher premium into a conditional
framework such that each risk Xi is greater than its
value-at-risk measure and consider the most general
case which is a portfolio that consists of n−variate
dependent risks.

The multivariate conditional Esscher premium
(MCEP) takes the following form

πα,λ (X) =
E
(

XeλT X|X >VaRq (X)
)

E
(
eλT X|X >VaRq (X)

) , λi > 0, (3)

λ = (λ1, ...,λn)
T , i = 1,2, ...,n.

The motivation behind this multivariate risk mea-
sure is that it provides a conservative premium princi-
ple, in the sense that it quantifies the premium under
the assumption that the i−th loss is greater than its
value-at-risk, Xi ≥ VaRq (Xi) , i = 1,2, ... . and there-
fore the MCEP measure is greater than or equal to the
Esscher premium:

πλ (X)≤ πα,λ (X) ,

where πλ (X) = (πλ (X1) ,πλ (X2) , ...,πλ (Xn))
T .

We define the conditional analog to the Wang’s
premium, as follows:

πα,λ(Xi,S) =
E
(
XieλS|S > ∑

n
i=1 VaRq (Xi)

)
E
(
eλS|S > ∑

n
i=1 VaRq (Xi)

) .

In the next Section, we give a concise definition
of the family of elliptical distributions, and in Section
3 we analyze the proposed MCEP measure by pro-
viding its main properties and their implications. In
Section 4 we compute the MCEP for a system of mu-
tually dependent elliptically distributed risks, and in
Section 5 we give examples. Section 6 offers a dis-
cussion to the paper.

2 THE CLASS OF ELLIPTICAL
DISTRIBUTIONS

The class of elliptical distributions consists many im-
portant distributions such as the normal, Student-t, lo-
gistic, and Laplace distributions. In fact, it is a natu-

ral generalization of the normal distribution (Camba-
nis et al., 1981). This class has attempting properties
which will be shown in the sequel.

Let X be n×1 random vector following elliptical
distribution, Xv En(µ,Σ,gn). Then, the pdf of X is

fX(x) =
cn√
|Σ|

gn

(
1
2
(x−µ)T

Σ
−1(x−µ)

)
,x ∈ R,

(4)
where cn is the normalizing constant, g(u) , u ≥ 0, is
called the density generator of X, µ is an n×1 location
vector, and Σ is an n×n scale matrix.

The characteristic function of X takes the follow-
ing form

ϕX(t) = exp(itT µ)ψgn(
1
2

tT
Σt), (5)

some function ψgn(u) : [0,∞)→ R, called the charac-
teristic generator.

The marginal distributions of the elliptical distri-
bution are also elliptical with the same characteristic
generator. For a random vector X such that

X =(X1,X2)
T v En

((
µ1

µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

)
,gn

)
,

where X1 and X2 are m (m < n) and n−m random
vectors, the characteristic function of X, ϕX(t), takes
the form

ϕX(t) = exp(i
(
tT
1 µ1 + tT

2 µ2
)
) ·ψ

(
1
2

(
t1

t2

)T

Σ

(
t1

t2

))
,

t1 ∈ Rm, t2 ∈ Rn−m.

Then, for the marginal X1 of X we take t2 = 0 where
0 is vector of n−m zeros,

ϕX((t1,02)
T ) = exp(itT

1 µ1) ·ψ
(

1
2

tT
1 Σ11t1

)
(6)

= ϕX1(t1).

As can be clearly seen, the above equation takes the
same form as (5) with vector of locations µ1, scale
matrix Σ11, and characteristic generator ψ(u) . There-
fore, X1 v Em(µ1,Σ11,gm).

For m×n matrix B with rank m≤ n and m×1 vec-
tor c, the transformation BX+ c is m−variate ellipti-
cal random vector, i.e., BX+ c is distributed Em(µ∗ =
Bµ + c,Σ∗ = BΣBT ,gm). This can be shown by the
form of elliptical characteristic function. From (5) it
follows that

ϕBX+c(t) = eitT c
ϕX(Bt)

= exp(itT (Bµ+ c)) ·ψ(1
2
(Bt)T

Σ(Bt))

= exp(itT µ∗) ·ψ(1
2

tΣ∗t).
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From this property, we immediately establish that the
marginal distribution is also elliptical as has been
shown previously.

Let matrix B be

B =

(
Im×m 0(n−m)×m

0m×(n−m) 0(n−m)×(n−m)

)
,

where Im×m is m×m identity matrix, 0(n−m)×m is (n−
m)×m matrix with zero components, 0(n−m)×(n−m) is
(n−m)× (n−m) matrix with zero components, and
0(n−m)×m = 0T

m×(n−m). Then, random vector BX is the
marginal random vector X1. Furthermore, in the case
that B = b is a n× 1 vector, then bT X, representing
weighted-sum, is distributed E1(bT µ,bT Σb,g1).

3 THE PROPERTIES OF THE
MCEP MEASURE

Let us now show some important and desirable prop-
erties of the MCEP measure for the elliptical model.
Proposition 1. Proposition 1. Let XvEn(µ,Σ,gn) be
a system of n elliptically distributed risks. Then, the
MCEP follows the properties:

1. Translation Invariance: For any random vector of
risks X and any vector of constants α ∈Rn

πα,λ (X+α) = πα,λ (X)+α. (7)

2. Independence of risks: If the vector of risks X has
independent components. Then

πα,λ(X) =

 πq,λi (X1)
πq,λ2 (X2)

...
πq,λn (Xn)

 . (8)

3. Monotonicity: Suppose Y,X, are n× 1 random

vectors of risks and Y
a.s
≥ X. Then

πα,λ (Y−X)≥ 0, (9)

where 0 is vector of n zeros.
4. Semi-Positive Homogeneity: For some positive

constant a > 0, The MCEP follows the following
equality

πα,λ (aX) = aπα,λ (X) . (10)

5. Semi-subadditivity of πα,λ (X) for elliptical dis-
tributions: Consider an (2n)× 1 elliptical ran-
dom vector X with the partition X =

(
XT

1 ,X
T
2
)T

,

X1 = (X1, ...,Xn)
T ,X2 = (Xn+1, ...,X2n)

T . Then,
the following inequality hold

πα,λ(X1 +X2)≤ πα,λ(X)1+πα,λ(X)2, (11)

where πα,λ(X) =
(

πα,λ(X)T
1 ,πα,λ(X)T

2

)T
.

The motivation behind the semi-subadditivity
property can be found in Landsman et al. (Landsman
et al., 2016) . In our case (11) means that combining
risks provides less premium than separating them.
Proof.

1. The translation invariance property can be proved
after some algebraic calculations. We notice that
VaRq (X+α) = α+VaRq (X) , so

πα,λ (X+α)

=
E
(
(X+α)eλT (X+α)|X+α >VaRq (X+α)

)
E
(
eλT (X+α)|X+α >VaRq (X+α)

)
=

E
(
(X+α)eλT X|X >VaRq (X)

)
E
(
eλT X|X >VaRq (X)

)
= α+πα,λ (X) .

2. Since we assumed that (X1,X2, ...,Xn) are mu-
tually independent random risks the probability
density function (pdf) of X is the multiplication
for the pdf’s of the i-th component of X, so

πα,λ (X) =
E
(

XeλT X|X >VaRq (X)
)

E
(
eλT X|X >VaRq (X)

)
=

1
n

∏
i=1

E
(
XieλiXi |Xi >VaRq(Xi)

)

·


E
(

X1eλT X|X1 >VaRq(X1)
)

E
(

X2eλT X|X2 >VaRq(X2)
)

...

E
(

XneλT X|Xn >VaRq(Xn)
)



=

 πq,λi (X1)
πq,λ2 (X2)

...
πq,λn (Xn)

 .

3. Notice that as Y is greater than (a.s.) X, we can
define a random vector in which its components
get only non-negative values, V = Y−X≥ 0,
where 0 is n× 1 vector of zeros. Then, as V
is non-negative random vector VaRq (U)≥ 0, and
thus πq,λ (V)≥ 0,

πα,λ (Y−X) = E (V|V >VaRq (V))≥ 0.

4. Similar to the Esscher premium, the MCEP is not
positive homogenous, but, the semi-positive ho-
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mogeneity property holds, as follows:

πα,λ (aX) =
E
(

aXeaλT X|aX > aVaRq (X)
)

E
(
eaλT X|aX > aVaRq (X)

)
= a

E
(

XeaλT X|X >VaRq (X)
)

E
(
eaλT X|X >VaRq (X)

)
= aπα,aλ (X) .

5. The proof is similar to the proof of the semi-
subadditivity of the MTCE for elliptical distribu-
tions shown in Landsman et al. (2016). From
(McNeil et al., 2005), Theorem 6.8, we notice
that for any matrix B with n× (2n) dimensions, in
the case of elliptical random vector X,

VaRq (BX)≤ BVaRq (X) . (12)

In our case B =
(

In×n In×n
)
.Then, since{

BX > BVaRq (X)
}
=
{

X >VaRq (X)
}

we have

πα,λ(X1 +X2)=E
(

BXeBλT X|BX >VaRq (BX)
)

≤ E
(

BXeBλT X|BX > BVaRq (X)
)

= BE
(

XeλT X|X >VaRq (X)
)

so
πα,λ(X1 +X2)≤ πα,λ(X)1+πα,λ(X)2.

�

4 DERIVATION OF MCEP FOR
ELLIPTICAL MODELS

In risk measurement, the family of elliptical distri-
butions is important since this family has desirable
properties which were shown in the previous Section.
This class is used to model loss distributions of some
random risks associated with this family (Landsman,
2004; Valdez and Chernih, 2003; Xiao and Valdez,
2015). Therefore, it is natural to derive the condi-
tional Esscher premium for the family of elliptical dis-
tributions.

Before we derive the MCEP measure for ellipti-
cal models, we define a cumulative generator Gn(u),
(Landsman and Valdez, 2003), which takes the fol-
lowing form

Gn(u) =
∞∫
u

gn(q)dq. (13)

Furthermore, let us define a shifted cumulative gener-
ator G∗n−1(u) (Landsman et al., 2016)

G∗n−1(u) =
∞∫
u

gn(q+a)dq,a≥ 0, n > 1,

under the condition that G∗n−1(0) < ∞. For the
sequel, let us define the random vector of risks
X v En(µ,Σ,gn), and a standard random vector
Z = Σ−1/2(X− µ) v En(0, I,gn). Furthermore, de-
fine ζq = Σ−1/2 (VaRq (X)−µ) , xq = VaRq (X) , and
ζq,−i =

(
ζq1,1, ...,ζqi−1,i−1,ζqi+1,i+1,ζqn,n

)T
, and we

introduce the tail function of (n−1)−variate random
vector Yi, FYi(y),

FYi(y)

=
∫

∞

y
fYi(u)du, u,y ∈ Rn−1, du = du1du2...dun,

where fYi(u) is the elliptical pdf

fYi(y)

= c∗n−1,iG
∗
n−1,i

(
1
2

yT y
)
= c∗n−1,iGn

(
1
2

yT y+
1
2

ζ
2
q,i

)
,

i = 1,2, ...,n.

Lemma 1. Lemma 1. If MX,q (λ)<∞, the conditional
moment generating function of X is given by

MX,q (λ) = eλT µ
ψgn

(
1
2

λ
T

Σλ

)
Fθ (ζq)

FX(xq)
, (14)

where Fθ is the tail function of a random vector θ with
the pdf

f
θ
(t) = ψgn

(
1
2

tT
Σt
)−1

eλT Σ1/2t · cngn

(
1
2

tT t
)
.

(15)

Proof. From the definition of MX,q (λ) , we have

MX,q (λ)

=

cn
∞∫

VaRq(X)

eλT x · |Σ|−1/2 gn
( 1

2 (x−µ)T Σ−1(x−µ)
)

dx

FX(xq)

after the transformation z =Σ−1/2(x−µ), we have

MX,q (λ) =

cn
∞∫

ζq

eλT (µ+Σ1/2z) · |Σ|−1/2 gn
( 1

2 zT z
)
|Σ|1/2 dz

FX(xq)

=

cneλT µ
∞∫

ζq

eλT Σ1/2z ·gn
( 1

2 zT z
)

dz

FX(xq)
.

Taking into account (15), we conclude that

cn

∞∫
ζq

eλT Σ1/2z ·gn

(
1
2

zT z
)

dz=ψgn

(
1
2

λ
T

Σλ

)
Fθ (ζq) ,
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and finally,

MX,q (λ) = cneλT µ
ψgn

(
1
2

λ
T

Σλ

)
Fθ (ζq)

FX(xq)
.

We note that the proof of Lemma 1 is based on the
same method introduced in (Landsman et al., 2013)
which derived the TCE and TV of the elliptical distri-
butions, respectively.

Theorem 1. Theorem 1. Suppose that the conditional
moment generating function of X, MX,q (λ) , exist,

and that E
(

XieλT X|X >VaRq (X)
)
< ∞ ∀i = 1,2...

. Then, the MCEP for the multivariate elliptical dis-
tribution, n > 1, takes the form

πα,λ(X) = µ+Σ
1/2

χq,λ. (16)

Here χq,λ is n×1 vector of that depends on the q− th
percentile

χq,λ =
(

χ1,q χ2,q ... χn,q
)T

, (17)

where each component of (17) is

χi,q =

ψG∗n−1,i

(
1
2

(
λT Σ1/2

)T

−i

(
λT Σ1/2

)
−i

)
ψgn

( 1
2 λT Σλ

) Fθ∗i

(
ζq,−i

)
cn

Fθ

(
ζq
)

c∗n−1,i

+
(

λ
T

Σ
1/2
)

i

ψGn

( 1
2 λT Σλ

)
ψgn

( 1
2 λT Σλ

) Fθ∗∗
(
ζq
)

cn

Fθ

(
ζq
)

c∗n
,

with the pdf’s of θ∗∗ ∈Rn and θ∗i ∈Rn−1, i= 1,2, ...,n,

f
θ∗∗ (t) = ψGn

(
1
2

tT
Σt
)−1

eλT Σ1/2t · c∗nGn

(
1
2

tT t
)
, t ∈ Rn,

(18)

and

f
θ∗i
(u) = ψG∗n−1,i

(
1
2

uT u
)−1

e(λT Σ1/2)−iu (19)

c∗n−1,iG
∗
n−1,i

(
1
2

uT u
)

,u ∈ Rn−1,

with the cumulative generator

G∗n−1,i(u) =
∞∫
u

gn(q+
1
2

z2
q,i)dq.

where c∗n and c∗n−1,i are the normalizing constants of
(18) and (19), respectively.

Proof. From the definition of πα,λ(X), we have

πα,λ(X)

=
1

MX,q (λ)
·

cn
∞∫

VaRq(X)

xeλT x · |Σ|−1/2 gn
( 1

2 (x−µ)T Σ−1(x−µ)
)

dx

FX(xq)
.

Now, substituting z =Σ−1/2 (x−µ) , we obtain

πq,λ(X)

=

cn
∞∫

ζq

(µ+Σ1/2z)eλT (µ+Σ1/2z) · |Σ|−1/2 gn
( 1

2 zT z
)
|Σ|1/2 dz

eλT µψgn

( 1
2 tT Σt

)
Fθ

(
ζq
)

= µ+

cnΣ1/2
∞∫

ζq

zeλT Σ1/2zgn
( 1

2 zT z
)

dz

ψgn

( 1
2 tT Σt

)
Fθ

(
ζq
)

= µ+Σ
1/2

χq,λ,

with χq,λ an n×1 vector of the form

χq,λ =
cn

ψgn

( 1
2 tT Σt

)
Fθ

(
ζq
) ( α1,q α2,q ... αn,q

)T
,

(20)

where

αi,q =

∞∫
ζq

zieλT Σ1/2zgn

(
1
2

zT z
)

dz.

From (13), and after some algebraic calculations, we
have

αi,q

=−
∞∫

ζq,−i

dzn−1,−ie(
λT Σ1/2)−izn−1,i

∞∫
ζq,i

e(λT Σ1/2)izi

·diGn

(
1
2

zT
n−1,−izn−1,−i +

1
2

z2
i

)
.

where zn = (z1, ...,zn)
T , zn−1,−i =

(z1,z2, ...,zi−1,zi+1, ...,zn)
T , and ζq,i is the i − th
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element of vector ζq.

αi,q =

∞∫
ζq,−i

dzn−1,−ie(
λT Σ1/2)−izn−1,i [e(λT Σ1/2)izi,q

Gn

(
1
2

zT
n−1,−izn−1,−i +

1
2

z2
i,q

)
+
(

λ
T

Σ
1/2
)

i

∞∫
ζq,i

e(λT Σ1/2)izi

·Gn

(
1
2

zT
n−1,−izn−1,−i +

1
2

z2
i

)
dzi]

= e(λT Σ1/2)izi,q

∞∫
ζq,−i

e(λT Σ1/2)−izn−1,i

Gn

(
1
2

zT
n−1,−izn−1,−i +

1
2

z2
i,q

)
dzn−1,−i

+
(

λ
T

Σ
1/2
)

i

∞∫
ζq

eλT Σ1/2znGn

(
1
2

zT
n zn

)
dzn.

Finally, from the random vectors θ∗i and θ∗∗, we ob-
tain

αi,q =
1

c∗n−1,i
ψG∗n−1,i

(
1
2

(
λ

T
Σ

1/2
)T

−i

(
λ

T
Σ

1/2
)
−i

)
·Fθ∗i

(ζq,−i)

+

(
λT Σ1/2

)
i

c∗n
ψGn

(
1
2

λ
T

Σλ

)
Fθ∗∗ (ζq) .

Remark 1. Remark. The calculation of the compo-
nents χi,q can be computed explicitly for special mem-
bers of the elliptical distributions (e.g., the normal,
logistic and Laplace distributions), in the same way,
that was obtained in (Dhaene et al., 2008).

Corollary 1. Corollary 1. Suppose that

X =
(
XT

1 ,X
T
2
)T
v E2n(µ =

(
µX1
µX2

)
,Σ,g2n)

where
(
XT

1 ,X
T
2
)T

, X1,X2 ∈ Rn, has uncorrelated
components (i.e. Σ is a diagonal matrix). Then, the
MCEP takes the form

πα,λ(X) = µ+σχq,λ. (21)

Here σ = diag(
√

σ11, ...,
√

σnn)
T where σii is the

variance of the i-th random variable of X, and χi,q

is expressed as follows:

χi,q =
ψG∗n−1,i

(
1
2 (λσ)T

−i (σλ)−i

)
ψgn

( 1
2 λT Σλ

) Fθ∗1
(zq12n−1)cn

Fθ (zq12n)c∗n−1,i

+λi
√

σii
ψGn

( 1
2 λT Σλ

)
ψgn

( 1
2 λT Σλ

) Fθ∗∗ (zq12n)cn

Fθ (zq12n)c∗n
,

where 1k = (1,1, ...,1) is vector of k ones, and zq =
VaRq (Z) , Z v E1(0,1,g1).

Proof. As X1 and X2 are uncorrelated random vec-
tors, Σ is a diagonal matrix, so

ζq = Σ
−1/2 (VaRq (X)−µ) = zq12n.

This gives us the following expression of πq,λ(X)

πq,λ(X) = µ+χq,λσ.

Lemma 2. Lemma 2. For the random vector
(X1,X2)

T

(X1,X2)
T v E2

((
µ1
µ2

)
,

(
σ11 σ12
σ12 σ22

)
,g2

)
.

Then, the conditional Wang Esscher premium
πq,λ(X1,X2) is

πq,λ(X1,X2) = µ1 +
σ1c2

c∗1

ψG1

( 1
2 λ2

2σ22
)

Fθ∗∗ (ζ2,q)

ψg1

( 1
2 λ2σ22

)
Fθ (ζ2,q)

(22)
where σi =

√
σii.

Proof. From the definition of πα,λ(X1,X2), we have

πα,λ(X1,X2)

= E(X1eλX2 |X2 >VaRq (X2))

=
1

MX2,q (λ)
·

c2
∞∫
−∞

∞∫
VaRq(X2)

x1eλx2 · |Σ|−1/2 g2
( 1

2 (x−µ)T Σ−1(x−µ)
)

dx

FX2(x2,q)

=

c2
∞∫
−∞

∞∫
ζ2,q

(µ1 + z1σ1)eλ(µ2+z2σ2) ·g2
( 1

2 zT z
)

dz

eλµ2 ψg1

( 1
2 λ2σ22

)
Fθ

(
ζ2,q
)

= µ1 +σ1c2

∞∫
−∞

∞∫
ζ2,q

eλσ2z2 ·G2
( 1

2 zT z
)

dz

ψg1

( 1
2 λ2σ22

)
Fθ

(
ζ2,q
) .

Then, after some calculations, and by using the
marginality property of the elliptical distributions,
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πα,λ(X1,X2) = µ1 +
σ1c2

c∗1

c∗2
∞∫
−∞

∞∫
ζ2,q

eλσ2z2 ·G2
( 1

2 zT z
)

dz

ψg1

( 1
2 λ2σ22

)
Fθ

(
ζ2,q
)

= µ1 +
σ1c2

c∗1

c∗1
∞∫

ζ2,q

eλσ2z2 ·G1
( 1

2 z2
2
)

dz2

ψg1

( 1
2 λ2σ22

)
Fθ

(
ζ2,q
) ,

and from the characteristic function of the elliptical
distributions

πα,λ(X1,X2) = µ1 +
σ1c2

c∗1

ψG1

( 1
2 λ2

2σ22
)

Fθ∗∗ (ζ2,q)

ψg1

( 1
2 λ2σ22

)
Fθ (ζ2,q)

Theorem 2. Theorem 2. Let X v En(µ,Σ,gn) and let
S = X1 +X2 + ...+Xn, so

(Xi,S)
T (23)

v E2


 µi

n

∑
j=1

µ j

 ,


σii

n

∑
j=1

σi j

n

∑
j=1

σi j σSS

 ,g2

 ,

where σSS =
n

∑
i, j=1

σi j. Then

πq,λ(Xi,S) = µi +
σic2

c∗1

ψG1

( 1
2 λ2σSS

)
Fθ∗∗ (ζS,q)

ψg1

( 1
2 λ2σSS

)
Fθ (ζS,q)

,

where ζS,q =VaRq (S) .

Proof. From the marginal properties of the elliptical
distributions, we know that the distribution of (Xi,S)

T

is (23). Then, from Lemma 2, we immediately have

πα,λ(Xi,S) = µi +
σic2

c∗1

ψG1

( 1
2 λ2σSS

)
Fθ∗∗ (ζS,q)

ψg1

( 1
2 λ2σSS

)
Fθ (ζS,q)

.

5 EXAMPLES

In this Section, we show several special members of
the elliptical family where the MCEP can be com-
puted. For computing the MCEP we need to compute
χq,λ, (17).

5.1 Normal Distribution

Suppose that X v Nn(µ,Σ). Then gn (u) = e−u,

so cngn(
1
2 xT x) = φn (x) = (2π)−n/2 exp(− 1

2 xT x)
and Φn (x) is the n − th multivariate standard
normal pdf and cdf, respectively. In this case
cn = (2π)−n/2 , Gn(u) = e−u = gn(u). Thus
G∗n−1,i

( 1
2 yT y

)
= exp(− 1

2

(
yT y+ζ2

q,i

)
) so

f
θ∗∗ (t) = f

θ
(t) ∝ exp

(
1
2

tT
Σt+λ

T
Σ

1/2t− 1
2

tT t
)

, t ∈ Rn,

and

f
θ∗i
(u) ∝ exp

(
1
2

uT u+
(

λ
T

Σ
1/2
)
−i

u− 1
2

uT u
)

,u ∈ Rn−1.

5.2 Logistic Distribution

Suppose that X has a logistic distribution. Then its
pdf is

fX(x) =
cn√
|Σ|

exp
(
− 1

2 (x−µ)T Σ−1(x−µ)
)[

1+ exp
(
− 1

2 (x−µ)T Σ−1(x−µ)
)]2 ,

and we write X v Lon(µ,Σ) (Gupta et al., 2013). In
this case the density generator is

gn(u) =
exp(−u)

[1+ exp(−u)]2
,

and cn is

cn = (2π)−n/2

[
∞

∑
j=0

(−1) j−1 j1−n/2

]−1

,

see (Landsman and Valdez, 2003), and the cumulative
generator Gn(u) is

Gn(u) =
∞∫

u

e−x

[1+ e−x]2
dx =

e−u

1+ e−u .

Then, f
θ
(t), f

θ∗∗ (t), and f
θ∗i
(u) are, respectively,

f
θ
(t) ∝ ψgn

(
1
2

tT
Σt
)−1

eλT Σ1/2t exp
(
− 1

2 tT t
)[

1+ exp
(
− 1

2 tT t
)]2 .

f
θ∗∗ (t) ∝ ψGn

(
1
2

tT
Σt
)−1

eλT Σ1/2t exp
(
− 1

2 tT t
)

1+ exp
(
− 1

2 tT t
)
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and

f
θ∗i
(u) ∝ ψG∗n−1,i

(
1
2

uT u
)−1

e(λT Σ1/2)−iu

·
exp
(
− 1

2 uT u+ 1
2 z2

q,i

)
1+ exp

(
− 1

2 uT u+ 1
2 z2

q,i

)
,u ∈ Rn−1.

We note that while ψGn
and ψG∗n−1,i

can be difficult
to calculate, these characteristic functions are reduced
when applying them in the MCEP πq,λ (X) . In fact,
for the i− th component of χq,λ

χi,q =
cn

Fθ (ζq)
[e(λT Σ1/2)izi,q+

1
2 z2

i,q

∞∫
ζq,−i

exp
(
− 1

2 uT u+
(
λT Σ1/2

)
−i u
)

1+ exp(− 1
2 uT u+ 1

2 z2
i,q)

du

+

∞∫
ζq

exp
(
− 1

2 zT z+λ
T

Σ1/2z
)

1+ exp
(
− 1

2 zT z
) dz].

5.3 Laplace Distribution

We say that X is multivariate Laplace random vector
if its pdf has the form (Fang, 2017)

fX(x)=
Γ(n/2)

2πn/2Γ(n)
exp
(
−
(
(x−µ)T

Σ
−1(x−µ)

)1/2
)

and we write Xv Lan(µ,Σ). Then, the density gener-
ator and the characteristic generator are, respectively,
gn(u) = e−

√
2u and

ψgn(u) =
1

1+u
.

In this case Gn(u) is

Gn(u) =
∞∫

u

e−
√

2xdx =
(

1+
√

2u
)

e−
√

2u,

Then, f
θ
(t), f

θ∗∗ (t), and f
θ∗i
(u) are, respectively,

f
θ
(t) ∝

(
1+

1
2

tT
Σt
)

eλT Σ1/2t−
√

tT t.

f
θ∗∗ (t)

∝ ψGn

(
1
2

tT
Σt
)−1

eλT Σ1/2t−
√

tT t
(

1+
√

tT t
)

, t ∈ Rn,

and

f
θ∗i
(u) ∝ ψG∗n−1,i

(
1
2

uT u
)−1

e(λT Σ1/2)−iu

·

(
1+

√
1
2

uT u+
1
2

z2
q,i

)

exp

(
−
√

1
2

uT u+
1
2

z2
q,i

)
,

u ∈ Rn−1,

Notice that although ψGn
and ψG∗n−1,i

can be difficult
to calculate they can be reduced when applying them
in the MCEP πq,λ (X) . For the i− th component of
χq,λ

χi,q =
cn

Fθ (ζq)
[e(λT Σ1/2)izi,q

·
∞∫

ζq,−i

exp
((

λ
T

Σ
1/2
)
−i

u−
√

uT u+ z2
i,q

)
du

+

∞∫
ζq

exp
(
−
√

zT z+λ
T

Σ
1/2z

)
dz].

6 DISCUSSION

In this paper, we have shown how to model the Ess-
cher premium principle for a system of mutually de-
pendent risks with the underlying elliptical model,
which is common in the world of risk measurement
and actuarial science. Furthermore, we derived the
conditional moment generating function for the fam-
ily of multivariate elliptical distribution, in which the
MTCE measure is a special case,

MTCEq (X) =
∂

∂λ
MX,q (λ) |λ=0.

The MCEP measure quantifies the premium of a
vector of dependent risks under the condition that an
event outside a given probability level has occurred.
We derived a general formula of the MCEP for the
elliptical distributions

πα,λ(X) = µ+Σ
1/2

χq,λ.

We then derived the MCEP for aggregate risks, based
on the Wang’s premium with exponential tilting,

πα,λ(Xi,S) = µi +
σ1

c∗1

ψG1

( 1
2 λ2σSS

)
Fθ∗ (ζS,q)

ψg1

( 1
2 λ2σSS

)
Fθ∗∗ (ζS,q)

.
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