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Abstract: Multivariate data visualization has to accommodate all dimensions/variables of a given dataset in the same 

display so that the data items can be rendered with respect to these variables. We propose a hybrid approach 

based on the combination of the standard parallel coordinates and star plot techniques by implementing a 

focus + context scheme. The focus area displays the parallel coordinates plot of the data with respect to few 

selected dimensions by mapping them as vertical parallel axes sufficiently wide to provide a clear view of the 

variables and data. The context area then maps the rest of the variables as tightly packed radial axes forming 

one or two partial star plots. We design multiple layouts of combining the parallel and star axes. Each layout 

maintains the data continuity between the focus and context displays. Our tests show that the proposed hybrid 

axes plot can manage a large number of variables (even exceeding one hundred) to support effective 

visualization of ultra-high dimensional datasets. 

1 INTRODUCTION 

One of the major challenges in multivariate data 

visualization is to map all relevant dimensions 

(variables or attributes) in a finite 2D space in an 

unambiguous way (e.g., Johansson and Forsell, 

2016). This mapping is critical to our ability in 

viewing how data values are distributed along 

individual variables and across all variables to extract 

useful information and gain insight. As such, the 

visualization can help us reveal clusters, correlations, 

and patterns contained in the data. 

While there exist many techniques for 

visualization of multidimensional data, the parallel 

coordinates and star plot are the ones which aim to 

treat all variables on equal footing and visually 

represent the data items/samples/observations with 

respect to them (Chambers et al., 1983; Inselberg, 

2009). Both techniques map each dimension as a 

straight line (i.e., an axis), however, resulting in 

different overall axes layouts. The parallel 

coordinates plot (PCP) maps all k dimensions as 

evenly placed k vertical parallel axes. The plot area 

usually extends in the horizontal direction more than 

in the vertical direction taking an advantage of the 

rectangular shape of computer screen. On the other 

hand, the star plot maps all variables as uniformly 

radiating axes from a common point. The star axes 

may be viewed as a circular layout of parallel 

coordinates, providing more compaction in a square 

display area. Each axis represents one dimension in 

the dataset and the coordinate on each axis is the value 

of the corresponding attribute. Line segments are 

drawn to connect successive dimensions for each data 

item. The data polylines run from the left to right in 

the PCP plot. Comparing the data values on the 

vertical axes and following their data lines between 

the axes is easier as long as visual clutter is not too 

much (Inselberg, 1997). In the star plot, the line 

segments connecting successive radial axes form 

closed loops, which usually form recognizable star 

shapes (that is, star glyphs). This helps in comparing 

data samples and also in identifying dominating 

variables (Chambers et al., 1983; Shaw et al., 1999).   

The parallel coordinates and star plots work well 

when the number of dimensions is low, say, below 

one dozen. In today’s data/information-rich world, 

one can find many situations of high dimensionality, 

especially when all types of relevant variables 

(categorical and numerical) are considered (e.g., 

Inselberg, 2009; Sansen et al., 2017). When the 

number of dimensions is arbitrarily large, the parallel 

or radial axes are too closely spaced. So, the 

visualization process becomes incomprehensible. We 

are then compelled to select a few dimensions and 

visualize the data with respect to the chosen 

dimension-subset using the parallel coordinates or 

star plot (e.g., Yang et al., 2003; Forsdosi and 
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Roerdink, 2011). Several subsets of dimensions 

perhaps may need to be examined, one at a time, to 

go over the whole dataset.  

However, it is desirable to visualize the dataset on 

its entirety so that full information is contained in the 

same display. This can be done using a bifocal 

display, which consists of a focus view of a few 

selected dimensions and a context view of the rest of 

the dimensions. Here, we propose a hybrid approach 

based on the combination of the standard parallel 

coordinates and star plot techniques by implementing 

a focus + context scheme. We explore various hybrid 

axes layouts and present analysis for selecting 

appropriate layout for a given high-dimensional 

dataset. 

2 RELATED WORK 

Visualization of high dimensional (multivariate) data 

has long been a subject of extensive investigation. 

Many visualization techniques are available. Here we 

talk about the parallel coordinates plot (PCP) and star 

plot because of their direct relevance to our proposed 

hybrid axes approach. PCP is widely used to visualize 

multivariate data as well as high-dimensional 

geometries (Inselberg, 2009; Heinrich and Weiskopf, 

2013). The star plot is generally included in most 

visual data analysis packages as radial or web chart. 

Both plots are highly effective in judging multivariate 

relations, clustering, outlier detection, etc. when the 

number of dimensions or variables is small 

(Chambers et al. 1983; Inselberg, 1997). Multivariate 

visualization becomes overwhelming for datasets 

containing multiple dozens of variables simply 

because the axes packing becomes too compact.  

To overcome the issues associated with high-

dimensionality, various approaches were previously 

proposed for axes management. Variable dimension 

spacing approach allows to tweak the default uniform 

axial gap to accommodate more axes while presenting 

a clear view of the selected axes (Yang et al., 2003). 

For instance, similar variables or less important 

variables can be mapped as tightly axes. Collapsing a 

subset of axes and zooming in/out of axes can be 

applied to adjust the dimension space of concerning 

axes (Brodbeck and Girardin, 2003). This idea was 

further implemented for a bifocal display consisting 

of focus and context parts (Novotny and Hauser, 

2006; Kaur and Karki, 2018). The focus part renders 

the data with respect to few selected variables and the 

context part tightly packs the rest of the axes.  

Dimension reduction approach tends to discard less 

important variables from the plot (Johansson and 

Johansson, 2009) and can be based on principal 

component analysis (Jolliffe, 1986; Mead, 1992). 

Similar dimensions can be merged to one 

representative dimension. An interactive approach is 

to select a subset of variables to be displayed in the 

main PCP view at a time, while keeping the rest in an 

overview plot or in a repository area (Riehmann et al., 

2012; Gruendl et al., 2016). In these approaches, the 

information is either lost from or not fully available 

in the display.  

To manage arbitrarily large number of 

dimensions, a multilevel plot scheme has been 

previously proposed. Such plot provides a stacked 

view containing two or more PCPs, each consisting 

of many variables, whose count is roughly the same 

between the levels (Kaur and Karki, 2018).  In the 

case of star plot, the dimensions are divided into 

multiple groups, which are mapped to different 

concentric circular regions or rings (Sangli et al., 

2016). The outer the ring, the larger the dimension 

group mapped. For example, a three-level star plot 

contains three sub-star icons for each data sample. 

The multilevel plots are particularly helpful in 

providing the context while focusing on few 

important dimensions. However, different-level PCPs 

or star plots are disjoint, and the data polylines 

become discontinuous (Sangli et al., 2016; Kaur and 

Karki, 2018). Such discontinuity is also an issue with 

the double PCP view approaches (Riehmann et al., 

2012; Gruendl et al., 2016). 

Integration of parallel coordinates and star plot 

techniques has been previously performed to design 

parallel glyphs (Fanea et al., 2005). To the best of our 

knowledge, no systematic study has been carried in 

addressing the problem of mapping ultra-large 

number of dimensions/variables. Our proposed 

hybrid approach combines the vertical parallel axes 

and the radial star axes to support a bifocal display of 

multivariate data. 

3 HYBRID AXES PLOTS 

We design the layouts of the combining parallel and 

radial axes to enable a focus + context visualization 

of multivariate data.  The display space is partitioned 

into two or more parts. One part provides a focus 

view, which supports parallel coordinates plot (PCP) 

of the data with respect a few selected dimensions. 

The number of such high priority variables is kept 

small (below ten), so the corresponding parallel axes 

are spaced sufficiently wide. The other parts together 

provide a context view, which tightly packs the 

remaining variables either as radial axes or both as 
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radial and parallel axes. The context axial spacing can 

be arbitrarily small as the number of dimensions that 

are included in the context display can be arbitrarily 

large.  

Let X and Y be the horizontal and vertical extents, 

respectively, of the display area used to visualize a 

given multivariate dataset consisting of k dimensions. 

We consider a rectangular display with X ~ 2Y as 

shown in Figure 1. Note that the aspect ratio 2:1 is not 

a constraint in our design of hybrid axes layout. If the 

focus display of width XF maps kF dimensions, the 

axial spacing is given by XF = XF/(kF-1). The size of 

focus area is determined by fixing either XF or XF. 

For instance, we take XF = Y so the focus display is 

one half of the overall display. The parallel axes come 

closer as kF increases. If the axial spacing hits some 

user-defined minimum threshold (XF0), we then 

widen the focus part according to XF = (kF-1)XF0.  

The angular spacing between the kC radial axes in 

the context display is given by  

 =  /(kC-1) (1) 

 

Figure 1: The hybrid axes layout 1 for a 31-dimensional 

dataset. The focus area displays PCP with respect to four 

variables (labelled 0, 1, 2 and 3) and the context area shows 

a quarter star mapping 27 variables with no origin shift 

(upper) and with shift 0.5l (lower). Two data polylines, one 

from each category value of dimension 0, are highlighted. 

where  is the total angular span of all parts 

supporting the content display and 𝑘C = 𝑘 − 𝑘F kC. 

For a full star plot,  = 360o.  The length (l) of the 

parallel and radial axes is Y (or Y/2) for the 2:1 

display. In the context view, we also apply an offset 

(lo) so the radial axes do not start from one common  

origin thereby opening a finite axial gap at their lower 

ends. The value of lo can be calculated as: 

𝑙o = min (
∆𝜃th

∆𝜃
, 0.5) 𝑙 (2) 

Here ∆𝜃th represents the threshold axial angle 

assigned by the user (the default value is set at 5o), ∆𝜃 

is the angle between successive axes in the context 

star plot under consideration given by Eq. 1, and l is 

the axial length when the radial axes start from the 

single common origin. A bigger shift (up to 0.5l) can 

be helpful in reading the data lines when the axes 

contain dense small values.  

Next, we present different layouts of our proposed 

hybrid parallel-radial axes plot. They mainly differ in 

the number and size of context parts used. For 

illustration, we use the breast cancer dataset 

containing 31 dimensions (Wolberg et al., 1994; Dua 

and Karra Taniskidou, 2017). We have k = 31, kF = 4, 

and kC = 27.  Note that the numerical labels on the 

axes in the plots represent the variables (Figure 1). 

For the four focus axes considered, 0: 

malignant/benign cancer, 1:  mean radius of mass, 2:  

standard error of radius, and 3:  largest radius. The 

origin shift lo evaluated using the Eq. 2 is applied to 

the context axes.  

3.1 Layout 1 

The overall display is vertically split into two equal 

parts (Figure 1).  The left side of the display maps kF 

axes at the spacing Y/(kF-1) for a 2:1 display space. 

The remaining axes are mapped to the other part as 

one quadrant of star plot. The positions of the focus 

and context parts can be switched in layout 1. The 

angular spacing is given by   = 90o/(kC-1). For the 

example data, ∆𝜃 = 3.5o and the plot gives a highly 

cluttered display (Figure 1, upper). Using Eq. 2, we 

have lo = 0.5l assuming 5o threshold angular spacing. 

With this high shift applied, we can now trace the data 

polylines (Figure 1, lower). We can see that two 

highlighted samples, one for each cancer type 

(dimension 0), take different values for focus axes (1 

and 3) as well as for most context axes. 

3.2 Layout 2 

To increase the angular spacing, we use a half star 

plot for the context display by reducing the axial 

length to half as shown in Figure 2. So,  = 

180o/(kC–1). The focus display in layout 2 can be 
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widened because the context display gets narrower. 

For the example data with kC = 27, we have now 

angular spacing of about 7o. The axial origin shift lo = 

0.36l, according to Eq. 2 with ∆𝜃th = 5𝑜.  The focus 

PCP clearly reveals that the malignant cancer samples 

tend to be bigger than the benign cancer samples 

(with respect to both variables 1 and 3).  

 

Figure 2: The hybrid axes layout 2 for a 31-dimensonal 

dataset. The focus area displays PCP with respect to four 

variables and the context area shows a half star mapping 27 

variables. For the dimension 0, two categories are shown by 

red lines (malignant cancer) and blue lines (benign cancer).  

3.3 Layout 3a and 3b 

To maintain a reasonable angular spacing for large k, 

we can divide the display into three parts (Figure 3). 

The middle part provides the PCP focus display 

which is the same as in the previous two layouts. In 

layout 3a, the context display is split between two 

sides, each containing a half-star plot. The length of 

radial axis is the same as in layout 2, but the angular 

spacing improves further because of total 360o span. 

The context dimensions are split between the left 

half-star (kCL axes) and the right half-star (kCR axes), 

not necessarily equally, that is, kCL and kCR can be 

different. The corresponding angular spacings are 

given by 180o/(kCL-1) and 180o/(kCR-1). For the 

example data, we have an average angular spacing of 

about 14o, with the left and right half-stars 

accommodating 14 and 13 context axes, respectively 

(Figure 3). The origin shift is lo = 0.18l, according to 

Eq. 2 with ∆𝜃th = 5𝑜. 

While the selected dimensions are widely spaced 

out for a focus view, PCP alone may not provide the 

data visualization to a desired level. The focused 

visualization may need supplementary plots such as 

scattered plot or may benefit from showing the data 

table with selected entries.  For this, we compress the 

focus PCP vertically to the upper half space to make 

the lower half space available for additional display  

 

 

Figure 3: Two variants of the hybrid axes (layout 3a and 3b) 

for a 31-dimensonal dataset. The context display contains 

left and right half stars. The focus area displays PCP with 

respect to four variables. The lower layout divides the focus 

area into compressed PCP and a scatter plot between the 

first axes pair. 

(Figure 3, lower). This layout 3b does not affect the 

length and angle for the context axes. In Figure 3 

(lower), the scatter plot confirms strong positive 

correlation between the variables 1 and 3.  

3.4 Layout 4 

For large k, the number of context axes also becomes 

large because the number of focus axes remains 

relatively small. We can have two three-quarter 

(3/4th) star plots, also using the space below 

compressed PCP (Figure 4, upper). The overall 

context display represents total one and half star plots 

so the total angular span is 540o. The angular spacings 

on the left and right three-quarter stars are given by 

270o/(kCL-1) and 270o/(kCR-1), respectively. For the 

example data, we have a much wider angular spacing 

(about 21o) and a much smaller origin shift (0.12l). 

Such a wide context view may not be needed for this 

dataset as the context axes are too widely spaced out.  

3.5 Layout 5 

Instead of converting each half-star to a 3/4th star, we 

can actually bridge the left and right half-star plots by 

tightly packing the context axes as parallel axes in the 

space below the focus PCP (Figure 4, lower). The 

context display thus consists of three parts: left 
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half-star plot, right half-star plot, and middle PCP, each 

mapping approximately the same number of the 

context axes. Note that the context PCP axes are 

packed much more tightly and somewhat shorter than 

the focus PCP axes. The angular spacing for the star 

axes is close to that of layout 4. The major difference 

of this layout from all other layouts is that the data 

polylines form closed loops, each consisting of a focus 

PCP portion, two half-star portions, and a context PCP 

portion.  

4 IMPLEMENTATION AND 

ANALYSIS 

The choice of a hybrid axis layout depends on the total 

number of variables of the dataset under consideration 

and the desired axial spacing in the context display. We 

implemented the proposed hybrid axes plot system 

using D3.js for data rendering and vue.js for user 

interface. For each axis, we define one end (which is a 

lower end for the focus axis or an origin-closer end for 

the context axis) as the normalized attribute value of 

zero and the other end as the normalized value of 1. So, 

all data attributes are normalized to the range 0 to 1.  

 

Figure 4: The hybrid axes layout 4 (upper) and 5 (lower) for 

a 31-dimensonal dataset showing all data points. The focus 

area displays PCP with respect to four variables and the 

context area displays 27 variables. The data lines are 

colored for the cancer type: red (malignant) and blue 

(benign). 

Our system finds an appropriate layout for a given 

dataset of k dimensions (Figure 5). Using the default 

5o (or a user-specified value) for the threshold angle 

∆𝜃th, it estimates the maximum number of the context 

axes each layout can accommodate according to the 

following relation:  

𝑘C =
𝜃

∆𝜃𝑡ℎ

+ 1 
(3) 

The calculated numbers of the context axes for 

different layouts are given below:  
 𝜃 kC (∆𝜃th= 5o) kC (∆𝜃th= 10o) 

Layout 1 90o 19 10 

Layout 2 180o 37 19 

Layout 3 360o 73 37 

Layout 4 540o 109 55 

 

Figure 5: A simple user-interface supporting the hybrid-

axes plot system.  

There must be, at least, two axes to have a focus PCP. 

So, all layouts with kC  k - 2 are acceptable, and the 

system chooses the one with angular requirement 

minimally met. The user then visualizes the data 

using the system-selected layout irrespective of the 

number of focus axes. However, the user can switch 

to any other layout and also adjust the origin shift in 

an interactive manner.  Note that layout 5 has similar 

angular spacing as layout 4, and the choice between 

two is left up to the user. For the 31-dimensional 

example data, the system assigns layout 2 for the 

default angular threshold (5o) and layout 3a if the user 

specifies a wider angular spacing of 10o. The origin 

shift is 0.36l in each case. It is important to note that 

in each layout, the data polylines are always 

continuous between the focus and context displays 

(for example, two highlighted data lines in Figures 1 

and 3).   
We now consider the example of ultra-high 

dimensional dataset. The Libras movement dataset 

consists of 91 variables describing the movements of 

hand for the sign language (Dias et al., 2009; Dua and 

Karra Taniskidou, 2017). With the default spacing 

∆𝜃th= 5o, the system assigns layout 4, which can 

accommodate up to 109 axes, exceeding k-2 = 89. If 

a wider angular threshold of 10o is applied, none of 
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the layouts meets the requirement and the system 

assigns the layout with highest kC value, that is, layout 

4. Again, the user can select layout 5, which can 

accommodate the same number of context axes. 

Assuming that 4 dimensions are used for the focus 

display, we have 87 variables to be incorporated for 

the context display for the dataset. The axial angle  

and origin shift lo take the following values for 

different layouts:  

 

layout 1:   = 90o/86 = 1.1o, lo = 0.5l 

layout 2:   = 180o/86 = 2.1o, lo = 0.5l 

layout 3a, b:   = 360o/86 = 4.2o, lo = 0.5l 

layout 4:   = 540o/86 = 6.3o, lo = 0.38l 

layout 5:   = 360o/56 = 6.4o, lo = 0.38l 

 

The angular spacing is too small for layout 1 and 2 so 

both layouts are not appropriate (not shown here). 

 

 

Figure 6: Hybrid axes plot of 91-dimensional dataset using layout 3a (upper) and layout 4 (lower). The focus PCP area shows 

four variables (label 0 and 1: x- and y-coordinates of the first point, label 2 and 3: x- and y-coordinates of the second point). 

The context areas display 87 variables together in the left and right stars. A couple of data lines are highlighted in red and 

green. 
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The context stars in layout 3a appear to be too tight as 

well (Figure 6, upper). The best options are layout 4 

and 5, which give the widest angular spacing (~ 6.3o) 

as shown in Figures 6 (lower) and 7. We can choose 

the minimum threshold for the angular spacing such 

that the context axes are visually traceable. This 

appears to be the case with a few degrees like 5o.  For 

such angular spacing, the hybrid axes layouts 4 and 6 

can allow the visualization of a dataset consisting of 

over 110 variables. We can improve the axial spacing 

at the ends closer to the origin to some extent by 

increasing the offset lo.  

Multidimensional visualization is generally prone 

to visual clutter. This is even more so for the proposed 

hybrid PC-star axes plots when they try to 

accommodate many data lines (Figure 4) and many 

dimensions as possible (Figure 6). Appropriate ways 

of interacting with the axes themselves and with the 

data polylines are critical to the effectiveness of the 

resulting visualization (Siirtola and Raiha, 2006; 

Turkay et al., 2011).   Since the goal of this work is to 

design the axes layout, we support a minimal 

interactivity. There are options to select the desired 

layout and adjust the origin shift and focus area width 

(Figure 5). We can move the axes between the focus 

and context areas by selecting the concerned axes. We 

can highlight single or group of data polylines, so 

they can be traced not only in the focus display but 

also in all parts of the context display. Figure 7 

displays two groups of data points, which differ not 

only with respect to focus axes, but also differ with 

respect to the most context axes.  Their values are 

reversed for certain variables such as 20, 22, 24, 26, 

and 28. An interesting way to change focus 

dimensions in layout 5 is to scroll them like a carousel 

(Figure 7).  

5 CONCLUSIONS 

We propose a hybrid approach based on the parallel 

coordinates and star plot techniques to visualize 

datasets containing ultra-high number of 

dimensions/variables/attributes. In essence, our 

approach integrates the ideas of these two plots into a 

hybrid plot consisting of parallel and radial axes. A few 

selected dimensions are mapped as parallel vertical 

axes to support a focus view while all the remaining 

axes are mapped tightly as radial star axes to support a 

context view. We explore various hybrid axes layouts, 

which differ in the way the context axes are represented 

as quarter, half, or three-quarter star. It is important to 

note that all axes layouts maintain the data continuity 

between the focus and context regions. We also present 

a rationale for selecting appropriate layout for a given 

number of variables by working with a couple of high-

dimensional datasets. More work is needed on several 

fronts to further demonstrate the applicability and 
effectiveness of the proposed hybrid techniques in 
high-dimensional data visualization. Some possible 
actions to be taken can deal with user evaluation, 

intelligent set of interactions and visual clutter 

reduction.    

 

Figure 7: Hybrid axes plot of 91-dimensional dataset using layout 5 showing only 50 data points. The focus area displays 

PCP with respect to 5 variables (label 0, 1, 2, 3, and 4). The context display contains two half-stars and PCP, each mapping 

25 variables. The data lines with low and high values with respect to focus axes are shown in green and blue, respectively. 
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