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Abstract: Micro-expression is an essential non-verbal behavior that can faithfully express the human’s hidden emotions.

It has a wide range of applications in the national security and computer aided diagnosis, which encourages

us to conduct the research of automatic micro-expression recognition. However, the images captured from

surveillance video easily suffer from the low-quality problem, which causes the difficulty in real applicati-

ons. Due to the low quality of captured images, the existing algorithms are not able to perform as well as

expected. For addressing this problem, we conduct a comprehensive study about the micro-expression re-

cognition problem under low-resolution cases with face hallucination method. The experimental results show

that the proposed framework obtains promising results on micro-expression recognition under low-resolution

cases.

1 INTRODUCTION

Facial expression is one of the most significant re-

flection for human emotion information. In recent

years, the analysis of facial expression has attracted

more and more attention in the field of computer vi-

sion. Different from the general facial expressions,

micro-expression is spontaneous, involuntary and is

an instinct of human beings. Commonly, the du-

ration of micro-expression is only from 1/25 to 1/2

second, while the intensity of expression is also at

a low level. Because of the above characteristics,

micro-expression analysis becomes very challenging.

The application of micro-expression analysis is per-

vasive and could be utilized in the security, judicial

system, clinical diagnosis, public management and

auxiliary education. At present, researchers have col-

lected a variety of high-quality datasets to evaluate

micro-expression recognition algorithms, and achie-

ved reasonable recognition accuracies on these data-

sets. In the real world, however, very often we can

have only low-quality video clips from traditional de-

vices e.g. surveillance cameras or closed-circuit tele-

vision. Therefore, it is especially crucial to conduct

micro-expression analysis in such harsh cases.

The main tasks of micro-expression analysis are

spotting and recognition. The spotting is to find the

fragments of the micro-expression from the input vi-

deo sequence, and the recognition is to determine the

types of micro-expression fragment (e.g., happiness,

disgust, repression or surprise). Because the rese-

arch in this paper focuses on the recognition of micro-

expression, it is assumed that the video clips mentio-

ned here are already spotted and only contain micro-

expression.

In recent years, researchers have proposed many

methods for spontaneous micro-expression recogni-

tion. Pfister et al. (Pfister et al., 2011) proposed the

first automatic micro-expression recognition system

on spontaneous micro-expression dataset, which uti-

lized temporal interpolation model (TIM) (Zhou et al.,

2011) together with Multiple Kernel Learning (MKL)

to capture the main variation of image sequences, and

employed the Local Binary Patterns from Three Ort-

hogonal Planes (LBP-TOP) (Zhao and Pietikäinen,

2007) to extract the feature descriptors and Random

Forest (RF) as the classifiers. Since then, many rese-

archers have developed various versions and variants

of descriptors to improve the micro-expression recog-

nition accuracies (Ruiz-Hernandez and Pietikäinen,

2013; Wang et al., 2014b; Wang et al., 2014c; Wang

et al., 2015). Wang et al. (Wang et al., 2014a) em-

ployed Tensor Independent Color Space (TICS) to ex-

tract discriminative features for recognition. Ngo et

al. (Le Ngo et al., 2014) utilized the Selective Trans-

fer Machine (STM) for micro-expressions image se-

quences pre-processing in order to solve imbalance

and different facial morphology in the dataset. Liong

et al. (Liong et al., 2014) obtained the subtle displace-

ment of the faces within a temporal interval from op-
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Figure 1: The flowchart of the proposed recognition system.

tical strain magnitudes and assigned different weights

to the local features to form a new feature. Lu et al.

(Lu et al., 2014) introduced Delaunay-based tempo-

ral coding model (DTCM) to normalize the image se-

quences in the spatiotemporal domain. Oh et al. (Oh

et al., 2015) acquired multi-scale monogenic signals

through the Riesz wavelet transform, and combined

the features of magnitude, phase, and orientation for

micro-expression recognition. Liu et al. (Liu et al.,

2016) developed the Main Directional Mean Optical-

flow ( MDMO) to explore the discriminative featu-

res from micro-expression. It simultaneously consi-

ders local statistic motion and spatial position infor-

mation by the use of a robust optical flow model. Li

et al. (Li et al., 2017) extended Histograms of Orien-

ted Gradients (HOG) and Histograms of Image Gra-

dient Orientation (HIGO) on three orthogonal planes,

and proposed HOG-TOP and HIGO-TOP based on

the idea of LBP-TOP. Xu et al. (Xu et al., 2017) ex-

ploited optical flow estimation to conduct pixel-level

alignment in the chosen granularity for the micro-

expression image sequences, and obtained principal

optical flow direction, as the subtle facial dynamic fe-

ature descriptor. The proposed micro-expression des-

criptor is also called the Facial Dynamics Map. He

et al. (He et al., 2017) introduced a multi-task mid-

level feature learning method for feature extraction,

which has the ability to obtain more discriminative

mid-level features with more generalization ability.

Recently, some researchers utilized the novel popu-

lar deep learning algorithm to learn deep features for

micro-expression recognition, but the results are far

away from satisfactory. The primary reason is that

deep learning algorithm requires a lot of training sam-

ples, but the scale of the current dataset is extremely

limited (Patel et al., 2016).

Although recent micro-expression recognition al-

gorithm achieves reasonable results, the performance

highly depends on the quality of facial video clip.

Once the quality of facial video clip used for recog-

nition is poor (such as the low-resolution), the above

algorithm will not work well. The reason mainly lies

in two aspects: (i) The low-resolution images lose

a lot of detail information, which induces the diffi-

culty to extract the available features from the low-

resolution image sequences (Lei et al., 2011). (ii)

The low-resolution images are not homogeneous with

the high-resolution ones (e.g., different resolution and

different clarity), which prevents us to directly use the

low-resolution images as input in the testing phase. In

the real world, the facial image captured from the sur-

veillance video usually only accounts for a small part

of the entire picture. For example, the SMIC data-

set for micro-expression recognition has a facial re-

solution of 190× 230. However, the captured facial

image sequences by the surveillance videos are of-

ten under the resolution of 50× 50 (or lower). This

means that the previous micro-expression recognition

methods cannot be directly utilized to deal with the

low-resolution case. Therefore, micro-expression re-

cognition research under low-resolution cases is vital

and challenging.

To solve the above problems, we perform the rese-

arch of low-resolution micro-expression recognition

with the help of recent facial hallucination methods.

We first hallucinate the low-quality facial image se-

quence to recover the lost dynamic characteristics.

Then, we conduct the traditional micro-expression

recognition methods to explore low-quality micro-

expression recognition. We evaluate the performance

of micro-expression recognition accuracies under dif-

ferent resolutions to investigate the relationship be-

tween resolution and recognition accuracy. Gene-

rally, the target of this paper is to make a comprehen-

sive study about the influence of resolution in micro-

expression recognition, while also develop a frame-

work to deal with micro-expression recognition task

in low-quality condition.

The rest of this paper is organized as follows.

In Section 2 we describe our micro-expression re-

cognition framework. Section 3 presents experimen-

tal results and discussion. Conclusions are drawn in

Section 4.
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2 THE PROPOSED

RECOGNITION FRAMEWORK

The low-resolution micro-expression recognition pro-

cess include image sequence pre-processing, super-

resolution reconstruction, feature extraction and clas-

sification, as shown in Figure 1. More details of des-

cription are as follows:

2.1 Low-resolution Datasets

There are several datasets for micro-expression recog-

nition, such as SMIC (Li et al., 2013) and CASME

II (Yan et al., 2014). However, all of these datasets

are high-definition image sequences acquired by pro-

fessional cameras in specific circumstances. Figure 2

shows two frames from a video clip of the SMIC-HS

dataset. We can find subtle changes in facial expres-

sions within the red box. In particular, the movement

in the area of the white ellipse and the position of the

white arrow are more obvious. If the image resolution

is too low, these details are hard to be noticed.

Figure 2: Two frames from a video clip of the SMIC-HS
dataset.

Since there is no low-resolution image sequence

in the existing spontaneous micro-expression data-

sets, we use image deterioration processing to obtain

simulated low-resolution micro-expression image se-

quences. In the paper (Wang et al., 2014d), the low-

resolution images are divided into three categories:

small size, poor quality, and small size & poor qua-

lity. We consider the third type of images (small size

& poor quality) that is closer to the situation of the

real applications as the simulated image.

In the image reconstruction task, low-resolution

image sequences are obtained by blurring, down-

sampling, and noising processes from high-resolution

image sequences (Shi et al., 2018):

LLL = DDDBBBHHH + nnn (1)

where DDD and BBB are down-sampling and blurring re-

spectively, HHH is high-resolution image, nnn represents

the additive noise, and LLL is low-resolution image.

2.2 Image Pre-processing

In our proposed framework, the pre-processing

mainly includes three steps: face alignment, face seg-

mentation, and TIM. There are natural pose varia-

tion and involuntary movement in raw collected vi-

deos. At the same time, micro-expression video clips

are collected from different participants, with diffe-

rent gender, age, and ethnics. Therefore, to avoid the

interference of the above-mentioned non-expression

factors, it is indispensable to conduct the face align-

ment and face segmentation procedure.

We select a frame with frontal face and neutral

expression from a particular segment as the canoni-

cal template, and manually locate the position of two

eyes. Then, the Active Shape Model (ASM) is car-

ried out to detect 68 facial landmarks (Cootes et al.,

1995). The relationship between 68 facial landmarks

of canonical frame and 68 facial landmarks of other

frames is established by the Local Weighted Mean

(LWM) (Goshtasby, 1988), and the micro-expression

images are aligned to the canonical frame to minimize

interference caused by non-expression factors.

Micro-expression videos have various length,

from 4 frames to 50 frames (if captured by a ca-

mera with 100 fps). To solve the problem of diffe-

rent lengths in video clips, Li et al. (Li et al., 2017)

used the TIM algorithm to map all the frames of a

sequence onto a curve, sample the newly synthesised

facial images with a fixed interval, and finally obtai-

ned the same pre-defined sequence length. The expe-

rimental results show that the algorithm has improved

the recognition accuracy. Figure 3 shows the mapping

process of TIM (Zhou et al., 2011).

Figure 3: The input is the original image sequences, and the
output is the TIM interpolated image sequences.

2.3 Super-resolution Reconstruction

Low-resolution images and high-resolution images

are heterogeneous in both quality and resolution.

The micro-expression recognition method of high-

resolution image sequences cannot be directly applied

to low-resolution image sequences. In Section 2.1,

we present the procedure of generating low-resolution

images from high-resolution images.

To reconstruct high-resolution images, the paper

(Shi et al., 2018) proposed a novel face hallucination

algorithm. It combines the patch-based regularization
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term and the pixel-based regularization term to con-

strain the objective function. The reconstructed high-

resolution image HHH can be obtained by minimizing

the following objective function:

f (HHH) = ‖LLL−DDDBBBHHH‖ 2
2

+αFFF patch +ηFFF pixel +λFFF penalty

(2)

where the first item on the right side is the recon-

struction error, and the last three items are patch-

based regularization terms, pixel-based regularization

terms, and penalty terms respectively. Figure 4 illus-

trates the whole hallucination task. For details, please

refer to (Shi et al., 2018).

Figure 4: Super-resolution Reconstruction.

2.4 Micro-expression Recognition

As shown in Figure 1, the micro-expression recog-

nition is mainly divided into two parts: feature ex-

traction and classification. In the previous micro-

expression analysis methods (Pfister et al., 2011;

Wang et al., 2014b; Wang et al., 2014c; Li et al., 2017;

He et al., 2017), the researchers show the advantages

of LBP-TOP and its variants as feature descriptors.

Different from the traditional LBP feature that

mainly focuses on a single image, LBP-TOP can cap-

ture dynamic variations in both spatial and tempo-

ral domains, which is essential for micro-expression

recognition. We first divide the whole facial image

sequence into several cuboids, such as 5 × 5 × 1,

8× 8× 2, etc., where the first two parameters deter-

mine the number of the blocks in spatial domain, and

the last parameter is the number of segments in the

temporal direction. Each cuboid can be considered as

a new unit. The LBP features are extracted from three

different orthogonal planes (XY, XT, and YT planes)

in the new unit. We traverse all the cuboids to obtain

the LBP-TOP features of the image sequence and then

LBP-TOP features of each cuboid are concatenated.

As shown in Figure 5.

In the classification part, we use the linear support

vector machine (LSVM) (Chang and Lin, 2011) as

the classifier. To make a fair comparison, we employ

the leave-one-subject-out protocol in the experiments.

According to the micro-expression labels provided by

the dataset publisher, we classify the samples from

Figure 5: LBP-TOP feature extraction of image sequences.
XY, XT, and YT refer to the XY plane, the XT plane, and

the YT plane, respectively. LBP-TOP1 refers to the LBP-

TOP feature of a single cuboid. LBP-TOP2 refers to the
LBP-TOP feature of the entire image sequence.

SMIC into three categories (positive, negative, and

surprised), and samples from CASME II into five ca-

tegories (happiness, surprise, repression, disgust, and

others).

3 EXPERIMENT AND ANALYSIS

We now present the experiments and results on three

different spontaneous micro-expression datasets, i.e.,

the SMIC-HS, SMIC-subHS and CASME II. The ex-

perimental parameter setting and result analysis will

be discussed in the following subsections.

Table 1: The summary of used datasets.

SMIC-HS SMIC-subHS CASME II

Micro-Clips 164 71 247

Participants 16 8 26

Classes 3 3 5

3.1 Pre-processing

SMIC-HS and SMIC-subHS are two subsets of

SMIC. The SMIC-HS dataset contains 164 spontane-

ous micro-expression clips from sixteen participants,

which are categorized into three categories: posi-

tive (51 clips), negative (70 clips), and surprise (43

clips). The SMIC-subHS dataset (Li et al., 2017)

is a subset of SMIC-HS and contains only the last

eight participants. The number of micro-expression

clips from each of the first eight subjects varies a

lot, three subjects have contributed almost half micro-

expression samples of the whole set, which could af-

fect the leave-one-subject-out performance, while the

later eight subjects’s (SMIC-subHS) clips number are

more evenly distributed. And the number of positive,

negative and surprise clips is 28, 23 and 20, respecti-

vely in the SMIC-subHS dataset. Meanwhile, the

CASME II dataset contains twenty-six participants
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belonging to five different categories: surprise (25

clips), happiness (32 clips), others (99 clips), disgust

(64 clips), and repression (27 clips). Table 1 shows a

summary of the datasets used in the experiments. The

facial resolution of the high-resolution image is set as

128×128 in the experiment. The images of 128×128

resolution are downsampled by 2, 4 and 8 times to

obtain low-resolution images (as shown in Figure 6).

This means that we evaluate the low-resolution facial

image sequences of three various levels (e.g., 16×16,

32×32, 64×64) in the micro-expression recognition

tasks.

(a) (b)

Figure 6: (a) SMIC-HS/SMIC-subHS low-resolution
image, (b) CASME II low-resolution image.

3.2 Reconstruction

In this section, the low-resolution image is recon-

structed into a high-resolution image using the met-

hod proposed in the paper (Shi et al., 2018), which is

briefly introduced in Section 2.3. Tables 2-3 list the

average peak signal to noise ratio (PSNR) and structu-

ral similarity (SSIM) index of the reconstructed image

sequences for different datasets under various resolu-

tions. Here, we use S64, S32, and S16 to name the re-

constructed image sequences from resolution 64×64,

32× 32, and 16× 16, respectively.

Table 2: The average PSNR (dB) indexs of the recon-
structed image sequences for the SMIC-HS, SMIC-subHS
and CASME II datasets under the different resolution.

PSNR (dB) 16× 16 32× 32 64× 64

SMIC-HS 31.25 37.67 44.30

SMIC-subHS 31.67 38.26 43.22

CASME II 31.80 36.49 37.83

Table 3: The average SSIM indexs of the reconstructed
image sequences for the SMIC-HS, SMIC-subHS and
CASME II datasets under the different resolutions.

SSIM 16× 16 32× 32 64× 64

SMIC-HS 0.9397 0.9775 0.9883

SMIC-subHS 0.8970 0.9346 0.9424

CASME II 0.9439 0.9761 0.9882

As shown in Tables 2 and 3, the quantitative indi-

cator (PSNR/SSIM) of the reconstructed facial image

sequences is proportional to the resolution of input fa-

cial image sequences. For example, in the SMIC-HS

dataset, the PSNR index of S16 is 31.25dB, which

is 6.42dB lower than S32, and 13.05dB less than S64.

For the SSIM index, S16 achieves the value of 0.9397,

which is 0.0378 inferior to S32, and 0.0486 lower than

S64. Besides, Figure 7 presents the visual perfor-

mance of the reconstructed image sequences, which

also indicates the same conclusion as the above view-

point.

Figure 7: Comparison of reconstruction results at different
resolutions.

3.3 Recognition

To normalize the duration of the video clips, the frame

number of the video clips is interpolated to 10 fra-

mes by TIM algorithm (Li et al., 2017) as introduced

in Section 2.2. We apply the fast LBP-TOP (Hong

et al., 2016) to divide the video clips into different

cuboids and extract the LBP-TOP feature of each cu-

boid to constitute a complete feature, where uniform

mapping is used, the radius r is set to r = 2, and the

number of neighboring points p is set to p = 8. We

use the leave-one-subject-out protocol to conduct the

experiments, i.e., use all the samples of one subject

as the testing set, and the samples from all the other

subjects as the training set. We employ LSVM as the

classifier, where penalty coefficient c = 1.

3.3.1 Recognition of Low-resolution Image

Sequences

In this subsection, we present a baseline for the per-

formance of micro-expression recognition of low-

resolution image sequences. To adapt the testing sam-

ples of various resolutions, we downsample the trai-

ning set from 128× 128 to the corresponding resolu-

tion (i.e., the same with testing samples) in order to

conduct the classification procedure. Notice that the

downsampling operation causes the lack of discrimi-

native features for micro-expression. The following

experiments also show that the recognition accuracy

dramatically decreases under very low resolution.

Figure 8 shows the recognition accuracy of dif-

ferent resolution image sequences at different data-

sets. Here, we use L64, L32, and L16 to name the

low-resolution image sequences respectively. From

Figure 8, it is found that the recognition accuracy of

Micro-expression Recognition Under Low-resolution Cases
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Figure 8: The recognition accuracy of different resolution
image sequences at different datasets.

the SMIC-SubHS dataset (the blue fold line) drama-

tically decreases when the resolution of input image

sequences reduces from 64× 64 to 32× 32. Mean-

while, we can see that the accuracy of low-resolution

image sequences (e.g., L16) is relatively low. This

phenomenon indicates that it is hard to acquire satis-

factory results with low-resolution image sequences.

The main reason is that the low-resolution causes the

lack of high-frequency information and texture details

in describing the micro-expression.
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Figure 9: Confusion matrix of recognition accuracy of
image sequences with different resolution. In the horizontal
direction, Left: SMIC-HS, Middle: SMIC-subHS, Right:
CASME II. In the vertical direction, from top to bottom,
there are 128×128, 64×64, 32×32, 16×16, respectively.
P: positive, N: negative, S: surprise, R: repression, D: dis-
gust, O: others, H: happiness.

Figure 9 shows the confusion matrix for the classi-

fication results of low-resolution image sequences and

also the performance under 128× 128 resolution as

the reference. We can find that when the resolution of

the image sequences is 128×128 in the SMIC-SubHS

dataset (the second column of Figure 9), the confusion

matrix is more concentrated on the diagonal, which

indicates that the micro-expression recognition met-

hod performs well. However, when the resolution of

the image sequences decreases, the confusion matrix

is gradually to become poor. We can also find that

the proportion of misclassification in SMIC-HS (the

first column of Figure 9) and CASME II (the third co-

lumn of Figure 9) is more than the SMIC-subHS, and

the recognition accuracy shown in Figure 8 is also re-

latively low. For SMIC-HS, the main reason for the

above problems may be that the last eight subjects

(the SMIC-subHS dataset) have a more balanced dis-

tribution than the first eight subjects. For CASME

II, it is mainly because of the imbalance distribution

and excessive categories. For example, the number

of video clips from the class OTHERS accounts for

40.08% in the CASME II dataset.

3.3.2 Performance of the Proposed Framework

In this subsection, we carry out the experiments of our

proposed framework on three datasets. The testing set

is first reconstructed to the resolution of 128× 128,

and then we conduct the classification in the high-

resolution space. According to empirical analysis, we

select the optimal parameters for LBP-TOP. Table 4

gives the recognition accuracy together with the cor-

responding parameter setting of blocksize.

We can see from Table 4 that the experimental re-

sults have been significantly improved. For example,

in the SMIC-subHS dataset, the recognition accuracy

of the image sequences under 64× 64 resolution in-

creased from 71.83% to 74.65%, with an increase of

2.82%. The recognition accuracy of S32 is 74.65%,

which is 19.72% higher than L32. The recognition

accuracy of S16 is 73.24%, which is 26.76% higher

than L16. This shows that our method has a good im-

provement on the micro-expression recognition accu-

racy of low-resolution image sequences. We also no-

tice that the proposed framework even obtains better

results with S64 than directly utilizing the input as ori-

ginal 128×128 image sequences. It could be because

that the samples in the original SMIC-HS/subHS da-

taset suffer from apparent noises in the recording so

that the face sequences actually includes redundant

and noisy information.

The confusion matrix of recognition accuracy

of super-resolution reconstructed image sequences is

shown in Figure 10. We exhibit the recognition accu-

racy of image sequences with 128× 128, S64, S32,

and S16 according to different datasets. From Figure

10, it is found that the confusion matrix of our propo-

sed framework is more concentrated on the diagonal

than Figure 9. Particularly in the 16×16 at the SMIC-

HS dataset (bottom left), the recognition accuracy on

POSITIVE has significantly improved. Additionally,

we can see from the results of SMIC-subHS dataset

(the second column) that the proportion of NEGA-

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

432



Table 4: Comparison of recognition accuracy of different resolution images on different datasets. High-resolution means
the image sequences with the resolution of 128×128. Super-resolution Reconstruction represents the low-resolution image
sequences are reconstructed to the 128×128 by the facial hallucination method. Low-resolution denotes the low-resolution
image sequence before reconstruction. X×Y×T expresses the number of horizontal, vertical and temporal cuboids.
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Figure 10: Confusion matrix of recognition accuracy of
super-resolution reconstructed image sequences. In the ho-
rizontal direction, Left: SMIC-HS, Middle: SMIC-subHS,
Right: CASME II. In the vertical direction, from top to
bottom, there are 128× 128, S64, S32, and S16, respecti-
vely.

TIVE misclassified into POSITIVE are significantly

reduced, while the proportion of POSITIVE correctly

classified are also substantially improved. Unfortuna-

tely, even though the results of the CASME II data-

set (the third column) have improved, the classifica-

tion of each category is still very poor, and they are

generally falsely classified into OTHERS. Perhaps it

is because OTHERS includes all the other types of

micro-expressions excluding surprise, happiness, dis-

gust, and repression, so it has mixed categories. In

summary, from the comparison between Figure 10

and Figure 9, we see that the proposed framework can

obtain very promising performance boosting for low-

resolution micro-expression recognition.

4 CONCLUSIONS

In this paper, we give a comprehensive study about

the task of low-resolution micro-expression recogni-

tion problem. We use blurring and downsampling

model to produce and simulate the low-resolution

micro-expression facial image sequences. We recon-

struct the high-quality facial image sequences by em-

ploying facial hallucination method on each frame,

which enhances the local details and amplifies the

low-quality image sequences to the high resolution

ones. Then, we utilize fast LBP-TOP to extract the

dynamic features and recognize the micro-expression

by SVM classifier. The experimental results illustrate

that the proposed framework performs well on pu-

blicly available micro-expression datasets (SMIC-HS,

SMIC-subHS, and CASME II) on the low-resolution

micro-expression recognition problem. In the fu-

ture, we will focus on the research of deep fea-

tures for micro-expression recognition under low-

resolution cases.
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