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Abstract: In this article, a new vehicle routing problem appeared in carrier collaboration via a combinatorial auction 
(CA) is studied. A carrier with reserved requests wants to determine within a time horizon of multi periods 
(days) which requests to serve among a set of selective requests open for bid of the auction to maximize its 
profit. In each period, the carrier has a set of reserved requests that must be served by the carrier itself. Each 
request is specified by a pair of pickup and delivery locations, a quantity, and two time windows for pickup 
and delivery respectively. The objective of the carrier is to determine which selective requests may be 
served in each period in addition of its reserved requests and determine optimal routes to serve the reserved 
and selective requests to maximize its total profit. For this NP-hard problem, a mixed-integer linear 
programming model is formulated and a genetic algorithm combined with simulated annealing is proposed. 
The algorithm is evaluated on instances with 6 to 100 requests. The computational results show this 
algorithm significantly outperform CPLEX solver, not only in computation time but also in solution quality. 

1 INTRODUCTION 

In collaborative logistics, carriers may exchange 
some of their transportation demands in order to 
improve their profitability (Hernández et al., 2011). 
In this article, we consider collaboration among 
multiple carriers through exchanging some of their 
requests. The goal of this collaboration is to 
maximize the total profit of all carriers and generate 
more profit for each carrier. The carrier 
collaboration is usually realized in two steps. The 
first step is the re-assignment of a part of requests 
called selective requests among carriers and the 
second step is the sharing of the profit among 
carriers (Dai et al., 2015). 

Combinatorial Auction (CA) is an approach for 
request re-assignment among carriers. In a multi-
round CA, in each round (iteration), the service price 
for each selective request is updated by an 
auctioneer (Dai et al., 2014). Each carrier determines 
which selective requests to serve in addition to its 
reserved requests to maximize its own profit by 
solving a bid generation problem. In real world 
applications, carriers usually plan their pickup and 
delivery operations and use of vehicle resources in 
advance (several days ago) and in a rolling horizon 

way (Wang et al., 2014), (Wang et al., 2015). This 
requires that each carrier considers multiple periods 
(days) when it determines which transportation 
requests to bid and serve in each period (day). 
Moreover, requests open for bid (requests to be 
exchanged among carriers) may span across multiple 
periods (days). That is, instead of fixing a day for 
serving each of the requests, each request is allowed 
to be served within a service day window consisting 
of multiple consecutive days. An important 
application of multi-period BGP is in e-commerce. 
For example, goods ordered on-line by a customer 
on Monday is asked to deliver to the home of the 
customer within three days from Tuesday to 
Thursday. This gives rise to a multi-period 
combinatorial auction (CA) problem. In this article, 
a multi-period Bid Generation Problem (BGP) for a 
carrier is considered. In the problem, there are two 
different types of requests, reserved requests of the 
carrier and selective requests. The carrier is 
committed by contracts with its shippers to serve all 
reserved requests by itself. The selective requests are 
offered by other carriers and are opened for bid by 
the carrier. Each request is specified by a pair of 
pickup and delivery locations, a pickup/delivery 
quantity, and two time windows for pickup and 

Mamaghani, E., Chen, H. and Prins, C.
A Hybrid Genetic and Simulation Annealing Approach for a Multi-period Bid Generation Problem in Carrier Collaboration.
DOI: 10.5220/0007369203070314
In Proceedings of the 8th International Conference on Operations Research and Enterprise Systems (ICORES 2019), pages 307-314
ISBN: 978-989-758-352-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

307



 

delivery, respectively. The pickup/delivery time 
window of a request specifies the earliest and the 
latest time at which the pickup/delivery operation of 
the request must be performed in each period. In 
addition, each selective request has a period window 
which specifies the earliest period and the latest 
period between which the request must be served. 
Moreover, each selective request is associated with a 
profit that is the price for serving the request 
provided by a shipper. By considering multiple 
periods in CA, the carrier can plan its transportation 
operations in advance and in a rolling-horizon way. 
A carrier must make two important decisions in its 
BGP: Which requests are chosen to bid and serve 
within their service period windows and how the 
routes are constructed to maximize its total profit. 
This leads to a new periodic pickup and delivery 
problem with time windows, profits and reserved 
requests. According to Wang and Kopfer (2014), the 
presented problem is NP-hard and it is impossible to 
get an optimal solution for large instances by using a 
commercial solver like CPLEX. Hence, a hybrid 
approach combined genetic algorithm and simulated 
annealing (GASA) is proposed to solve the problem. 
The numerical results demonstrate the proposed 
algorithm can find a good feasible solution in a 
reasonable computation time for large instances. 

The rest of the paper is organized as follows. 
Section 2 is devoted to literature review. A detailed 
description of a mathematical model is given in 
Section 3. In section 4, the GASA algorithm is 
described. In section 5, detailed numerical results of 
solving the model by GASA and CPLEX solver on 
instances is presented and compared. The final 
section concludes this paper with some remarks for 
future research.  

2 LITERATURE REVIEW 

Collaborative Transportation Management (CTM) is 
achieved through the horizontal collaboration 
between multiple shippers or carriers by either 
sharing transport capacities or transportation orders. 
With the collaboration, all actors involved can 
improve their profitability by eliminating empty 
backhauls and raising vehicle utilization rates (Dai 
and Chen, 2011). (D’Amours and Rönnqvist, 2010) 
present a survey of previous contributions in the 
field of collaborative logistics. Indeed, efficient 
utilization of vehicle capacity and reducing the 
number of vehicles through carrier collaboration is 
noticeable in Less than Truck Load (LTL) 
transportation. With this type of collaboration, 

operation efficiency will increase (Hernández et al., 
2011). The considered problem in the current paper 
is a bid generation problem with multi periods in 
collaborative transportation. The bid generation 
problem (BGP) which is considered from the 
perspective of each carrier is the request selection 
problem and a key decision problem for auction-
based decentralized planning approaches in CTP. 
(Lee et al., 2007) study the carrier’s optimal BGP in 
combinatorial auctions for transportation 
procurement in TL (truckload) transportation. 
Carriers employ vehicle routing models to identify 
sets of lanes to bid for based on the actual routes. 
(Buer, 2014) proposes an exact strategy and two 
heuristic strategies for bidding on subsets of 
requests. The model proposed in this paper is a 
multi-period extension of the model proposed in (Li 
et al., 2016). Both of them assume the BGP of a 
carrier, but the BGP considered in this paper 
involves multi periods. There are two interesting 
studies in multiple periods BGP: (Wang et al., 
2014), (Lau et al., 2007). In these papers, each 
carrier considers multiple periods (days) when it 
determines which transportation requests to bid and 
serve in each period (day). Moreover, requests open 
for bid may span across multiple periods (days). 
Other works related to ours include studies on the 
Team Orienting Problem (TOP). Multiple vehicle 
routing problem with profits is called Team 
Orienting Problem (TOP) (Chao et al., 1996) focus 
on the TOP by considering multiple tour maximum 
collection problem and multiple tour VRP with 
profits. (Yu et al., 2010) utilize a simulated 
annealing algorithm to solve a capacitated location 
routing problem. 

3 PROBLEM DESCRIPTION AND 
MATHEMATICAL MODEL 

In this problem, we consider a carrier who wants to 
determine which requests to bid (select) among all 
requests open for bid (offered by all carriers) in a 
combinatorial auction to maximize its own profit by 
solving a bid generation problem. Since the carrier 
plans its transportation operations in advance and in 
a rolling horizon way as mentioned in the 
introduction, this bid generation problem involves 
multiple periods. We consider the problem in the 
less-than-truck load transportation, where each 
transportation request is a pickup and delivery 
request with time windows, two types of requests-
reserved requests and selective requests are 
involved, and each request is associated with a profit 
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which is the revenue provide by a shipper to serve 
the request. Formally, the multi-period bid 
generation problem can be defined on a directed 
graph ( , )G N E  where N is the set of all nodes 

comprising all pickup, delivery nodes and the depot 
node of the carrier and E is the set of edges. The 
node set is defined as {0, ..., 2 1}N n  , where n 

represents the number of requests, 0 and 2n+1 both 
denote the depot of the carrier, i and n + i represent 
the pickup point and the delivery point of request i = 
1, 2, …, n.  Let ܹ denote the set of nodes excluding 
the depot node. The set of periods denoted by ܪ.	In 
the problem, the carrier has a finite fleet of 
homogenous vehicles whose index set is given by 
ܭ ൌ ሼ1,2, … ܭܸ, ሽ where VK is the maximum 
number of vehicles. The capacity of each vehicle is 
denoted by Q and the load of each vehicle cannot 
exceed its capacity. ݐ௜௝ and ܿ௜௝ are the travelling time 
and the transportation cost from node i to node j, 
respectively. We assume ݐ௜௝ ൌ ܿ௜௝. The set of pickup 
and delivery nodes of all requests are denoted byܲ ൌ
ሼ1,2, … ,݊ሽ and	ܦ ൌ ሼ݊ ൅ 1, . . ,2݊ሽ, respectively. 
Each request i has its pickup node i and its delivery 
node n+i. The demand of the pickup node of request 
i is denoted by di, while the demand of the delivery 
node of the same request is denoted by di+n, di+n  = -
di. The delivery node of each request must be visited 
after its pickup node on the same route. The set of 
all requests is denoted by R, where 
R=ሺ⋃ ܴ௥௟௟ு ሻ⋃ܴ௦. ܴ௥௟ is the set of reserved 
requests that must be served in period l, ܴ௦ is the set 
of selective requests and H is the set of periods. 
Each selective request has a service period window 
and two time windows. The service period window 
determines which periods the selective request can 
be served, and the two time windows determine at 
which times in each period the pickup node and the 
delivery node of the request can be visited by a 
vehicle that serves the request. Both selective and 
reserved requests are associated with two time 
windows, whereas only selective requests are 
associated with a service period window (the period 
in which each reserved request must be served is 
pre-specified). The time window of pickup node i 
and delivery node i+n   of request i are denoted by 
[݁௜,	li] and [݁௜ା௡, ݈௜ା௡], respectively. The service 
period window for each selective request i is 
represented by [ܧ௜,  ௜]. Each reserved request i  ܴ௥௟ܮ
must be served in its pre-specified period l, l  H. 
The maximum duration of each route is limited by	ܶ. 
The multi-period bid generation problem can be 
formulated as a mixed-integer linear programing 
model. In the model, parameters ܯܤ௜௝ ൌ ௝݈ െ ݁௜ is 

used to formulate linearly the time window 
constraints. The decision variables of the model 
include binary variables, ݔ௜௝௞௛ and ݕ௜௞௛and real 
variables ௜ܷ௞௛and ܥ ௜ܸ௞௛ are defined as follows. 
 

1        if and only if vehicle k 

        visits directly node j after node i in period h

0        else 

ijkhx



 



  

1           if and only if request i is served by

            vehicle k in period h

 

0           else

ikhy



 



 

 arrival time of vehicle k at node i in period h

 Load of vehicle k when it leaves node i in period h
ikh

ikh

U

CV




 

The problem can be formulated as the following 
mixed integer-programming model: 
max i ikh ij ijkh

i R k K h H k N i N j N h H

p y c x
      

         

 

Subject to: 

, ,

0   ( ),

,

jikh ijkh
j N j i j N j i

x x i P D

k K h H

   

    

   

   (1)

0
, 0

1jkh
k K h H j P j

x
   

    
(2)

,2 1, ,
, 2 1

1i n k h
k K h H i D i n

x 
     

    
(3)

1   ,  ikl rl
k K

y i R l H


      (4)

 ,

1   
i i

ikh s
h E L k K

y i R
 
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
 
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ijkh ikh
j N j i n

x y i P k K

h H

  

    
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
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, , ,   ,  ,  ikh i n i i n k hU t U i P k K

h H
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 
 (8)

(1 )  

, ,  ,  

jkh ikh ij ijkh ij ijkhU U t x BM x

i j N k K h H

   

     
 (9)

(1 )  

, ,

i ikh ikh i ikh ij
j N

e y U l y B M

i N k K h H



   

     

  (10)

(1 )    ,

,

ikh ij ij ijkhU t BM x T i W

k K h H

     

   
 (11)
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 , , ,

jkh ikh j j ijkhCV CV d CV x

i j N k K h H

   

     
 (12)

max{0, } min{ , }  

i N, k K, h H  
i ikh id CV Q Q d  

     
 (13)

{0,1}  , , ,ijkhx i j N k K h H       (14)

 0   , ,

0   ,

ikh s i i

ikh rl

y for any i R h E L

and

y for any i R h l

  

  

 (15)

0  , ,ikhU i N k K h H        (16)

0  , ,ikhCV i N k K h H        (17)
 

The objective function represents the total profit of 
the carrier, which is equal to the difference between 
the total payments of serving requests in all periods 
and the total transportation cost. Constraint (1) 
ensures that when a vehicle arrives at a node in a 
period, it must leave from the node in the same 
period. Constraints (2) and (3) signify that each 
vehicle leaves its depot in a period must return to the 
depot in the same period. Equation (4) implies that 
each reserved request must be served in its pre-
specified period. Equation (5) indicates that each 
selective request can be served in a period within its 
service period window or not served. Constraints (6) 
and (7) guarantee if a request is served in a period, 
its delivery node must be visited after its pickup 
node with the same vehicle in the same period. 
Equations (8)-(11) specify time window constraints 
on the pickup and delivery nodes of each request, 
and the constraint on the maximum duration of each 
route. Constraints (12)-(13) ensure vehicle capacity 
constraints. Equations (14)-(17) describe the 
variables. 

4 METAHEURISTIC APPROACH 
TO SOLVE MULTI-PERIOD 
BID GENERATION PROBLEM 

The Multi-Period Bid Generation Problem based on 
Pickup and Delivery with Time Windows, reserved 
requests and profits is NP-hard (Wang and Kopfer, 
2014a) and special case of vehicle routing problem. 
Consequently, it is required to enforce metaheuristic 
algorithms to solve the problem. GASA is a 
metaheuristic algorithm used to solve the problem. 

4.1 Initial Solution Construction 
Procedure 

In the proposed hybrid genetic algorithm with 
simulated annealing (GASA), the size of population 
determines the number of initial solutions to 
construct. The initial solutions are constructed in the 
following three ways: 
1. Only the reserved requests are served. All 

reserved requests are sorted in the decreasing 
order of their profits and the reserved request 
with the highest profit is firstly served. All 
reserved requests must be served in this case. 

2. All reserved requests are served firstly and then 
selective requests are served. Both types of 
requests are sorted in the decreasing order of 
their profits and the reserved request with the 
highest profit is served at first. After serving all 
reserved requests, selective requests are served in 
the decreasing order of their profits within their 
service period windows. In this case, all selective 
requests must be served. 

3. All reserved requests must be served first and 
selective requests are served only if its assigned 
period is not zero. That is, if the period assigned 
to the request is zero, it will be not served. 

If the probability of choosing each of the three ways 
to construct an initial solution is denoted by 

1 2 3,   and    , respectively, then 1 2 3 1     . 

4.2 Hybrid Genetic Algorithm with 
Simulated Annealing (GASA) 

One of the well-known metaheuristic algorithms 
inspired from the nature is Genetic Algorithm (GA) 
that is suggested by (Holland and H., 1992). Another 
well-known metaheuristic algorithm is Simulated 
Annealing (SA) that accepts a worse solution with a 
probability. Actually, diversification of search space 
is included in the algorithm by decreasing the 
probability of accepting worse solution. We apply 
hybrid algorithm of GA and SA that is called GASA 
to prevent GA from premature convergence. All 
components of GASA for multi-period CT with 
pickup and delivery and time window will be 
explained in the rest of this section. In each iteration 
of GASA, the profit is updated thanks to the 
obtained profit in the latest generation. SA is applied 
on each solution of the present population. Each 
solution is selected with a probability based on a 
simulated annealing procedure. 
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Simulated Annealing in GASA 

Simulated Annealing gives a chance to worse 
solutions, which accepts a worse new solution with a 
probability. The new solution acceptance probability 
is given by ݁ିሺ௙ሺ௦ሻି௙൫௦

ᇲ൯ሻ/் where ݂ሺݏᇱሻ is the 
objective value of the new solution and ݂ሺݏሻ is the 
objective value of the current solution and ݂ሺݏᇱሻ ൏
݂ሺݏሻ. The acceptance probability depends on both 
the profit decrease ݂ሺݏሻ െ ݂ሺݏᇱሻ and the temperature 
parameter ܶ which is decreased at each iteration. 
The temperature reduction is performed by 
multiplying ܶ with a cooling factor	ܿ݋ ∈ ሺ0,1ሻ. To 
attain a slow cooling, the cooling factor must be set 
close to one. At the beginning of the GASA 
algorithm, the temperature parameter ܶ	is set to	 ଴ܶ 
and a solution with profit 30% lower than that of the 
initial solution is accepted with a given 
possibility	ݎ݌. In GASA, to produce the next 
generation solutions, at the end of each GA iteration, 
the solutions generated by crossover and mutation 
are sorted and merged with the current population. 
GASA utilizes the SA rule to determine whether 
each solution in the sorted list becomes a solution 
(chromosome) in the next generation.  

4.2.1 Solution Representation in GASA 

The chromosome of multi-period BGP is defined by 
three vectors ܺ, ܻ and ܼ. Vector ܺ is included all 
pickup nodes and delivery nodes and its dimension 
is |ܲܦ| as the index of each request is the same as 
its pickup node index in three vectors. The size of 
vector ܻ is equal to the number of all requests, and 
each component of vector ܻ indicates the period 
assigned to a request. Since a selective request is not 
compulsory to be served, if it is not profitable, it will 
not be served. Vector ܼ is similar to vector ܻ and the 
dimension of ܼ is equal to the number of all 
requests. In vector ܼ, each component indicates the 
index of the vehicle serving a request. An extra 
period is introduced to indicate a selective request is 
not served. The extra period is referred to period 0. 

4.2.2 Operators of GASA 

The proposed chromosome has three vectors which 
two of them have same structure. Therefore, two 
different crossover and mutation operators are 
applied. 
 

Crossover Operator of Vector	ܺ 
A single point crossover is suitable to the solution 
structure with permutation specification. In the 
suggested chromosome to GASA, vector ܺ has a 

permutation structure and single point crossover is 
used without need to use any extra operation to 
make its produced offspring’s chromosomes 
feasible. In fact, by using single point crossover, it is 
prevented from creating repetition genes. To 
generate the first offspring after chosen the 
crossover point randomly in the vector ܺ, all genes 
of first parent chromosome before the crossover 
point are sequentially transferred and creates the first 
part of the offspring’s chromosome. To generate the 
genes after the crossover point, in the beginning, all 
genes of second parent are compared with the first 
part of first offspring chromosome. All non-
repetitive genes of the second parent are transferred 
to construct the rest gens of first offspring and 
complete the chromosome of first offspring. This 
approach of gene selection in the opposite direction 
is done to produce second offspring.  
 

Crossover operator of vector ܻand ܼ 
According to the structure of vector ܼ and ܻ, 
uniform crossover is suitable crossover operator. At 
first, a mask vector with the same size of parents is 
created with zero and one genes. The value of each 
offspring’s gene is generated according to the value 
of mask vector and the same indexed gene of parent. 
The gene of first parent is transferred to the first 
offspring gene with the same index if the mask gene 
is one and the gene of second parent is transferred to 
first offspring if the mask gene is zero. To produce 
second offspring, the gene of second offspring has 
the same value of first parent when the mask vector 
gene with the same index is zero and the value of 
second offspring gene is chosen from second parent 
if the value of mask in the same index is one.  
 

Mutation over Vector ܺ 
To have a diversified feasible solution, a mutation 
operation with the following two steps is suitable to 
the permutation structure vector ܺ. 

1) Choose randomly two genes of vector ܺ 

2) Choose randomly one of the relocation, swap and 
reversion operations and execute the selected 
operation on the selected genes. 
 Swap Operator 

Select two components of vector ܺ and swap 
their positions in the vector. 

 Reversion Operator 
Selects two components of vector ܺ and 
reverse the order of the components between 
the selected components. 

 Relocation Operator 
Select two components in vector ܺ and 
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relocates one of them to the front of another 
component. 

Mutation over Vectors ܻand ܼ 
The mutation over vector ܼ	is proceeded in three 
steps. At first, the number of mutated genes of 
vector ܼ is determined randomly and illustrated by ݈. 
The number of mutated genes are obtained in the 
following step: The primer step is generating 
randomly integer number ݄ between 1 and dim [ܼ], 
as dim [ܼ] is the number of genes in vector ܼ where 
VK is the maximum number of vehicles. This 
number is multiplied by a mutation rate ݎ, leading to 
 to the least integer number ݎ݄ By rounding .ݎ݄
larger than or equal to ݄ݎ, the number ݈ is obtained. 
In the second step, from ܼ, ݈ genes are randomly 
selected. Finally, for each selected gene of Z, an 
integer number is randomly generated between 1 and 
VK, and the gene in ܼ is changed to this value. The 
mutation over vector ܼ is the same as mutation 
operation over vector ܼ with a difference in third 
step. In vector ܻ, for each chosen gene, an integer 
number is randomly generated between 0 and ܶ 
where ܶ is the maximum periods and the selected 
gene in ܻ is changed to this value. After the 
mutation, an offspring chromosome is modified 
from the parent chromosome with new values in 
some elements. 

5 EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed 
metaheuristic algorithm, we applied it to solve 
instances of taken from (Li et al., 2016) with the 
same reserved requests and the selective requests, 
and compared them with the MILP solver of CPLEX 
12.6 in terms of profit and computation time. We 
consider there are 5 periods and each period has its 
own reserved requests according to the random 
function. Note that for the instances more than 
20requests it was impossible to solve the MILP 
model optimally by CPLEX after 2 hours. 

5.1 Parameter Setting 

The values of some parameters of the algorithm are 
determined empirically and are given in Table 1. 
The values of other parameters are tuned by using 
the Taguchi method (Semioshkina and Voigt, 2006) 
are given in Table 2.  

Table 1: Parameter values of GASA determined 
empirically. 

Parameter Description Value 

SubIt 
Number of 

iteration of SA 
110 

μ୫ Mutation rate 0.26 

Table 2: Parameter values of GASA determined by 
Taguchi. 

Methodology Parameter Description Value 

GA Npop 
Size of 
population 

150 

 nIt 
Number of 
iterations 

800 

 Pc 
Crossover 
probability 

0.6 

 Pm 
Mutation 
probability 

0.05 

5.2 Test Results 

After the parameters calibration, we executed the 
GASA algorithm and CPLEX on all instances. For 
CPLEX, since the considered carrier collaboration 
problem is NP-hard (Wang and Kopfer, 2014b) it is 
very time consuming to solve optimally large size 
instances. For this reason, we set a maximum 
running time for CPLEX to solve large size instance. 
The time limitation is 2 hours. Our proposed 
algorithm is compared with CPLEX based on the 
criterions defined in Table 3, where ObjGASA and is 
the profits of the studied problem obtained by the 
algorithm, respectively; UBMILP and LBMILP are the 
upper bound and the lower bound of the objective 
value of the problem obtained by CPLEX in a preset 
computation time. 

Table 3: Criterions used for comparison of GASA and 
Cplex. 

Criterion Description 

Gap୑୍୐୔ 

The relative gap between 
UB୑୍୐୔ and	
LB୑୍୐୔, defined as 
 

UB୑୍୐୔ െ LB୑୍୐୔
UB୑୍୐୔

 

Gapୋ୅ୗ୅ 

The relative gap between 
UB୑୍୐୔ and	
Objୋ୅ୗ୅, defined as  
୑୍୐୔ܤܷ െ			Objୋ୅ୗ୅

UB୑୍୐୔
 

 

The computation results are given in Table 4 and 
Table 5. From Table 4, we can see, for small 
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instances, CPLEX and GASA could find an optimal 
solution. However, for some 8 requests instances 
and CPLEX could not even find a feasible solution 
in a preset computation time, whereas GASA could 
find a feasible solution for all instances. So we 
compare the solutions obtained by GASA based on a 
relative gaps with the upper bound obtained by 
CPLEX, i.e., using the above-mentioned criteria. 
GASA can find an optimal solution for 6 requests 
instances, it can find a solution with the relative 
profit gap smaller than 0.34% for 8 request instances 
and 4.50% for 10 request instances. For instances 
with 20 requests, GASA can find a solution with the 
gap smaller than 6.98%. For instances with 30 
requests, GASA can find a solution with the gap 
smaller than 10.31%. For instances with 40 and 50 
requests, GASA can find a solution with the gap 
smaller than 11% and 13.2% sequentially. For the 
instances with 100 requests, GASA can find a 
solution with the gap smaller than 16.4%. From the 
results, we can see our proposed algorithms perform 
much better than CPLEX in terms of running time 
for medium and large instances.  

Table 4: Computational results of GASA and CPLEX – 
part one. 

Instance  LBMILP UBMILP 
Profit   

GASA 
6-3-3 256.5254 265.5254 265.5254
8-4-4 512.015 514.731 514.682

10-5-5a 909.810 984.660 974.614
10-5-5c 974.001 1028.626 1019.693
10-3-7d 1157.164 1257.153 1248.267
10-3-7f - 1210.611 1183.689

20-10-10a - 2619.785 2473.626
20-10-10c - 3815.445 3651.975
20-5-15d 1832.804 2015.517 1991.431
20-5-15e - 2568.903 2462.24

30-15-15c - 7432.469 7003.483
30-10-20d - 6629.284 6263.02
30-20-10g - 11214.73 10452.39
40-20-20a - 12065.1 11103.11
40-15-25d - 12205.41 109481.51
40-25-15g - 11115.574 99794.391
50-25-25a - 23781.93 21105.171
50-20-30d - 22083.155 19206.231
50-20-30f - 20495.213 18004.147

100-50-50a - 88406.782 75606.06
100-50-50b - 90722.467 78110.724
100-25-75d - 112103.589 93850.223
100-25-75f - 90686.991 75815.239
100-75-25g - 93663.471 78945.834
100-75-25h - 82124.016 70237.949

Table 5: Computational results of GASA and CPLEX – 
part two. 

Instance 
Gap 

GASA(%) 

Gap 
MILP 

(%) 

CPU 
GASA 

CPUM

ILP 

6-3-3 0 0 85.117 
67.64

9

8-4-4 0.009 0.333 100.794 
93.36

5
10-5-5a 0.512 7.61 184.342 500
10-5-5c 0.869 5.311 173.110 500
10-3-7d 0.469 7.733 186.185 500
10-3-7f 0.729 2.003 177.961 500

20-10-10a 5.579 - 331.511 3600
20-10-10c 4.284 - 351.836 3600
20-5-15d 1.195 9.065 326.537 3600
20-5-15e 4.1520 - 322.419 3600

30-15-15c 5.771 - 547.992 3600
30-10-20d 5.524 - 5213.14 3600
30-20-10g 6.797 - 546.232 3600
40-20-20a 7.973 - 825.753 7200
40-15-25d 10.297 - 844.225 7200
40-25-15g 10.007 - 819.471 7200
50-25-25a 11.255 - 1719.124 7200
50-20-30d 13.027 - 1696.439 7200
50-20-30f 12.154 - 1690.491 7200

100-50-50a 14.479 - 2725.955 10800
100-50-50b 13.901 - 2728.801 10800
100-25-75f 16.398 - 2759.854 10800
100-75-25g 15.713 - 2916.492 10800
100-75-25h 14.473 - 2891.837 10800

6 CONCLUSIONS 

In this article, a new vehicle routing problem 
appeared in collaborative logistics, the multi period 
pickup and delivery problem with time windows, 
reserved requests and selective, is considered. By 
solving this problem, a carrier determines which 
transportation requests to serve in a combinatorial 
auction. This problem has a new feature that each 
selective request has a service period window 
besides time windows to visit its pickup and delivery 
points. We have proposed a hybrid metaheuristic 
algorithm to solve the model. Numerical 
experiments on benchmark instances show that the 
algorithm can obtain optimal solutions for small 
instances and much better solutions for medium to 
large instances than CPLEX. CPLEX cannot find 
even a feasible solution for such instances in a preset 
computation time.   
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