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Abstract: Visually impaired people need help from others when they need to find specific destinations and cannot guide
themselves in indoor environments using signs. Computer Vision Systems can help them with this kind of
tasks. In this paper, we present to the research community an Indoor Sign Dataset (ISD), a novel dataset
composed of 1,200 samples of indoor signs images labeled into one of the following classes: accessibility,
emergency exit, men’s toilets, women’s toilets, wifi and no smoking. The ISD dataset consists of images in
different environments conditions, perspectives, and appearance that turns the recognition task quite challen-
ging. A data augmentation technique was applied, generating 69,120 images. We also present baseline results
obtained using handcrafted features, like LBP, Color Histogram, HOG, and DAISY applied on SVM, k-NN,
and MLP classifiers. We further make non-handcrafted features learned using convolutional neural networks
(CNN). The best result was obtained using a CNN model, with an accuracy of 90.33%. This dataset and
techniques can be applied to design a wearable device able to help visually impaired people.

1 INTRODUCTION

Approximately of 285 million people have some vi-
sual impairment in the world, of whom 39 million are
completely blind (Prajapati and Shah, 2016). Visual
impairment is a severe condition and can turn daily
tasks into challenging ones. Indoor signs are marks
with symbols and/or text that communicates essen-
tial social rules of the environment: whether it is to
display information, to call attention or even to show
local prohibitions (Wang et al., 2013). In public pla-
ces, some typical examples of indoor signs are men’s
and women’s toilet signs, guiding signs to exit door
or stairs ahead and signs to inform local wifi con-
nection. Visually impaired people are not able to re-
ceive this information and they need to use some spe-
cialized equipment to help them to move and to inte-
ract with the environment. In the last years, the de-
creasing costs of hardware and the raising attention
of the computer vision research field, pattern recogni-
tion, and machine learning brought new perspectives
on how the technology can help visually impaired pe-
ople.

Image object recognition, in the last years, has
been gaining attention in the computer vision rese-
arch field. Nowadays, there is a wide range of datasets

in different object recognition problems which inclu-
des human face, vehicle, food, alphanumeric charac-
ter and transit signs. These datasets have the main
goal to present themselves as a benchmark to com-
pare different techniques and methods in the specific
problem. With the rising awareness to research in the
field of autonomous vehicles, the number of datasets
of recognition problems regarding public and traffic
signs has significantly increased in the last years.

Despite the many datasets available, only a few
of them address the indoor environment sign recogni-
tion problem, and many of them are in early stage of
development (Ni et al., 2014). One can find in the li-
terature some works presenting the use of technology
to aid visually impaired people to recognize indoor
signs (Ni et al., 2014) (Wang et al., 2013), (Kunene
et al., 2016).

The recognition of indoor signs is not analogous to
the recognition of traffic signs for two significant con-
cerns: the highlight from the background, and appea-
rance standardization (Ni et al., 2014). Traffic signs
are heavily highlighted in the background and usu-
ally located in higher spots with good sight. Traffic
signs also typically have a standardized appearance,
with low or no difference in the dimensions, form and
color. In opposition, indoor signs are often located
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in neglected spots and do not have the goal of catch
much attention. Another problem is the absence of
standardization, with very few cases of joint internati-
onal use of symbols and colors. Some classes of signs
are represented commonly with the same color, such
as exit signs (green) and information sign (blue), but
the vast range of forms and symbols turn the recogni-
tion into a challenging task.

In this paper, we introduce an Indoor Sign Dataset
(ISD), a dataset created to support the development of
researches in the indoor signs recognition task. The
dataset is composed of digital images with a wide
range of different sizes, forms, colors, perspectives
and environmental conditions, such as illumination,
occlusion and noise.

To this end, we have created classification models
by using both feature engineering and representation
learning approaches. Regarding the feature engineer-
ing approach, we have assessed the following well-
known descriptors taken from the image processing
literature: Local Binary Patterns (LBP) (Dalal and
Triggs, 2005), the Histogram of Oriented Gradients
(HOG) (Gonzalez and Woods, 2006), the DAISY Lo-
cal Descriptor (Tola et al., 2010) and Color Frequency
of the image sample. The feature vectors obtained
with these methods were submitted to Support Vec-
tor Machine (SVM) (Vapnik, 1995), k-Nearest Neig-
hbors (k-NN) (Mitchell, 1997) and Multilayer Per-
ceptron (MLP) (Mitchell, 1997) classifiers. Regar-
ding the feature learning approach, we have crea-
ted one model using a Convolutional Neural Network
(CNN) (Lecun, 1989) in such a way that it performs
both feature extraction, without the need for human
intervention, and classification.

This paper is organized as follows. Section 2 pre-
sents some related works with its highlights and re-
sults. The developed dataset is presented in detail in
Section 3. Section 4 introduces theoretical foundati-
ons of the methods used in the models developed as
a baseline of performance results in the dataset, exhi-
bited in Section 5. Section 6 discusses the achieved
results and concludes the paper.

2 RELATED WORKS

By analyzing the literature, one can find objects re-
cognition applied to a wide range of problems, but
few of them address the indoor signs recognition task.
In this section we are going to describe a brief review
of these works.

Ni et al. (Ni et al., 2014) present a dataset of ind-
oor signs constituted of artificial images obtained in
searches on Google Images. The dataset contains over

a thousand samples unevenly distributed between 21
classes, each of those having from 40 to 80 samples.
Besides, the authors presented a baseline of compa-
rison between nine models associating different fea-
ture extraction and classification methods. Three fea-
ture extraction methods were used: Principal Compo-
nent Analysis (PCA) (Jolliffe, 2005), HOG and Dense
SIFT (DSIFT) (Lowe, 2004). For the classification,
the authors used a MLP, SVM and kNN. The best per-
formance was obtained when DSIFT and SVM were
used in association, achieving an accuracy of 80.5%.
The authors concluded that the indoor signs recogni-
tion is a challenging due to the absence of standar-
dization, which, in some cases, as the toilet signs,
may even have hundreds of different representations.
The authors also reported that realistic conditions may
cause the degradation of the detection and classifica-
tion performance. The dataset used in that work is not
publicly available.

Wang et al. (Wang et al., 2013) address the
problem of recognition signs placed on doors. The
roughly geometric forms as the principal feature to
detect the doors and the indoor signs are recogni-
zed by combining the salience of the detected door’s
image region and a matching-based bipartite graph.
Hardware was also developed to evaluate the method,
which consists of a camera, a microphone, a portable
computer and audio speakers. To evaluate the method,
the authors created a dataset, which is not publicly
available, with 146 samples of digital images of toilet
signs, open/close lift signs and directions signs. In the
first instance, the authors evaluated the method with
four classes (men’s toilet, women’s toilet, open and
close), achieving an accuracy of 86%. In the second
instance, with four more classes added (up, down, left
and right directions), the method achieved an accu-
racy of 81.6%.

Kunene et al. (Kunene et al., 2016) present a real-
time system that can recognize indoor navigational
signs placed over plain backgrounds. The method has
four steps: detection of the sign from the background
using appearance features, enhanced segmentation by
masking out the background, extraction of Speeded-
up Robust Features (SURF) (Bay et al., 2008) and
classification using a three-search structure. The data-
set used to evaluate the method, which is not publicly
available, is composed of seven videoclips in which
one can see eleven different signs. The method achie-
ved an average accuracy of 67.14%. The authors also
performed qualitative tests. Among ten volunteers,
seven reputed the model as suitable for sign recogni-
tion, rating the usability with 3.9 on a scale from 1 to
5.

Lastly, Bashiri et al. (Bashiri et al., 2018) pre-
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Table 1: Summary of Related Works.

Work Number
of classes Features Classifiers Freely

Available
Recognition

Rate (%)

(Ni et al., 2014) 21 PCA, HOG,
and DSIFT

MLP, k-NN,
and SVM No 80.5 %

(Wang et al., 2013) 4 Saliency Map Matching-based
bipartite graph No 86 %

7 81.6 %

(Kunene et al., 2016) 4 SURF Three-Search
Structure No 67.14 %

(Bashiri et al., 2018) 3 CNN with
Transfer Learning Yes 90.41%

3 99.82 %
1 Original images 2 Augmented images

Table 2: Summary of samples per classes.

Class Number of samples
Men’s Toilet 320

Women’s Toilet 320
Accessibility 190

Exit 130
No Smoking 120

Wifi 120
Total 1200

sent the MCIndoor20000 dataset, a large-scale fully-
labeled image dataset to support the development of
indoor objects detection of indoor signs for hospitals
and healthcare institutions. The dataset is composed
of 2,055 digital images from three different indoor ob-
ject categories, including 754 images of doors, 599
stairs and 702 hospital signs (with specific environ-
ment context attributes such as Clinics, Pharmacy and
Ambulatory Surgery Center). A data-augmentation
was employed in the training subset, resulting in more
than 20,000 samples. The authors used the pre-trained
CNN model AlexNet (Krizhevsky et al., 2012) to es-
timate the quality and quantity of attributes of the
MCIndoor20000 dataset. The accuracy results were
90.4% and 99.8% for the original dataset and the aug-
mented dataset, respectively.

Comparing all these works is not straightforward,
because they are not necessarily developed using the
same number of classes and not even on the same da-
tasets. Anyway, we summarize in Table 1 some in-
formation about the related works mentioned in this
section.

3 DATASET

In this work, we present to the research community
an Indoor Sign Dataset (ISD)1. The creation of this
dataset was motivated by the lack of publicly avai-
lable datasets to the development of scientific works
aiming to address image classification in this appli-
cation domain, including images from different envi-
ronments. The dataset is composed of 1,200 samples
distributed in 6 classes: accessibility, emergency exit,
no smoking, wifi, men’s toilet and women’s toilet. We
choose these classes because of their high availability

1https://sites.google.com/view/indoorsigndatasetisd

in public environments. Table 2 summarizes the dis-
tribution of samples per classes.

Around 90% of the samples are digital images
of indoor signs at public environments in Argentina,
Brazil, Bulgaria, Japan, Paraguay and United States
of America captured during 2017 and 2018. The re-
maining 10% of the samples are digital images of
indoor signs acquired by searches on public dom-
ain image datasets or e-commerce’s catalog images.
The dataset’s samples have a wide range of appearan-
ces and capture conditions, such as illumination, per-
spective, sizes and occlusions. All the samples were
cropped accordingly to their squared bounding boxes
to minimize the background proportion in the image
and stored in JPEG format. Fig. 1 illustrates some
samples of our dataset. The sizes of the sample ima-
ges are variable between 50×50 and 2000×2000, the
dataset’s size mode being 354×354.

4 FEATURE EXTRACTION AND
CLASSIFICATION

In this section, we detail the process of feature ex-
traction and classification. The feature extraction is
usually made using multiple manual or statistical se-
lection of features, commonly known as handcrafted-
features. Handcrafted-features are good for a wide
range of cases, but sometimes they cannot efficiently
describe the complexity of the patterns of the clas-
sification with digital images. Another approach is
the usage of CNN, a specialized kind of neural net-
work for processing data that have spatial interacti-
ons, to acquire meaningful features based on a trai-
ning stage. CNN methods have gained prominence
recently due to its high capacity to generalize patterns
in images, but it is usually costly and requires power-
ful hardware.

Figure 1: Some examples of samples in dataset. From top
to bottom, from left to right; the class of each samples are:
Emergency Exit, Accessibility, Men’s toilet, No Smoking,
Wifi and Women’s Toilet.
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4.1 Feature Extraction

The handcrafted features assessed in this work are the
following:

• LBP: This method adapts a local contrast cor-
rection as a structural texture descriptor (Ojala
et al., 1996). The rationale behind this method is
that binary patterns in the neighborhood of a pixel
are the basic properties considering the texture of
an image (Costa et al., 2012). For each pixel in
the image, the method differentiates gray intensi-
ties of P neighbors at a R distance. We used P = 8
and R = 2.

• Color Histogram: In some cases, the distribution
of colors in an image can be descriptive enough to
classify a sample (Gonzalez and Woods, 2006).
The color histogram reveals the frequency of each
element of the color space in an image. Since
the RGB color space uses 8 bits per channel (red,
green and blue), a channel concatenated histo-
gram has 768 units. To reduce this dimensiona-
lity, we grouped these units in 64 buckets for each
channel, thus reaching a descriptor of 196 dimen-
sions. Since the images of the dataset have dif-
ferent resolutions, we resized them to 128× 128
pixels resolution.

• HOG: This technique uses the frequency of gra-
dients orientations of an image as a descriptor. It
analyzes the distribution of pixels intensities gra-
dients or edges directions to describe the shape
and appearance of an object. It is a popular des-
criptor to detect objects (Dalal and Triggs, 2005).
Before computing the HOG of the images in the
dataset, we resized them to 128×128 pixels reso-
lution and transformed them to a grayscale color
space. The cell has the size of 16×16 pixels and
is applied 1×1 in each block. The orientation pa-
rameter is set to 8.

• DAISY: DAISY is a feature descriptor based on
oriented gradient similar to Scale-invariant fea-
ture transform (SIFT) (Lowe, 2004). This techni-
que utilizes Gaussian pondering and one circu-
larly symmetric kernel allowing speed and effi-
ciency in dense calculations (Tola et al., 2010).
The images were converted to grayscale and then
resized to 128×128 resolution. The distance be-
tween the sample points of the descriptor was set
to 16, the radius of the external ring was set to 16
pixels, and we have extracted two rings with eight
samples of the histogram from each using the 8-
neighborhood.

4.2 Classification

To perform classification of the images, we chose
Support Vector Machine (SVM) k-Nearest Neighbors
(k-NN) and MultiLayer Perceptron classifiers. We ap-
plied these classifiers with all the feature extraction
methods previously mentioned in Subsection 4.1. We
also collected results using CNN to perform feature
learning and classification. The following subsecti-
ons detail how these methods work.

4.2.1 SVM

Support Vector Machine is a supervised learning mo-
del that aims to find an n-dimensional hyperplane that
maximizes the distance between elements of distinct
classes (Vapnik, 1995). By definition, SVM acts as a
binary linear classifier, but some alternatives allow the
classification of objects that are not linearly separated
or have two or more classes.

As a formal definition of SVM we have: gi-
ven a set with n elements (~x1,y1),(~x2,y2), . . . ,(~xn,yn)
where y ∈ {−1,1} representing the two classes and
~xi ∈Rp representing the features vector, the goal is to
find a hyperplane n-dimensional that maximizes the
distance between the two classes. The hyperplane can
be expressed as a set of points ~x satisfying the equa-
tion

~w ·~x−b = 0 (1)

where ~w ∈ Rp is the normal vector to the hyperplane
and b ∈ R is the distance parameter to the origin.

We defined these values during the training of the
classifier, and the inference’s equation is as

yi = ~wi ·~xi +b (2)

We chose Radial Basis Function (RBF) as the ker-
nel. The parameters of cost (c) and γ were optimized
using grid-search.

4.2.2 k-NN

k-Nearest Neighbors is a supervised learning model
that classifies one instance according to its k nearest
neighbors (Mitchell, 1997). The central advantage of
this method is the not required offline training stage.
Nevertheless, the model needs to calculate the dis-
tance between all stored samples when classifying a
new instance. Thus, the classification step duration is
directly proportional to the dataset size.

The algorithm considers that all the problem in-
stances match to points in a n-dimensional space
(Rn). Euclidean distance is the commonly used met-
hod to calculate the distances and formally defined
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as let x be an instance and a feature set of x be
(~a1(x), ~a2(x), . . . , ~an,(x)), where ai(x) indicates the
value of i-th attribute of instance x. The Euclidean
distance between two instances x j and xk is defined
by the equation 3.

d(x j,xk) =

√
n

∑
i=1

(ai(x j)−ai(xk))2 (3)

The most voted class according to the k nearest
neighbors defines the classification of the new in-
stance. The equation 4 demonstrates how to perform
it.

xi← c : arg max
c

kc (4)

where kc is the number of neighbors belonging to the
class c in the k nearest neighbors.

During the evaluation step using k-NN, we used
k = 5, different values of k were used, like 1,3,7, and
9, but did not present better results.

4.2.3 Multilayer Perceptron

The MLP is used as general mapping between the
inputs and outputs variables (Mitchell, 1997). It
is a supervised learning model that uses the back-
propagation error. The MLP has one or more hidden
layers that are fully-connected. We used a MLP with
one hidden layer to connect the inputs xi, where i the
index of a sample is, with the output ŷi predicted using
the logistic function presented on equation 5.

ŷi =
1

1+ e−xi
(5)

The error of a prediction is defined as

E = ∑
1
2
(ŷi− yi)

2 (6)

where yi is the true class of i-th sample. We update
the weights using the stochastic gradient-based opti-
mizer (Kingma and Ba, 2015), the learning rate used
is 10−3.

4.2.4 Convolutional Networks

Convolutional networks (Lecun, 1989), also known as
Convolutional Neural Networks (CNN), are a kind of
neural network that employs the mathematical convo-
lution operation instead of matrix multiplication. Due
to its characteristics of sparse connections, parameter
sharing and equivariant representations, Convolutio-
nal Networks leverage advantages when working with
spatially related data, such as digital images (Good-
fellow et al., 2016).

The basic unit of a Convolutional Network is the
convolutional layer, where the input is convoluted
with the kernels at some stride and outputs a feature
map. This feature map can also pass through an acti-
vation function and is subsampled into pooling steps.
Usually, in a single convolutional network, there are
many convolutional layers connected in series or pa-
rallel until the network output.

Convolutional networks are commonly associated
with standard fully-connected neural networks, such
as multilayer perceptrons (MLPs) (Mitchell, 1997).
In those cases, a convolutional network usually recei-
ves a “raw” digital image and outputs a feature map.
Then, the MLP takes this feature map as an input and
performs the classification (Lecun, 1989). The main
advantage of using Convolutional Networks is its pur-
pose as a trainable mechanism of dimensionality re-
duction. Thus, it can adjust its parameters to create
a more generalizable feature map of the input it re-
ceives, decreasing the necessity of manual feature ex-
traction.

To simplify the model and minimize setup of hy-
perparameters, we designed all the stages of the mo-
del with the same principles, as it can also be seen
employed in the works of (Krizhevsky et al., 2012)
and (Simonyan and Zisserman, 2015). The architec-
ture of the model can be summarized in Table 3.

The model’s input has a 64×64×3 shape as it re-
ceives as input an RGB image with 64 pixels in width
and 64 pixels in height. The input passes through a
series of convolutional layers with tiny 3× 3 filters.
We fixed the convolution stride at one unit in each
axis. The output of the convolution also has the same
size as the input by adding a zero-valued border in the
input.

A leaky rectifier activation function (LReLU) is
set up in the output of the convolution. We chose the
LReLU instead of the traditional rectifier (ReLU) as
demonstrated by (Maas et al., 2013), which in some
cases ReLU activation could ”kill” some neurons and
cannot activate anymore. Each stack of convolutional
layers is finalized with a spatial pooling, performing

Table 3: Architecture configuration of the model.
# Type Input Units Parameters Stride (x,y)
1 Convolutional 64×64×3 3×3×64 (1,1)
2 Convolutional 64×64×64 3×3×64 (1,1)
3 Max-Pooling 64×64×64 2×2 (2,2)
4 Convolutional 32×32×64 3×3×128 (1,1)
5 Convolutional 32×32×128 3×3×128 (1,1)
6 Max-Pooling 32×32×128 2×2 (2,2)
7 Convolutional 16×16×128 3×3×256 (1,1)
8 Convolutional 16×16×256 3×3×256 (1,1)
9 Max-Pooling 16×16×256 2×2 (2,2)

10 Flat 16×16×256 16,384 —
11 Fully-connected 16,384 256 —
12 Fully-connected 256 128 —
13 Fully-connected 128 6 —
14 Softmax 6 6 —
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a maximum-value subsample over a 2×2 unit square
with a stride of 2.

In addition, a stack of two 3×3 convolutional lay-
ers (without spatial pooling) has the same effect of
one 5×5 convolutional layer, but it includes two non-
linear rectifications instead of one, which makes the
decision function more discriminative (Simonyan and
Zisserman, 2015).

Following the convolutional stage, there is a stage
of three fully-connected layers receiving as input the
result of the convolutional stage. The fully connected
layers have the structure similar to multi-layer percep-
tron (MLP). The first layer has 256 units, the second
layer has 128 units and the third one, as it performs
the classification, has 6 units. An LReLU activation
with α = 0.01 is also equipped in all the fully con-
nected layers. The last stage of the model takes the
fully-connected stage’s output, applies a normalized
exponential function (softmax) and “squashes” a vec-
tor of arbitrary real values into probabilities that add
up to one.

The training process follows, in general, the works
of (Krizhevsky et al., 2012) and (Simonyan and Zis-
serman, 2015). The training consists of optimizing a
multinomial logistic regression (softmax regression)
since all the classes are exclusive. The error of the
model was defined as the cross-entropy of the pre-
diction and the label of the sample. The cross-entropy
is defined as

H(ŷ,y) =−y · log(ŷ) (7)

where y is the sample label, ŷ is the sample model’s
prediction and · is a dot product.

The training also employs a dropout regularization
(Srivastava et al., 2014) in the standard neural net-
work layers. Consider a neural network with L hidden
layers and let l ∈ {1,2, . . . ,L} index the hidden layers
of the network. Let also z(l), y(l), W l and b(l) denote
the inputs, the outputs, weights and biases of layer l,
respectively; where y(0) = x. The feed-forward ope-
ration of a standard neural network can be described
as

z(l+1)
i = w(l+1)

i y(l)+b(l+1)
i ,

y(l+1)
i = f (z(l+1)

i ) (8)

for l ∈ {0,1, . . . ,L− 1} and for any i hidden unit
where f is an activation function. With dropout re-
gularization, the feed-forward operation becomes

r(l)j ∼ Bernoulli(p)

ỹ(l) = r(l) ◦y(l)

z(l+1)
i = w(l+1)

i ỹ(l)+b(l+1)
i

y(l+1)
i = f (z(l+1)

i ) (9)

where ◦ denotes the entrywise product of the ope-
rands. For any layer l, r(l) is a vector of Bernoulli in-
dependent random variables each of which has a pro-
bability p of being 1. This vector is sampled and mul-
tiplied entrywise with the outputs of that layer, y(l), to
create an output ỹ(l) that the next layer uses as input.
We set p = 0.5 during the training phase.

Mini-batch gradient descent with the Adam Algo-
rithm (Kingma and Ba, 2015) was employed as the
optimization approach. The batch size was set to 256
and the exponential decay rates β1 and β2 were set to
0.9 and 0.999. The learning rate was set at 10−3 and
do not decay in the training procedure. We trained the
model for fixed 32 epochs.

Since inaccurate initialization of the parameters in
a neural network model can lead to stall the optimi-
zer due to the instability of the gradient in training
nets, we employed an optimized heuristic initializa-
tion schemes. We followed the initialization scheme
proposed by (He et al., 2015) for the convolutional
layers and the initialization proposed by Glorot and
Bengio (Glorot and Bengio, 2010) for all the fully-
connected layers. All the initial values of bias para-
meters were set to zero.

To prevent over fitting in CNN many images are
necessary for the training subset, so we employed a
data augmentation technique in the training set which
is mainly composed of random transformations in
the color (brightness, contrast and saturation) and
space (translation, rotation, blur and sharpening) of
the image. Figure 2 exhibits some examples of sam-
ples after the augmentation process. We performed
the augmentation at a rate of 64, i.e., each sample
in the training set generates 63 augmented samples.
Consequently, each fold increased from 120 to 7.680
samples. Each cross-validation contains 69.120 trai-

Figure 2: From top to bottom, some augmented examples
for each sign class: men’s toilet, women’s toilet, accessibi-
lity, emergency exit, no smoking and wi-fi connection.
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ning images and 120 original test images. All aug-
mented images are available in this dataset.

We choose not to apply a transfer learning techni-
que with well-known models (such as the VGG-net
(Simonyan and Zisserman, 2015) or the AlexNet (Kri-
zhevsky et al., 2012)), because these models usually
are designed for its usage in environments with abun-
dance of computational resources with dedicated har-
dware for graphical or tensor processing. We desig-
ned our model considering the computational resour-
ces’ constraints of an embed device. We also conside-
red the model inference time as a main factor, which
can be as close as possible of a real-time.

5 RESULTS

In this section, we present the results of the experi-
ments using our dataset. To evaluate the models that
execute the features extraction and classification in
two steps, we used a stratified cross-validation techni-
que with 1,200 images partitioned into ten folds.

The results are summarized in Table 4. The
90.33% accuracy by model #13 states the capability
of the Convolutional Networks to generalize the most
descriptive features of the samples. The models that
employed the Color Histogram and LBP as feature
extraction presented the lowest accuracy performance
using any classifier. We conjecture that the absence of
standardization of indoors signs is the primary cause
for these models to achieve such accuracy. Another
intriguing characteristic is that models with k-NN and
MLP classifiers always have low accuracy hit when
comparing the same feature extraction method.

The models #7 and #10 that employed the HOG
and DAISY with an SVM classifier scored a signi-
ficant accuracy. Although they do not achieve re-
sults such as model #13, these methods do not require
such computational effort as convolutional networks
to train or perform and are suitable for applications in
embedded and wearable devices.

The confusion matrix of the best cross-validation
using model #13 is summarized in Table 5. We per-
ceived that the most common errors are in the classifi-

Figure 3: Samples of the classes Men and Women Toilet
signs.

Table 4: Experimental Results.

# Feature Classifier Mean
Accuracy

Standard
Deviation

1 LBP SVM 0.4500 0.0306
2 LBP k-NN 0.3541 0.0388
3 LBP MLP 0.2833 0.0271
4 Color Histogram SVM 0.3458 0.0408
5 Color Histogram k-NN 0.3333 0.0554
6 Color Histogram MLP 0.3411 0.0341
7 HOG SVM 0.7333 0.0294
8 HOG k-NN 0.5708 0.0442
9 HOG MLP 0.7166 0.0349

10 DAISY SVM 0.7125 0.0407
11 DAISY k-NN 0.5125 0.0572
12 DAISY MLP 0.7083 0.0344
13 CNN 0.9033 0.0163

Table 5: Confusion Matrix using CNN.

Men
’s Toile

t

Women
’s Toile

t

Acce
ssi

bilit
y

Exit

No Smoking

WiFi Total

Men’s Toilet 27 4 1 0 0 0 32
Women’s Toilet 2 29 0 1 0 0 32

Accessibility 0 0 19 0 0 0 19
Exit 0 0 0 13 0 0 10

No Smoking 0 1 0 0 11 0 12
WiFi 0 0 0 1 0 11 12
Total 29 34 20 15 11 11 120

cation of the class of toilet signs. We suppose this be-
havior is due to the similarity of appearances of these
two signs. The Figure 3 illustrates some very similar
samples of the men’s and women’s toilet sign class
present in our dataset.

Using the Table 5 we can summarizes the values
of precision, recall and f-measure of each category
using model #9. The “men’s toilet” sign presents the
lowest recall value, i.e., the model often classifies this
class of sign as others classes. The macro-f, which de-
notes the mean of the f-measure, is evaluated as 0.930.
This value shows that, in general, the classifier is sta-
ble and does not favors some classes over others.

6 DISCUSSION AND
CONCLUSIONS

This paper presents an Indoor Sign Dataset (ISD)
with some of the principal classes of indoor environ-
ment signs. We performed experiments on this data-
set using different methods of feature extraction and
classification algorithms, both in handcrafted features
mode and by using representation learning as well.
The collected results were summarized and presen-
ted according to the principal evaluation metrics re-
garding pattern recognition systems.

We emphasize the importance of having a public
dataset to improve the results about this problem. It is
not possible to compare the results with other techni-
ques, because they are the first using this dataset, but
the results are encouraging, because they present hig-
her accuracy than works related to it and use real pho-
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tos of different environments.
As a future work, we consider the application

of different feature extraction methods, such as co-
occurrence matrix and SURF, and different models of
CNNs to the classification task to improve the results.
Furthermore, we intend to design a wearable device
to incorporate the software.
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