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Abstract: Because of major advances in experimental and computational techniques, materials data are abundant even 
for specific classes of materials such as magma-forming silicate melts. A given material property M can be 
posed as a complex multivariate data problem. The relevant variables or dimensions are the values of the 
property itself, the factors which influence the property (pressure P, temperature T, multicomponent 
composition X), and meta data information I. Here we present an innovative visual analytics system for the 
melt viscosity (), which can be represented by M (, P, T, X1, X2, …, I1, I2, …). Our system consists of a 
viscosity data store along with a web-based visualization support. In particular, we enrich the parallel 
coordinates plot with non-standard features, such as derived axes/sub-axes, dimension merging, binary 
scaling, and nested plot. It offers many insights of relevance to underlying physics, data modeling, and guiding 
future experiments/computations. Other material properties such as density can be incorporated as new 
attributes and corresponding new axes in the plot. Our aim is to collect all published data on various melt 
properties and develop a framework supporting database, visualization and modelling functions.  

1 INTRODUCTION 

Data on materials properties are common in many 
fields of science and engineering. Researchers usually 
have to go through the data collection, pre-
processing, exploration, and finally modeling phases 
to better understand a given physical property. 
Advanced techniques to deal with massive amounts 
of materials data have been gaining interest in recent 
years. However, the multivariate nature of these data 
introduces further challenges. They involve variables 
of different types which require different 
representations. For instance, the value of material 
property under consideration itself may be a scalar, 
vector or tensor quantity. The parameter space in 
which the property is defined includes variables such 
as pressure, temperature, and composition. Other 
information such as methodology (experiment or 
computation), publication (year, authors, source), 
model-predicted values, uncertainties/errors, etc. can 
be useful in the analysis. The actual data values along 
with metadata can be examined for the completeness, 
trends, correlations, and modeling. An important 
class of materials belongs to magma-forming silicate 
melts (Kono and Sanloup, 2018), and here we take the 
melt viscosity as a use case for materials property 
(e.g., Hui and Zhang 2007; Karki et al., 2013). 

In this paper, we present the parallel coordinates 
plot (PCP) enriched with several features to visualize 
the viscosity data (Figure 1). PCP is one of the widely 
used multivariate data visualization techniques 
(Inselberg 2009) to grasp an overall view of data and 
to reveal the relationships, clusters, etc. Many recent 
works have been focused towards either expanding 
feature set of plot components, reducing visual clutter 
or making correlations more visible (Heinrich and 
Weiskopf 2013; Johansson and Forsell, 2016). 
However, user centric analyses based on PCP are still 
rare. Our study presents a user specific enhancement 
of PCP for visual analytics on the viscosity data. It is 
implemented as part of a web-based framework for 
managing, exploring and analyzing the data.  

Figure 2 shows the components of the proposed 
framework, where PCP serves as the foundation for 
the visualization platform. In the framework, data are 
stored and managed in the database. The modelling 
platform allows us to build materials property models 
based on standard forms optimized with finely 
selected data. The user interface for modeling and 
visualization is implemented in the client-side web 
browser. As part of an analytics framework, our PCP 
visual system has several unique features compared 
to other stand-alone tools: 1) Our system connects to 
a database and loads data directly from the database. 
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Figure 1: Parallel coordinates plot of melt viscosity data with respect to 17 dimensions. Computational and experimental data 
are displayed in blue and red, respectively. Numerical axes include viscosity , pressure P, temperature T, etc., and categorical 
axis includes “Method”. Linear and logarithmic scales are used. The value range 0 – 100 wt% is used for all component axes. 
Triangle button inverts the axis, cross button removes selected dimension, and square button performs binary scaling. Control 
panel at the bottom contains additional exploration tools such as Zoom, || Axis (derived axis), Data Probe, and others.  

2) It also connects to a modeling platform. Insight 
from visual analysis can be directly used in model 
construction and resulting models can be visualized 
for evaluation. 3) Finally, the whole framework is 
web-based. Users can conduct analysis using our 
system anywhere without the need for installation. 
The framework is expected to help gain insight 
(qualitative) to the given materials property data and 
explore quantitative details for further analysis. 
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Model builder 
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Figure 2: Layers of the proposed framework. 

2 RELATED WORK 

Visualization is used for gaining insights onto 
materials data, particularly when they have direct 
relevance to 3D space and time.  Examples include 

atomic configurations (crystal structures), charge 
distributions and bonding, and many microscopic 
phenomena such as molecular diffusion, crack 
propagation, fluid dynamics (e.g., Bohara and Karki, 
2014). In contrast, the data representing the bulk 
(macroscopic) properties such as density, elasticity, 
viscosity, conductivity, etc. usually do not require 
sophisticated visualization because the number of 
data values generated by a single (complete) study 
tends to be small. Over the years, these materials data 
have piled up so we want to collect and analyze them. 
This has been the situation with silicate melts whose 
physical properties are highly sought after. In 
particular, the viscosity is perhaps the most important 
property governing all magmatic processes including 
melt transport, magma mixing, and volcanic 
eruptions (Abe 1997; Solomatov 2007; Zhang et al. 
2007; Adjaoud et al. 2011).  

We aim to provide a database and web 
visualization platform to facilitate data exploration 
and modeling. Previous works on the viscosity data 
collections were confined to either published 
materials or simple databases with some model 
calculations (Hui and Zhang 2007; Giordano et al., 
2008). The data are mostly found in Excel or CSV 
format and are not centrally located. Experiments 
have been helpful to generate the viscosity data, 
however, they are usually confined in the low 
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temperature-low pressure regime (Shaw 1972; 
Urbain et al. 1982; Wang et al. 2014). Computational 
techniques have started to generate data over 
experimentally inaccessible conditions (e.g., Adjaoud 
et al. 2011; Karki et al. 2013; Ghosh and Karki 2017). 
A combination of experimental and computational 
data appears to be a promising avenue to full 
understanding of the viscous behavior of magmatic 
melts. Exploring these data due to the multivariate 
nature can be realized only with visualization.  

Parallel coordinates plot (PCP) is widely used in 
the visualization of multivariate data (Inselberg 2009; 
Heinrich and Weiskopf 2013; Johansson and Forsell 
2016). PCP treats all variables/dimensions on equal 
footing as vertical axes and renders all data points in 
the parallel axis layout. By displaying full 
information on the same display, it helps us judge 
correlations, detect outliers, and identify clusters 
(Inselberg 1997). The primary technique to display a 
multidimensional data row (a data item) in PCP is by 
using a set of polylines connecting successive axes. 
Using continuous curves to map data values instead 
of polylines which are non-differentiable at the axis 
intersections can enable over-plotted line segment 
detection and cluster visualization with curve 
bundling (Graham et al., 2003; Zhou, 2008). Binning 
techniques for data density estimation allow to 
understand the distributions of data values on 
multiple variables (Geng et al., 2011; Nguyen 2018). 

A quick glance at a relatively dense PCP may look 
over crowded or even intimidating for untrained 
users. Interaction is crucial for the effectiveness of the 
PCP-based visual analytics (Siirtola and Raiha, 
2006). Techniques such as brushing (Fisherkeller, 
1988; Roberts et al., 2015) and pinching (Inselberg, 
2009) allow a selection of a subset of data. Axis-
aligned brush in particular gives the user ability to 
filter data rows along a selected axis (Turkay et al., 
2011). The parallel coordinates matrix (Heinrich et al. 
2012) plots all permutations of dimensional positions 
which is comparable to a scatter plot matrix (Zhou 
and Weiskopf, 2018). Dimensional re-ordering can be 
applied with appropriate metrics to prioritize the 
location of each dimensional axis (Lu et al., 2016; 
Peltonen and Lin, 2017). Unimportant or less 
important dimensions can be removed from the main 
PCP view and placed in another view for context 
(Riehmann et al., 2012; Kaur and Karki, 2018). 

When multiple datasets are involved, a single 
view is expected to support both intra- and inter-
dataset analyses. This can be achieved with the nested 
PCP (Wang et al., 2016). It embeds multiple nested 
axes pairs, one for each dataset, between the 
corresponding primary axes pair. The nested axes can 

have different scaling factors than the primary axes to 
allow better view of the data lines in each dataset plot. 
The nested PCP can provide in-depth visualization by 
breaking down a dataset into multiple subsets 
corresponding to different clusters or categories or 
arbitrary groups in the data (Kaur and Karki, 2018).  

It has been common to bring visualization to the 
web platform (e.g., Jourdain et al., 2011; Donato et 
al., 2018). The convenience of working with an 
application without having to download or install 
anything locally is one of the reasons for the web 
browsers’ popularity for visualization application. 
Further, web technology is greatly platform agnostic, 
ensuring greater accessibility with minimal user 
effort. Graphical components can be managed using 
Scalable Vector Graphics (SVG) or Canvas with web 
scripting programming language Javascript. Chart 
components can be constructed using just Javascript 
or through a popular data driven Javascript library D3 
(Bostock et al., 2011). Chart components developed 
with D3 can be used for highly-interactive data-
driven visualizations (Donato et al., 2018). 

3 DATABASE 

Our enhanced parallel coordinates system is part of 
an analytic framework that consists of three pillars: 
the database, visualization, and modelling platforms 
(Figure 2). Data are internally managed in a relational 
database management system. Below we describe the 
data itself and methods of data compilation. 

3.1 Data Format 

A given material property such as the melt viscosity 
which is considered in this study can be viewed as a 
multivariate entity:  
 
           M  M(, P, T, X1, X2, …, I1, I2, …)          (1) 
 
In this multidimensional representation, the value of 
the property itself is considered as one of the variables 
(attributes). It is a scalar quantity for the melt 
viscosity (). The property can also be a multi-valued 
quantity, for instance, diffusion coefficients (defined 
per atomic species) or elastic stiffness tensor. The 
parameter space in which the property is 
defined/determined involves factors such as pressure 
P, temperature T, and composition X. The 
compositional factor is itself multi-component (X1, 
X2, …), which represent molar fractions (or weight 
percentages) of over ten oxides in the case of molten 
silicates. Additional information of the data such as 
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methodology, publication details, research group, and 
comments may also provide valuable insight during 
analysis. The meta data information can be included 
as additional attributes (I1, I2, …). Researchers are 
also interested in building models using property 
values with respect to the parameter space and assess 
the uncertainties. To compare the predicted results 
with the actual data, we can use one or more derived 
variables.  Thus compiled full information is visually 
mapped for meaningful analysis and modeling of the 
materials property (e.g., melt viscosity) in the 
question. Any other properties can be represented in 
the same format by simply adding their  data values 
as additional attributes to M. 

 

Figure 3: Database schema showing central data tables. 

The viscosity data are collected from various 
published sources. Data format across all datasets 
usually varies and needs to be transformed into a 
standard format before storage and analysis. At the 
heart of it, the dataset is a list of viscosity values 
collected over different pressure, temperature, and 
composition ranges. Previous works on viscosity 
database have focused on only essential components 
for analysis and model building. Here we are also 
including metadata and any other relevant 
information (uncertainty, model values) along with 
the actual viscosity values. Similarly, rather than 
storing data in a general text file format, we organize 
a table structure for efficient data storage and retrieval 
(Figure 3). Data values are stored as real numbers in 
respective standard units whereas each composition 
component value is stored as a molar mass/weight 

percentage (wt%). Therefore, summing up all 
components for a single data point always yields a 
100%. Detailed information for each data point can 
be extracted by joining the appropriate tables (Figure 
3). In the web-application, users can filter results not 
only based on the actual data variables (viscosity 
value, P, T or X), but also by the metadata.  

3.2 Data Compilation 

We have compiled melt viscosity data from both 
experimental and computational sources. The 
measured viscosity-temperature data at ambient 
pressure exist for melts of several compositions (Hui 
and Zhang 2007). Our database incorporates these 
data previously used for developing predictive 
models. Steady but important advances in 
experimental measurements have brought new data at 
elevated pressures. We have yet to compile these 
high-pressure data, which mostly have appeared in 
recent years. The third category consists of calculated 
viscosity results. Our database includes the data from 
first-principles molecular dynamics simulations, 
which are generally considered to be highly accurate 
(Karki et al., 2013; Ghosh and Karki, 2017). There 
are much more viscosity data generated by other 
computational methods yet to be gathered. We 
anticipate to eventually have several thousand records 
in the melt viscosity database.  

4 PARALLEL COORDINATES 

To visually analyze the silicate melt viscosity data, 
we choose to adopt parallel coordinates plot as this 
technique can address various visualization 
challenges related to large multivariate dataset. In 
essence, PCP maps all data items with respect to all 
dimensions on a single display. The data polylines go 
across the display space sequentially through each 
dimensional axis. Since visual clutter is inevitable, a 
standard PCP with just vertical axes and polylines is 
bound to be inadequate. We consider various standard 
and non-standard PCP features, falling broadly into 
two categories. First, the interaction with the data 
variables/dimensions is explored in detail with the 
derived axes, axis merging, and bi-scaling. Axis can 
also provide space to display additional information 
and overlays such as categorical bubbles or 
histograms. Second, we explore ways to interact with 
the data itself through polylines. One or more 
polylines can be selected out of the entire data with 
appropriate color mapping and alpha blending.  
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4.1 Standard PCP Features 

A standard PCP contains data polylines going through 
a consecutive list of parallel vertical axes for a data 
record (Figure 1). These lines intersect each axis at 
the corresponding scaled dimensional values. The 
axes thus divide a 2D drawing surface with respect to 
a ݇-dimensional data space onto ݇ െ 1 sub-surfaces. 
Axes scaling is done with respect to maximum and 
minimum data values per dimension. Axes act as a 
main container for visual elements such as labels, 
markers, and overlays. These visual cues allow user 
to observe data space and read specific values. A 
linear (uniform) scale is used for most of the 
numerical data values. Categorical values are 
represented either by transforming each category 
value to a point or bubble at the mapped axis location.  

Plotting a large multi-dimensional dataset on a 
standard PCP may occlude some data. Data selection 
techniques, such as axis-aligned brushing, probing, 
and pinching are used to filter the data. Brushing is 
useful along single axis as well as when combined 
with brushes from multiple axes. Logical relations 
between dimensions such as “and” or “or” are used to 
construct higher order brushes (Turkay et al., 2011). 
Similarly, pinching can be used to make data 
selection from the ݇ െ 1 data sub-surfaces itself. 
Polylines may also be given discrete color map to 
differentiate between categories or continuous color 
map to represent numerical axis values. Relationship 
between any two axes may emerge in the form of 
positive or negative correlation in any of the sub-
surfaces between axes (i.e., between adjacent axes). 
This may require examining different axis layouts. 
Axis reordering and flipping techniques are used to 
overcome the correlation identification problem. Our 
PCP system is also augmented with data table and 
pair-wise scatter plot.  

4.2 Non-standard PCP Features 

On initial load, our PCP system orders the axes by 
placing the most significant dimensions around the 
material property value dimension, which is viscosity 
in this study (Figure 1). It places pressure and 
temperature axes on left side of the viscosity axis and 
place the composition axes (silica component 
followed by other components) on the right. The 
metadata axes are placed further away. Other axes 
orderings can also be explored with drag and drop 
user interaction on any axis. Proper axis scaling is 
crucial for true representation of data. While each 
categorical value is given uniform space across the 
height of its axis, the numerical values are dealt 

differently. In the standard PCP, the lowest domain 
values appear at the bottom while the highest ones at 
the top of the axis. This is true for all dimensions 
except the components. All of the components, 
regardless of their domain extents, are plotted from 0 
to 100 to effectively show their proportions for a 
given data point. Both linear and non-linear scaling 
have been used for data representation. Since 
viscosity spans a large range, data patterns become 
difficult to observe as the data size over the full range 
increases. A logarithmic scale is used for viscosity.  

Axes are usually laid out uniformly across the 
display space with axis spacing ∆ݔ ൌ ܺ஽/ሺ݇ െ 1ሻ, 
where XD represents the display width. This spacing 
layout provides equal significance to all dimensions. 
In the context of viscosity data, the users might be 
interested in exploring the relationships between the 
parameter space and viscosity values much more than 
the relationships between composition components. 
Therefore, to provide a larger space for interesting 
dimensions while also keeping the context of the 
overall data, our system uses variable axial spacing 
technique to separate the PCP into data and 
component regions (Figure 1). The data region can 
occupy one half of the display space and contains 
most important axes such as viscosity, temperature, 
pressure, method, and year. The component region is 
given the rest of the space with some padding. This 
region packs many (about a dozen) component axes. 

4.2.1 Derived Axes/Sub-axes 

Different data regimes for a dimension can be 
explored in large screen estate by augmenting a 
derived axis/sub-axis next to a primary axis. We can 
display the viscosity values using a linear scale on the 
derived axis alongside the logarithmic primary 
viscosity axis. Another scenario is that user may want 
to focus on a sub-range of a variable. For example, 
the derived sub-axis maps filtered domain values 
(say, 1200 K < T < 1600 K) to range 0 ൑ 	ݎ ൑  ′ݕ
using the same scale type as that of its primary axis 
(Figure 4). The data lines not falling in the chosen 
interval simply ignore the derived axis/sub-axis and 
continue along their paths to the next primary axis. 
This provides context of overall data along with detail 
at a specific range. The minimum length of the 
derived sub-axis is kept at half the length of its 
primary axis. However, if the chosen axes pair points 
contain more than 50% of the total data, the length is 
then made proportional to the number of points 
falling in the chosen dimensional domain range. 
Hence the length of the derived axis ݕ′: 

Parallel Coordinates-based Visual Analytics for Materials Property

87



 

′ݕ                      ൌ ൜
݊′ሺ ஽ܻ െ ,ሻ݌ ݊ᇱ ൐ 0.5
0.5ሺ ஽ܻ െ ,ሻ݌ ݊ᇱ 	൑ 0.5

                    (2) 

where ݊′ is the ratio of the number of filtered data 
points to the total number of data points, YD is the 
vertical extent of the display, and p refers to vertical 
padding value to accommodate dimension label and 
other controls on top of the axis. The horizontal 
position of all the axes are re-calculated taking the 
new axis into account. The derived axis is constructed 
such that a line through the middle point of both the 
primary and the derived axis is orthogonal to both the 
axes. This means translating the derived axis by 
0.5ሺ ஽ܻ െ ݌ െ  ᇱሻ in the vertical direction. Its positionݕ
and height can be adjusted interactively. More 
derived axes are considered in the following sections. 

 

Figure 4: Derived temperature secondary axis showing a 
temperature range 1200-1600 K. Green represents viscosity 
values less than 104 Pa s and blue represents the rest. 

4.2.2 Dimension Merging 

Often times, domain experts are interested in looking 
at various binary joins or ternary systems though the 
database covers multicomponent composition. For 
instance, MgO-SiO2 join is the considered to be the 
most important binary. The components CaO, FeO 
and MnO can be treated on the same footing as MgO 
because these oxides play the role of structure 
modifiers and are highly mobile. They can be 
combined together and viewed as one compositional 

variable. On other hand, SiO2, Al2O3 and TiO2 
components together form silicate polyhedral 
network and are mostly immobile. These oxides can 
be treated collectively as one compositional variable. 
In PCP, any two components can be merged together. 

Merging components results in the insertion of a 
new derived axis which acts as an independent 
dimension itself. The data polylines are re-rendered 
by incorporating the new axis (shown later in Figure 
8). Since composition component is stored as a 
percentage, any two components can be directly 
summed together. Further, since a merged axis 
behaves as any other primary axes, it can itself be 
merged with other components. No component can be 
added twice so that the total molar mass of the 
composition for each data row is always at a 100%. 

 

Figure 5: Binary scaling applied to the temperature axis 
with a cutoff point at 1600 K. Axis is scaled proportionately 
with respect to the number of data lines falling under and 
over the specified cut off point. 

4.2.3 Binary Scaling 

Binary scaling contains two different scales on an 
axis divided at a user chosen domain cut-off value. 
Let ݊ଵ be the number of data points whose values are 
equal or less than the cutoff and ݊ଶ be the rest of the 
data points. The sub-lengths are assigned for the two 
scales along the complete axis as follows: 
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              ݈ଵ ൌ 	
௒ವି௣

ሺ௡మ ௡భ⁄ ሻ	ା	ଵ
;   ݈ଶ ൌ ஽ܻ െ ݌ െ ݈ଵ          (3) 

We can now create two scales of dimension specific 
scale type with different domain and ranges: 0	 ൑
ଵݎ		 ൑ 	 ݈ଵ	and ݈ଵ ൏ ଶݎ 	൑ ሺ ஽ܻ െ  ሻ. This scheme can݌
be further extended to implement more than two 
scales on the same axis. Figure 5 shows a bi-scaled 
axis such that the lower range 500 to 1600 K is 
stretched while the upper part is compressed. 

4.2.4 Categorical Bubbles 

In PCP, it is desirable to treat numerical and 
categorical axes differently. Categorical variables 
consist of distinct categories which are difficult to 
directly map onto an axis. Therefore, a transformation 
to a metric scale must be done such that each category 
gets uniform space in the axis. One such data 
transformation can be done by overlaying circles or 
bubbles of varying radius on axes as category markers 
(Tuor et al., 2018). The radius of each bubble can be 
utilized to show different data properties. For 
instance, we can map the radius (r) with the frequency 
(f) of the data points falling under a category: 

ݎ                          ൌ	ට ௙

௙೘ೌೣ
			
∆௫

ଶ
                             (4) 

Here, ௠݂௔௫ is the number of data rows for category 
with maximum frequency. We utilize categorical 
bubbles to differentiate between experimental and 
calculated data points. Bubbles can also be used for 
user interactions such as to hide and show data based 
on mouse click (Figure 6). Categorical bubbles can 
also be split into smaller bubbles with respect to data 
values from another axis. For instance, both 
computational and experimental category bubbles 
can be split with respect to different viscosity data 
regimes (shown later in Figure 8). The split bubbles 
are stacked on top of each other such that the sum of 
their radii equal to the radius of the merged bubble. 
The radius of each split bubble is proportional to the 
frequency of data row falling under both the original 
and split categories. 

4.2.5 Nested PCP 

A recent study has shown that using nested PCP to 
visualize model parameter correlation between 
different datasets is more useful than superimposed or 
juxtaposed PCP representations (Wang et al., 2016). 
As we show, this technique can be further extended 
to analyze two or more subsets (groups) of the data 
corresponding to different intervals on selected 
numerical axis (for instance, low pressure versus high 

 

Figure 6: Experimental data selection by clicking 
categorical bubble (lower) shown in red while the 
calculated data are shown in background (gray polylines). 

pressure regime) or different categorical values (for 
instance, experimental versus computational). Nested 
PCP resides symmetrically about the mid line 
between two adjacent axes under consideration 
(Wang et al., 2016; Kaur and Karki, 2018). 

 

Figure 7: Nested PCP along with four control points for 
Bezier curves between nested and primary axes. The 
polylines connecting between the primary and nested axes 
are replaced by two curves. 

The vertical space between two primary axes is 
divided into ܻ/݊௦ uniform regions where ns is the 
number of nested categories and ܻ ൌ ஽ܻ െ  The .݌
categories are sorted by the mean location of each 
polyline on either one or both of the primary axes. 
Each nested axes is then constructed symmetrically 
from the middle of its category region where the end 
points of the ݆ ௧௛nested axis (݆ = 1, 2, 3,…, ns counting  
from the bottom) are first constructed using 
ሺ݆	– 	0.5ሻܻ/݊௦		݀, where ݀ can vary between 
0.2Y/ns to 0.4Y/ns. A translation is then applied 
between 0 to 	0.1ܻ/݊௦ depending on the location of 
the maximum pixel value of the polylines on the 
selected primary axis. The horizontal spacing of the 
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Figure 8: The original and model  values plotted with discrete colormap to highlight three clusters in the viscosity data at 
zero pressure (also shown in the scatter plot). The color follows a positively correlated pattern in the model result axis as well. 
The lower nested plot shows the pure MgO-SiO2 system. The upper nested plot includes all compositions by using a merged 
SiO2+Al2O3+TiO2 axis to obtain model values.  The computation categorical bubble is split into two while the experiment 
category bubble is split into three bubbles. Components are in wt%. 

ith nested axis hi is given by ሺ݅	– 	0.5ሻݔ		݄ where i 
= 1, 2, …, k-1 and h can vary between 0.1x and 
0.4x. This spacing scheme allows no overlap 
between the axes horizontally or vertically. A single 
polyline previously going between two primary axes 
are now replaced with two curves and a line. We use 
cubic Bezier curve with control points’ x location 
atሺ݅	– 	1ሻݔ		݊௫  from primary axes where ݊௫ is 
the distance between primary and nearest nested axis. 
Similarly, ሺ݅	– 	0.5ሻݔ		݄		݊௫ from nested axes 
where  can vary between 0.1 to 0.3 (Figure 7). The 
y values of these control points are made the same as 
the y values of the data line in primary and nested 
axes, respectively. The curves join primary axis with 
the nested axis and a straight line is drawn between 
the two nested axes for each data point. The nested 
axes display the full data extent range based on the 
minimum and maximum for domain extent of their 
subset (that is, a local scale is applied).  

We use the nested PCP to compare the actual data 
and model-predicted values using the primary  axis 
and the derived model axis (Figure 8). We consider 
two scenarios of the zero pressure -T-X model 
(Karki et al., 2013).  In one case, we apply the model 
to pure MgO-SiO2 binary system, where X represent 
the molar fraction of silica. In the other case, we apply 
the model to the multicomponent system by taking X 
as the sum of SiO2, Al2O3 and TiO2 fractions (i.e., 
using the merged component variable). There are two 

corresponding nested plots (Figure 8). For model 
result comparison it is desirable to use the same 
domain range for both axes in each nested plot 
category. Similarly, we use the nested plot to show 
the anomalous behavior of silicate rich composition 
at 3000K at two different pressure ranges (see section 
6). Here we use the local domain extent for two nested 
plots corresponding to viscosity and pressure.  

5 IMPLEMENTATION  

The overarching goal of this work is to develop a 
web-based data analysis and modelling framework 
(Figure 2) for physical properties of materials by 
using silicate melt viscosity as an example. The users 
from geoscience field and, in general, diverse 
materials science communities may be interested in 
exploring these data. This work also describes a non-
standard PCP implementation as a part of a web-
based data analysis platform. As such, the web-
application was developed using client server model. 
This application can be accessed using any standard 
web browser.  
Server: The server was built using popular server-
side python web-framework Django (Django) along 
with MySQL (MySQL) for database management. 
The client requests are addressed through a web API.  
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Client: The client application was built using client-
side web-framework AngularJS (AngularJS) along 
with d3 for charting. D3 is a JavaScript library for 
manipulating documents based on data. D3 can be 
used to draw chart components using any HTML 
component such as SVG or Canvas. D3 also has a 
declarative syntax with Publish-Subscribe pattern 
interface which seamlessly works with highly 
interactive charts. However, due to large data size and 
computationally intensive task of rendering, 
performance is a crucial part of the application. 
Therefore, the application was designed with 
performance in mind by carefully choosing between 
Canvas and SVG elements for any PCP component. 
The client also contains a chart control panel to 
activate and deactivate PCP controls (derived axis, 
brushing, probing and others).  

Other material properties can be incorporated as 
new attributes and corresponding new axes in the plot 
as long as they are defined in the same  parameter (P-
T-X) space. For instance, to visualize the melt density 
, the density value and uncertainty entries are made 
in the “DataPoint” table (Figure 9). The density data 
at zero pressure are estimated using the density model 
for the multi-component melt system (Lange and  

 

Figure 9: Updated data table. 

Carmichael, 1987; Lange et al., 1997). The density 
() axis appears in the PCP (Figure 10). The data for 
the computational category extend over the entire axis 
whereas those for the experimental category are 
confined in the upper half. Density takes smaller 
values at higher temperatures. The data lines between 
the density and viscosity axes tend to show positive 
correlation – the higher density, the higher viscosity. 

6 VISUAL ANALYTICS OF 
VISCOSITY  

In this section, we present the details of our visual 
data analysis of the silicate melt viscosity database. 

Viewing the viscosity axis using a logarithmic scale, 
we realize that the viscosity values span the large 
range of orders of magnitudes: 10ିସ to 10ଵହ	Pa	s.  
(Hui and Zhang, 2007) We also notice that viscosity 
show a bi-modal or tri-modal distribution (Figures 1 
and 10). The outliers in the high viscosity region are 
from experimental sources and cover a narrow 
temperature range < 1000 K and zero pressure. On the 
other hand, outliers in the low viscosity region are 
mainly from computational sources at high 
temperatures (4000 – 6000 K) in the low-pressure 
regime (0 – 20 GPa).  

 

Figure 10: PCP showing two melt properties: viscosity () 
and density (). 

The polylines going across all axes are colored 
either red or blue to represent the methodology 
categories (experimental or computational). On the 
“Method” axis we see that the red circle is much 
larger than the blue circle (Figure 1 and 6), which 
means that the majority data are the measured values. 
Looking closely, we can also find that almost all 
experimental data are at ambient pressure (0 GPa) and 
low temperatures (< 2000 K). In Figure 6, two groups 
can be seen in the viscosity axis for the experimental 
data. One group is characterized by super-high 
viscosity and low temperature, and the other is 
characterized by high viscosity and sub-low 
temperature (representing two category bubbles in 
Figure 8). The experimental data in our database 
come from publications as old as 1965. The metadata 
axis “Year” shows a steady increase in the 
experimental data since the 1990s (Figure 1). The 
computational data, on the other hand, are relatively 
new and are available only from 2010 onwards. The 
calculated data cover much wider range of 
temperature (2000 – 6000 K) and pressure (0 to over 
150 GPa), but the majority are found to be in the low-
pressure regime. While we have not included the 
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experimental data available in recent years, it seems 
that the broad ranges of temperature and pressure data 
for silicate melts were previously unattainable from 
just experimental sources.  

The composition of magma includes several 
oxides along with volatiles H2O and CO2. The 
computational results offer full range of MgO, SiO2, 
and Al2O3 contents (0 to 100 wt% for each).  
Experimentally studied fall in the silica range 40 to 
80 wt%. Pure silica or silica-rich melts tend to be 
highly viscous as suggested by calculated data in the 
low pressure-low temperature regime. The SiO2 as 
network former makes the melt highly polymerized 
and highly viscous. However, MgO as structure 
modifier lowers the melt viscosity. Small amounts of 
volatiles can cause significant changes in melt 
viscosity. These dependencies can be observed by 
brushing along the merged dimension axis with 
controlled temperature and pressure ranges. The PCP 
method is considered to be highly effective in visually 
judging correlations between dimensions which are 
mapped to the adjacent axes. Negative correlation 
between the viscosity and temperature has manifested 
as data lines crossing each other (Figure 5). This can 
be further enhanced by constraining pressure and 
composition. Selecting the computational category at 
zero pressure (blue data lines), we find that the silica 
and MgO end members show the strongest and 
weakest negative correlation, respectively. If we 
select experimental data by clicking the red circle, we 
can see that the viscosity varies more than six orders 
of magnitude for a relatively small change in 
temperature, showing negative correlation with each 
other (Figure 6). 

The viscosity-inverse temperature relationship 
appears to hold at all pressures and for all 
compositions. PCP has successfully captured this 
fundamental nature. Viscosity depends on pressure in 
a complicated way, however. Brushing the pressure 
axis in the range of 60 – 80 GPa we can see that 
several calculations were performed at 3000, 4000, 
and 6000 K (Figure 11). However, the viscosity value 
does not change as much when translating the brush 
towards higher pressure regime of 120 – 180 GPa. 
Here we can see that there are several data points at 
4000 and 6000 K. The viscosity value is still found to 
be in the same lower region. These steps hint that 
viscosity of silicate melts changes much more at low 
temperatures and pressures, but not so much in high 
P-T regime. Interestingly, silica-rich melts display an 
anomalous behavior at 3000 K in that the viscosity 
first decreases and then increases as pressure 
increases. This can be observed in the two nested 
plots for the viscosity and pressure axes  
   

 

Figure 11: Two pressure regimes 60-80 GPa (blue) and 
above 120 GPa (red) are highlighted. Even with wide high-
pressure regime, the viscosity remains almost in the same 
region as relatively low pressure. 

corresponding to low- and high-pressure regimes 
(Figure 12). The data lines cross each other at low 
pressures (negative correlation) whereas they run 
parallel at high pressures (positive correlation). 

There exist many models for viscosity-
temperature relationships (e.g., Shaw, 1972; Mauro et 
al., 2009; Hui and Zhang, 2007). New models can be 
developed using more data points available in our 
database. For illustration, we consider the Arrhenian 
model previously developed for the MgO-SiO2 binary 
at zero pressure (Karki et al., 2013): 

		ln ,modelሺܶߟ ܺሻ ൌ ሺܣ଴ ൅	ܣଵܺସሻ ൅	
ாಲబା	ாಲభ௑

ర

ோ்
       (5) 

where the pre-exponential factor and the activation 
energy vary as the 4th power of the molar SiO2 
fraction ܺ, and ܴ is the ideal gas constant. We make 
two types of model assessment and display the results 
using the nested plots with respect to the  and model 
axes. For the MgO-SiO2 binary, the model works well 
as shown by nearly parallel horizontal data lines 
between the two axes (the lower nested plot in Figure 
8). To evaluate the model for the whole dataset, we 
take X as the sum of the molar fractions of SiO2, 
Al2O3 and TiO2. Many data lines follow the 
horizontal trend and also the model data points show 
the cluster patterns that are found on the viscosity axis 
(the upper nested plot in Figure 8). These signify the 
dominant role of the silica in controlling the melt 
viscosity. However, there are several exceptions (e.g., 
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Figure 12: Data selection of silica-rich compounds at 3000 K showing anomalous behavior at low pressures below 15 GPa 
(lower nested plot) and normal behavior at higher pressures (upper nested plot). Blue and red represent pure and hydrous 
silica liquids, respectively. The oxide components are given in wt%. 

polylines skewness, line crossing), which on further 
exploration are associated with other compositional 
factors (e.g., Al2O3 content of the melt). This means 
that the binary model is not sufficient, and a general 
multicomponent viscosity model is needed. 

7 CONCLUSIONS 

Advances in the computational and experimental 
techniques are producing ever larger amounts of data 
on materials properties. These data collected from 
various sources are used for gaining physical insight, 
identifying missing values, exploring systematics, 
and data modeling. Melt viscosity is one of the most 
important properties that govern production, 
transport, and eruption of silicate magmas. Visual 
exploration of available viscosity data is crucial in 
developing a generalized model that works across a 
large range of conditions of geological relevance. We 
have presented a data store along with a web-
application for visual analytics of multivariate 
viscosity data. We explore parallel coordinates plot 
enriched with various non-standard features such as 
derived axes/sub-axes, dimension merging, binary 
scaling, nested plots. The data analysis has provided 
several insights about viscosity values themselves 
and their relationships with pressure, temperature, 

and composition. We plan to further develop the 
system into a robust platform where verified users can 
upload, apply standard and custom models, and 
analyze their own data along with the ones already 
present in the database for rapid model development 
and evaluation workflow. We also anticipate to 
incorporate other material properties such as density 
and diffusivities into our framework.   
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