
Model Federation based on Role Modeling

Bastien Drouot and Joël Champeau
Lab STICC UMR6285, ENSTA Bretagne, Brest, France

Keywords: Model Federation, Role Modeling, DSML Interoperability.

Abstract: Modeling approaches could be a powerful solution for specification, design and analysis. At a system level,
models must take into account many system concerns. Thus, several system modeling approaches are based
on several viewpoints expressed in Domain Specific Modeling Languages. Cyber threat analysis takes place
within this modeling context with the need for several DSMLs to address several viewpoints of the system. So,
the analysis of this domain is supported by DSML interoperability to perform simulation or other algorithms.
Therefore, in this paper, we present an approach to face DSML interoperability based on role modeling. The
Role4All framework is based on a metamodel including the Role concept. The Role4All language provides the
capacity to define shared semantics between the DSMLs. Role4All and role modeling avoid model transfor-
mations and promote a federation approach between several DSMLs. The federation mechanisms of Role4All
are illustrated in the cyber threat modeling framework to emphasize information gathering and the updates of
the role model.

1 INTRODUCTION

In several domains, modeling approaches are ac-
cepted as solutions for the support of specification,
design and, in some cases, implementation. These ap-
proaches are considered as powerful if the models are
used for a precise and dedicated purpose such as sys-
tems engineering, system knowledge management,
system analysis (structural, behavioral), performance
evaluation (worst case analysis, scheduling) and also
model or code generation. To take into account the
diversity of system aspects, modeling approaches are
mostly based on several Domain Specific Modeling
Languages (DSMLs) or a standard Language with
specializations (SysML and its profiles). In any case,
these approaches aim to focus each DSML on a pre-
cise domain to provide adequate abstractions to fit
with the domain concepts, or a subset of the concepts.

Currently, one of the active research domains is
the security domain for systems integrating digital
subsystems. These systems must be analyzed on sev-
eral levels of abstraction (from binary to system lev-
els) and from several viewpoints (network infrastruc-
ture or operating system of course). For this kind of
problematics, models are relevant to outline system
features, to provide relationships between features or
concepts and to support different kinds of analysis
from human expertise to automatic algorithms such
as artificial intelligence.

In this context, we demonstrate that cyber threat anal-
ysis must be supported by a set of DSMLs, dedi-
cated to providing abstractions for system representa-
tion, vulnerability definition, attacker competencies,
etc. Cyber threat analysis is an activity using current
knowledge and hypothetical attacker ability in order
to anticipate cyber attacks. So one of the goals of
this activity is to explore attacker behavior in the cur-
rent system to understand and anticipate attack sce-
narios. Relative to this situation, models are a power-
ful means to formulate hypotheses and obtain attack
scenarios to prevent real cyber attacks or to produce
defense or monitoring artifacts.

To improve the results of this kind of analysis,
we need to correlate different models to obtain the
most relevant analysis. In the resulting modeling con-
text, we face the interoperability problem of several
DSMLs which model a system from several view-
points. In this paper, we propose a model federa-
tion approach to solve the interoperability problem
between several DSMLs. This federation approach is
based on role modeling, the main property of which
is to provide dynamic interface definitions. Our ap-
proach is illustrated by a relevant cyber threat model-
ing context.

Our paper is organized as follows: we present
the cyber threat analysis context to clarify our re-
quirements in Section 2. Section 3 focuses on the

72
Drouot, B. and Champeau, J.
Model Federation based on Role Modeling.
DOI: 10.5220/0007363500720083
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 72-83
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

DSML interoperability and the role modeling ap-
proach. We introduce our model federation language
and approach in Section 4. Section 5 illustrates our
Role4All framework in the cyber threat modeling
context. Finally we conclude the paper in Section 6.

2 CYBER THREAT CONTEXT

2.1 Cyber Threat Analysis

Cyber threat analysis aims to look for system vulnera-
bilities, in relation to current vulnerability knowledge
and tries to anticipate an attacker’s behavior, while
making assumptions as to his system knowledge and
his attack goals.

The Threat analysis approach is at the cross-
roads between penetration testing methodology (Ho-
lik et al., 2014), cyber threat intelligence (Conti et al.,
2018) and attack analysis (Elahi et al., 2010). Given
this crossroads, several methodological steps have
been identified:
• Modeling: Several system elements are conceptual-
ized to produce an abstraction of the considered sys-
tem. For example, attack trees are part of the model-
ing artifacts used to represent the goal of a potential
attack and all the possible actions to achieve this goal.
The main objective of this modeling step is to gather
information and to create a representation of the cur-
rent knowledge of the system.
• System Discovery: The knowledge of a system de-
pends on the current view of the real system. For ex-
ample, extending knowledge of the system can lead
to the identification of accessible vulnerabilities re-
garding the architecture and configuration of the sys-
tem. System discovery consists in the description of
the actions and commands that can be performed on
the system to extend the knowledge of the latter.
• Vulnerability Exploitation: A vulnerability is an er-
ror or weakness in design, implementation, or oper-
ation (Schneider, 1999). Based on the previous dis-
covery step, vulnerabilities can be exploited to reach
the attack goal or an intermediate step in the overall
attack scenario. The selection of suitable vulnerabili-
ties depends on the system configuration and is moti-
vated by the expected progress in the current scenario.
The purpose of the vulnerability exploitation step is to
perform the attack scenario based on attacker ability,
system access and system configuration.

Thus, the threat Analysis approach can be split
into three steps: Modeling, System discovery and
Vulnerability exploitation. Each of these steps can
be approached using models. Indeed, the vulnera-
bility exploitation is based on the modeling step and

the system discovery can be simulated through mod-
els. Therefore, in the following parts we focus on the
model approach to performing threat analysis.

2.2 Cyber Threat Modeling

Threat modeling is about using models to find secu-
rity problems. The use of models means an abstrac-
tion of the system, the threats, the attackers and some
other details (Shostack, 2014). There is no consen-
sus about the threat modeling approach, for example
in (Myagmar et al., 2005) Myagmar et al. propose
a threat modeling approach consisting in the follow-
ing three high-level parts: characterizing the system,
identifying assets and access points, and identifying
threats. While Pauli and Xu in (Pauli and Xu, 2005)
center the threat modeling around three ideas: de-
scribing the decision-making process of an attacker,
modeling the security threats and designing the sys-
tem. Although the threat modeling approaches of
Myagmar et al. and Pauli and Xu are different, it is
possible to review the subgroups they create using a
common theme.

Regarding the literature, we separated the threat
modeling into three parts:
• System Modeling: System modeling consists in
characterizing the system by describing the system
behavior, its features, its boundaries, etc. System
modeling could be split into sub-parts such as the sys-
tem topology and the system configuration. System
modeling represents the characterization of the sys-
tem for Myagmar et al. and the design of the system
for Pauli and Xu.
• Attacker Modeling: Attacker modeling consists in
characterizing the attacker and his behavior, that in-
cludes the attacker’s goal, the attacker’s competen-
cies and attack scenarios. Attacker modeling repre-
sents the identification of assets and access points for
Myagmar et al. and the description of the decision-
making process of an attacker for Pauli and Xu.
• Threat Description: Threat description consists
in describing the possible vulnerabilities of the sys-
tem. Threat description represents the identification
of threats for Myagmar et al. and the modeling of
security threats for Pauli and Xu.

Our threat modeling process includes the same
steps as the processes of Myagmar et al. and Pauli
and Xu but with a different grouping. Our grouping
highlights the modeling part of the threat modeling
and allows a clear distinction between the system, the
threats and the attackers. One of the possible imple-
mentations of our representation of the threat model-
ing, based on various DSMLs, is:
• System Topology: A subset of the system modeling

Model Federation based on Role Modeling

73

describing the boundaries of the system and the re-
lations between elements in the system. The DSML
chosen to describe the system topology was PimCa
(Hemery, 2015). PimCa was defined by a cybersecu-
rity entity of the French Ministry of Armed Forces,
dedicated to representing and analyzing a system at
several levels of abstraction, from an electronic to
a systems level. The system topology is modeled
by several entity types (processing, storing, customs,
passport, etc.) and specialized relationships between
the entities (controls, uses, owns, etc.).
• System Configuration: The configuration of each el-
ement of the system. We decided to use a configura-
tion file based on structured data as a DSML. This
DSML allowed the element configuration to be de-
scribed including version numbers but did not allow
the interaction between configurations to be modeled.
• Vulnerabilities: A vulnerability library. All systems
have vulnerabilities, most of them referenced in a li-
brary. We chose to limit our vulnerabilities to a single
library: NVD the US National Vulnerability Database
(Zhang et al., 2011).
• Attacker: Attacker decision-making during an at-
tack. This decision depends on the attacker’s compe-
tencies and knowledge of the system. The decision-
making of the attacker is symbolized by an attack tree
(Mauw and Oostdijk, 2005). The attacker’s compe-
tencies are modeled by structured data based on the
description of an attack in CVSS (Mell et al., 2006).
His knowledge of the system is represented by a spe-
cific viewpoint of the system changing step-by-step
over the attack.

Each of these DSMLs is one of the possible
DSMLs, for example, an attack tree can by replaced
by Misuse cases (Alexander, 2003), or a fault tree
(Lee et al., 1985), or a data-flow diagram (Li and
Chen, 2009). In this article, the set of DSMLs chosen
is: PimCa, configuration files, NVD, attack tree and
attacker competencies structured data. Moreover, to
generate and animate the attacker viewpoint step-by-
step, we decided to operate a simulation. Our simula-
tion allows the action of the attacker to be simulated
independently of his attack scenario. The attack sce-
nario only depends on actions taken, according to the
attacker’s viewpoint and abilities.

To summarize, we chose to group the threat mod-
eling into these three groups and we implemented our
representation of the threat modeling with several re-
placeable DSMLs that may evolve. This is why inter-
operability between DSMLs must be managed, taking
into account that they can be modified or replaced,
and the way that DSMLs interact can also change.

3 BACKGROUND AND
PROBLEMATICS

3.1 DSML Interoperability

Interoperability between several formalisms is a re-
current problem in Model Driven Engineering (MDE)
approaches in the scope of a modeling and simulat-
ing process or a development process including mod-
els at several steps. Traditionally, interoperability ap-
proaches are classified through integration, unifica-
tion or federation of the formalisms (Rio, 2012; Guy-
chard et al., 2013; Niemoller et al., 2013). Integration
is based on the creation of a modeling language in-
cluding the union of all the concepts of the different
formalisms. This approach is applied if the concept
number is limited and in particular if the number of
formalisms remains fixed because any new DSML in-
tegration requires the redefinition of the entire inte-
grated language which is the major drawback of this
approach.

The unification mechanism is based on the identi-
fication of common concepts between the formalisms
and the definition of the correspondence between
these core concepts and the concepts of the model-
ing languages. This approach is usually named as the
pivot language approach. This strategy is one of the
most used to conceptualize and implement interoper-
ability between several formalisms. In the case of a
limited number of concepts, pivot language is a pow-
erful solution if any concept of the languages finds
its correspondence in the pivot definition. After the
correspondence definition, transformations can be ap-
plied between all the formalisms and the pivot lan-
guage, and also in the reverse direction. However,
the definition accuracy of the pivot language remains
a difficult task. If the definition is too abstract, this
leads to lost concepts (or properties), if the concepts
(or properties) have no correspondence in the pivot
language. On the other hand, defining a rich pivot lan-
guage, to preserve any property of the languages, pro-
duces an overly broad pivot language. In this case, the
unification is equivalent to the integration approach
with these drawbacks, and the management of the lan-
guage transformations.

The federation approach shifts the point of view
and focuses on modeling the semantics of the
links between the concepts (Guychard et al., 2013;
Niemoller et al., 2013). These links or relationships
define the correspondence between the concepts with-
out a concrete pivot language definition. The main
goal of the federation is to specify the interoper-
ability without modifying the language concepts, by
concentrating on the semantic definitions. Based on

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

74

this interoperability specification, the transformations
are applied only on demand. Several federation ap-
proaches exist but for all, the main advantage is the
clear separation between the source element with its
original type (the DSML’s concept) and the semantic
modeling relative to the federation context (the feder-
ation’s concept). A source concept could have several
semantics within the same federation and also several
source concepts could share the same semantics.

Relative to the cyber threat modeling context, we
have chosen to apply the federation approach to en-
sure the DSML interoperability while taking into ac-
count the immature modeling context and thus the
probable evolution of the DSML definitions. This
evolution feature is mainly the major drawback for
DSML interoperability. So our federation requires
a flexible definition and a support to agree with the
DSML definition evolutions. In this context, the abil-
ity to define a dynamic interoperability is ensured by
role modeling, which is one of the main strengths we
will expand upon in the next section.

3.2 Role Modeling

Role modeling has its roots in the work on data mod-
eling during the seventies and as natural extensions
the roles were used in object-oriented design and im-
plementation, and modeling and metamodeling. In
(Steimann, 2000) Steimann presents a short survey on
role modeling which emphasizes the ontological def-
inition of roles. This definition clearly highlights the
difference between the natural type of individuals and
the roles where the individuals could enter or leave
without losing their identity.

To summarize, roles are used to provide dynamic-
ity on classic type approaches (Kühn et al., 2014) and
to define dynamic interfaces which can be adapted
over time (Gottlob et al., 1996). Furthermore, these
usages can be on several levels, metamodeling, mod-
eling, and implementation.

Relative to our context, the natural type is
provided by a metaclass of the DSML definition,
and roles support the semantic interpretation of the
elements according to the current attached role.
Steimann provided a reference set of 15 features, with
their semantics, that must be fulfilled by a role-based
modeling framework (Steimann, 2000). Based on this
reference list of features, Kühn et al. upgraded the
framework by adding the ability to define a context
for a group of roles (Kühn et al., 2014).

Roles are successfully used to interconnect hetero-
geneous design tools in order to create tool chains
dedicated to system design with many necessary
tools. So, building a tool chain requires an interop-

erability support that can be based on roles. Seifert
et al. connected various models produced by different
modeling tools thanks to roles (Seifert et al., 2010).
Moreover, Champeau et al. used roles to guarantee
the preservation of the semantics of a model entity
during the model exchange process between model-
ing tools (Champeau et al., 2013). Roles enabled
the modification of tools underlying metamodels to
be avoided.

To define the necessary interoperability support
between our DSMLs, we chose to improve the
Role4All framework (Schneider et al., 2015) to add
a federation support from the previous design and ap-
ply the framework to our cyber security context.

4 Role4All: ROLES AND
FEDERATION

In this section, we introduce Role4All: a role-based
framework including a role language. This language
takes advantage of the role concept to define dedi-
cated viewpoints and to map these viewpoints on sev-
eral DSMLs. The language Role4All is based on the
relevant subset of role features to ensure the federa-
tion of several modeling languages.

The purpose of the federation is to clearly sepa-
rate the syntax of the model elements and the seman-
tics defined by the federation model. In our case, the
syntax is supported by the DSMLs and the seman-
tics by the role model. Thanks to this context, we de-
fine and present the Role4All language and the weak
coupling between the model elements, the syntax, the
roles, and the semantics.

4.1 Role Features

In the literature, a significant effort has been made to
provide an exhaustive formalized feature list to char-
acterize and define the role concept in the context of
role modeling (Steimann, 2000; Kühn et al., 2014).
T.Kuhn et al. listed 26 necessary role features, re-
ported in Table 1, to cover all the potential aspects of
a role language definition. Following on from defin-
ing a role-based language is first a selection of the
relevant features in the identified set, regarding the
targeted context and domain. This feature selection
creates various role language definitions. The asso-
ciated tooling on these languages can introduce some
usage variations but the role semantics remains pre-
served if the selected features are a strict subset of the
identified features (Kühn et al., 2015).

Our main driver defines dynamic viewpoints be-
tween several DSMLs and therefore between the sup-

Model Federation based on Role Modeling

75

Table 1: Classification of role features.

1. Roles have properties and behaviors 15. An object and its roles have different identities
2. Roles depend on relationships 16. Relationships between roles can be constrained
3. Objects may play different roles simultaneously 17. There may be constraints between relationships
4. Objects may play the same role several times 18. Roles can be grouped and constrained together
5. Objects may acquire and abandon roles dynamically 19. Roles depend on compartments
6. The sequence of role acquisition and removal may 20. Compartments have properties and behaviors
be restricted 21. A role can be part of several compartments
7. Unrelated objects can play the same role 22. Compartments may play roles like objects
8. Roles can play roles 23. Compartments may play roles which are part
9. Roles can be transferred between objects of themselves
10. The state of an object can be role-specific 24. Compartments can contain other compartments
11. Features of an object can be role-specific 25. Different compartments may share structure
12. Roles restrict access and behavior
13. Different roles may share structure and behavior 26. Compartments have their own identity
14. An object and its roles share identity

ported tool languages. In this context, our objectives
are to take into account:
• A common semantic interpretation of several con-
cepts of different languages. For example in a design
process, at the implementation step, a system function
of the application domain and a Thread in a concur-
rent design are federated to a Class concept of an ob-
ject language, to provide a common implementation
interpretation.
• The semantic evolution of a language concept dur-
ing a modeling process. For example along a design
process, a system function relative to the application
domain is interpreted as a Thread in a concurrent de-
sign and as a Class of an implementation language.
• The provision of a dynamic semantics to the feder-
ated concepts. In our system design process, a sys-
tem function can be implemented as class or Threads.
Moreover, in a simulation framework the two can be
simulated as an agent concept to analyze and evaluate
the system design.

In Role4All, each role, called Role, gathers a sub-
set of these 26 features. In this paper, instead of a list
of role features, we classify them according to their
underlying objectives in Role4All. The three most
important objectives are: defining viewpoints, feder-
ating behaviors between elements and ensuring dy-
namic definition of these viewpoints.
• Defining viewpoints: As in role modeling ap-
proaches, in Role4All a Role defines a viewpoint of
one or several model elements. As previously ex-
plained, we need to create a single viewpoint to define
a common semantics from several DSMLs. This ob-
jective is covered by Features 1, 3, 4, 7 and 15. Each
feature has a dedicated purpose:

- Feature 1 enhances elements thanks to properties
and behaviors.

- Features 3 and 4 deal with several interpretations
and thus several role models applied at the same
time.

- Feature 7 defines a viewpoint related to different
elements of different languages.

- Feature 15 requires a separation between the model
elements, which keep their native identity, and the
roles of these elements, to model viewpoints and
relationships between model elements.

• Federating behaviors between elements: Roles are
used to federate model elements (Wende et al., 2009).
Role4All uses Role instances (named roles) to fed-
erate model instances from different languages. The
federation is supported mainly by two features:

- Feature 18 groups roles together for the federation.

- Feature 13 enables behavior between federated
roles to be shared.

• Defining dynamic viewpoints: One of the most im-
portant features in role modeling is to support dy-
namic evolution of the viewpoint definitions. The
roles are attached or detached to the viewpoint to
adapt the semantics relative to viewpoint evolution.
For example simulation results can generate new roles
relative to some existing model elements. This objec-
tive is supported by the following features:

- Feature 5 provides the capacity to attach new roles,
including the integration of simulation results.

- Features 8 and 9 deal with the adaptation of view-
point definition by adding new roles on a role or by
migrating a role through another object.

Finally, a role in Role4All is totally defined by the
Features: 1, 3, 4, 5, 7, 8, 9, 13, 15 and 18. In the next
section, we describe how these features are combined
and linked in the Role4All metamodel.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

76

Role

PlayRelaton Adapter

Player
0..1 player

* playRelatons

 0..1
adapter

0..1
role

0..1 playRelaton

0..1 containerRole

0..* containedRoles

Unidirectonal associaton
Bidirectonal associaton
Subclass of

Figure 1: Role4All metamodel.

4.2 Role4All Design: Viewpoint

Based on the previous design of Role4All (Schneider
et al., 2015), in this paper we present an extension of
Role4All to ensure model federation. The Role4All
definition is based on a metamodel, presented in Fig-
ure 1. This metamodel results in the selected Features
1, 3, 4, 5, 7, 8, 9, 13, 15 and 18. In this paragraph and
the following, we present how this metamodel gathers
the features together.

As a reminder, we use role to talk about a role in-
stance and Role to talk about a role class and idem for
the other metaclasses (player and Player, playRela-
tion and PlayRelation, adapter and Adapter). Regard-
ing our DSML interoperability context, a Player rep-
resents an element of one of the DSML’s metamodels
and a Role is a viewpoint of one or several Players.
The key structure in our metamodel is: A player plays
a Role means that a player is linked with a role. More-
over, relative to the metamodel, the link is reified by a
playRelation. This relation ensures a clear separation
between the Player and the Role. This relation can
support its own properties, in particular, the Adapter
definition. The adapter is in charge of transforming
the player properties into role properties.

Each role feature is supported by the Role4All
metamodel substructure. The definition of a view-
point is supported by:

- Feature 1: Roles have properties and behaviors: A
Role is defined by the metaclass Role. Thus, the
generic semantics of a role defines this metaclass.
Furthermore, a Role is defined by a class with be-
haviors and properties. So the operational seman-
tics of the role is defined by the methods to encap-
sulate behaviors and property access.

- Feature 3: Objects may play different roles simul-
taneously: A player may have many playRelations
according to the cardinality ”*” of the relation be-
tween Player and PlayRelation. As we stated be-
fore, the PlayRelation emphasizes the separation
between a DSML element and several Roles.

- Feature 4: Objects may play the same role several

Figure 2: Notifications in the federated models.

times: In addition to the cardinality of the relation
between Player and PlayRelation, a player may be
linked to the same Role several times but with a dif-
ferent adapter. So, a player may play the same Role
several times with a different Adapter, or not.

- Feature 7: Unrelated objects can play the same
role: The dissociation between Role, Player and
Adapter, allows various players to play the same
Role, with a specific adapter.

- Feature 15: An object and its roles have different
identities: A role and the player linked to it are in-
stances of different classes in Role4All.

So, Role4All metamodel substructures support
Features 1, 3, 4, 7 and 15 allowing viewpoints to be
defined. In the next section, let us focused on the fea-
tures mainly dedicated to the concept federation.

4.3 Role4All Design: Federation and
Dynamicity

The main goal of the federation approach is to face the
issue of the definition of relationships between sev-
eral formalisms. Each formalism defines a viewpoint
of a system, and the federation specifies cross cutting
concerns on the formalisms. The resulting federa-
tion model has two main properties: first, taking into
account the dynamics of the relationships between
the formalisms and second, ensuring consistency be-
tween the model elements of the different viewpoints.
So the main features to support the federation are:

- Feature 5: Objects may acquire and abandon
roles dynamically: The Player class has a behavior
method, ”play”, to allow at run time, the creation
of a playRelation to connect a role, an adapter and
itself. Moreover, the removal of a playRelation en-
titles a player to release a Role dynamically.

- Feature 8: Roles can play roles: The class Role is
a subclass of Player, so a role has the inherited be-

Model Federation based on Role Modeling

77

havior (especially the method ”play”) of a player.
Therefore, a role can play a Role.

- Feature 9: Roles can be transferred between ob-
jects: A role can be transferred to another object
via the creation of a new playRelation or a mutation
of the older relation towards the other object.

- Feature 13: Different roles may share structure and
behavior: A Role is defined via a class, so sub-
classes create Roles to share behavior and structure
with the parent Role.

- Feature 18: Roles can be grouped and constrained
together: The class Role and the association be-
tween containerRole and containedRoles allow a
role to contain other roles or to be contained by an-
other role. This association allows the creation of
role sets. The behavior of the container includes
constraints applicable to all the roles of this set. As
we presented below, this feature is one of the main
supports of the role federation.

Feature 5, 8 and 9 are inherently role concept
properties to ensure dynamicity and interoperability
between the formalisms from the role model. Indeed,
if new concepts (or properties) are required in the fed-
eration definition, we add roles to adapt this defini-
tion. Furthermore, if concepts (or properties) are no
longer necessary in the federation definition, we can
detach the corresponding roles and remove the asso-
ciated playRelation and adapter. These capacities en-
sure a dynamic definition of the federation approach.

Feature 13 and 18 ensure consistency between
roles and model elements. In the metamodel (Figure
1), this feature is supported by the reflexive reference
on the Role class, with one containerRole and several
containedRoles if each containedRoles is connected
with a model element. This containerRole provides
the capacity to gather a logical assembly of roles, in
order to define a set of federated roles. This container
also maintains the overall behavior of this set based
on local role behaviors and supports broadcasting no-
tifications which come from local behavior.

To illustrate this definition, when a model ele-
ment is updated, it notifies its associated role. This
role transmits the notification to its containerRole and
then, the containerRole broadcasts the notification to
all the containedRoles. This algorithm, illustrated in
Figure 2, ensures the goal to notify each contained-
Role federated in the container. In the case of noti-
fication with no returned object, each containedRole
processes the notification, and thus typically updates
a property of every model element associated with
each role. In this case, the container does not ensure
a particular consistency rule and the updating of all
the model elements, via the containedRoles, is per-

Figure 3: Network architecture of the use case.

formed. In the case of notification with a returned
object, a sequential order semantics is applied and the
first non null object is considered as the result of the
broadcast. This answer selection algorithm could be
extended to select an answer relative to the evaluation
of an assertion or a property of the container. These
two examples are detailed in the next section.

Regarding the integration of the behavior in our
metamodel, we precise that Role4All is implemented
as an embedded DSL in Pharo/Smalltalk1. This kind
of implementation provides facilities to have a clear
DSL’s definition and also a powerful implementation
based on Smalltalk code for the behavior definition of
the meta-entities and entities.

5 THREAT MODELING USE
CASE

5.1 Case Study

In the previous parts, we presented our federation
approach based on role modeling supported by the
Role4All framework. In this part, we exemplify our
approach through the modeling space of the cyber
threat analysis use case. As defined previously, cy-
ber threat analysis requires several viewpoints to take
into account the system modeling, vulnerability de-
scription and the attacker modeling.

Each viewpoint is defined by a dedicated DSML
and applied to a precise domain. In this context, a
model federation approach is required to create an at-
tacker viewpoint, which represents the attacker’s cur-
rent view of the real system throughout the scenario.

This attacker viewpoint emphasizes the main pur-
pose of the role modeling by creating a semantic
viewpoint of several source DSMLs. Based on this

1Pharo Distribution (http://pharo.org)

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

78

Figure 4: Conceptual view of the federation framework.

modeling infrastructure, we illustrate three main fea-
tures of our federation approach:
• How to gather information from several DSMLs to
create a common and shared semantics ?
• How this shared semantics is used to notify and up-
date the DSML syntax elements ?
• How to dynamically update this shared semantics ?
This is one of the foundation features of role modeling
and federation approaches.

To obtain representative models of the cyber threat
analysis, several sources exist, from bibliographic de-
scriptions (Holik et al., 2014) to penetration testing
techniques on the real system. Another way is to use
an isolated virtual platform2 and experiment sophisti-
cated cyber attack scenarios in this sandbox environ-
ment. This flexible way provides the capacity to ex-
periment several strategies and create quick iterations
between modeling and experiments, in order to obtain
the most representative models.

In this context, models and simulation focus on
a system level and on entity behaviors, to overlook
low level constraints and activities such as penetra-
tion testing. However, to be representative, a sophisti-
cated cyber attack scenario is held as the reference on
which the system is modeled , with all the associated
features (configuration and vulnerabilities), and also
the attacker skills required to perform the scenario.

This scenario is performed on a networked sys-
tem (Figure 3) including three parts: the attacker’s
computer, the Internet and the target local network
which embodies most company architectures with a
web server and a local network.

In the network figure, the Kali machine symbol-
izes the attacker’s computer, the Internet is abstracted
by a switch, connecting the Kali machine to the local
network. The target local network consists of three

2HNS Platform (https://www.hns-platform.com)

subnets, all protected by the same firewall. The cyber
threat analysis includes a risk analysis emphasizing
that the active directory is a critical resource due to
the contained access accounts (login and password).

In the virtual environment, the attack scenario in-
cludes three main steps:
• Identifying vulnerabilities of the web server by us-
ing first the nmap command to localize the web server
and wpscan to identify vulnerabilities in the Word-
Press framework deployed on the web server.
• Using a vulnerability to take control of the machine
by privilege elevation with the metasploit program to
execute the payload cowroot malware.
• Inside the local network the active directory admin-
istrator is targeted and his access account is obtained
by a Trojan horse.

This experimental approach to perform this sce-
nario on the virtualized system is close to reality.
However, we need to test enough scenarios to be rel-
evant and this task is time consuming and requires
competencies, on several levels of abstraction: net-
work, operating system, applications.

Our approach is to provide a modeling framework
on this use case to simulate the scenario based on the
federated models. The expected benefit is to exper-
iment and analyze several system configurations and
several scenarios according to different attacker com-
petencies. In the next section, we present the model-
ing space and the federated approach, both illustrated
relative to this use case.

5.2 Federation through Role4All Role
Models

As presented previously, we federate several DSMLs
through a common semantics. This common seman-
tics defines the attacker viewpoint and enables DSML

Model Federation based on Role Modeling

79

Figure 5: Federation Role Model.

model access without any model copy or transforma-
tion. The common semantics is supported by the be-
havioral properties of the roles as illustrated in Figure
4. This conceptual view shows the common seman-
tics in the center (i.e the roles of the attacker view-
point), and around it, accessed models via the behav-
ioral properties of the roles.

Figure 4 represents the relationships between In-
formationElementRole, a Role of the attacker view-
point (detailed in Section 5.2.1), and the different
DSMLs. The different DSMLs are PimCa for the
system model, a vulnerability DSML based on a sub-
set of the NVD data structure, a DSML for the sys-
tem configuration and an attacker competency DSML
based on CVSS.

The InformationElementRole references three
types of Role, VulnerabilityRole (to select all the vul-
nerabilities for a specific configuration exploitable by
a relevant attacker), the ConfigurationRole (to define
the configuration of the system entities) and the Com-
pRole (to define the attacker competencies)

So this role model illustrates a semantic definition
applied to a set of DSML concepts to provide a dedi-
cated behavioral meaning.

In the rest of this section, we focus on the federa-
tion mechanisms used in Role4All to:
• Create a common and shared semantics.
• Use and dynamically update this semantics.

5.2.1 Definition of the Common and Shared
Semantics

Regarding the Role4All metamodel, the relation-
ship containerRoles-containedRoles on the Role class
specifies that any role can reference a collection of
roles, see Figure 1. This relationship between roles is
not explicitly reified by a metaclass in the metamodel.
So the role model does not contain relationship defini-
tion between Roles as we illustrate in Figure 5. This
feature provides extreme flexibility because the role
model states only the Role definitions individually
and the role instantiation schema (Figure 6) provides
relationships between roles. Two main advantages are

underlined: first these relationships can be changed
throughout the federation runtime to evolve and thus
conform to the evolution of the attacker viewpoint of
the system, in our example. Secondly, any role can be
moved from a containerRole to another without any
constraints except those of the domain.

The attacker role model contains two main Roles
allowing the system elements to be interpreted: first,
the elements that contain relevant information regard-
ing the attacker goals (the attacker must control or
corrupt these elements) and second, the elements that
produce a service in the system (the attacker must use
or bypass these elements). These Roles are Infor-
mationElementRole and ServiceElementRole. Three
other Roles are defined to access subsets of DSMLs,
presented in Figure 5. These five Roles are:
• InformationElementRole: This Role specifies a se-
mantics for a subset of the PimCa DSML and contains
three roles to access the other DSMLs for the config-
uration elements, the attacker competencies and vul-
nerabilities.
• ServiceElementRole: This Role provides another
viewpoint of the PimCa DSML to view the topology
elements which provide a service which can be used
or bypassed by the attacker. These elements are nec-
essary but they are not part of final the goal. Thus,
the PimCa elements could be viewed as an Informa-
tionElementRole or ServiceElementRole according to
the knowledge and perception of the attacker.
• ConfigurationRole: This Role mainly provides the
application name and version on the topology ele-
ments of role type InformationElementRole or Ser-
viceElementRole.
• CompRole: This Role specifies the attacker’s com-
petencies, such as to take into account the use of ex-
isting malware (via metasploit, for example) or the
development a new malware.
• VulnerabilityRole: This Role specifies the possible
vulnerability viewpoint relative to the current element
configuration and the attacker’s competencies. This
Role selects the vulnerabilities by applying a filter
(composed of configuration and attacker competen-
cies) because typically the NVD data base is too huge
and detailed. The viewpoint selects only the relevant
vulnerability features to reach the targeted scenario.

With our role model, the instantiation process can
create one instance of InformationElementRole as a
containerRole and one instance of each Configura-
tionRole, CompRole and VulnerabilityRole which are
as containedRoles, see Figure 6.

Conforming to the Role4All metamodel, each role
has behavioral methods to federate model data from
the DSMLs and each model element is a player.
For example, the method getVulnerabilities (shown in

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

80

Figure 6: Instantiation schema of a container and its con-
tained roles.

Figure 4) provides the behavior to select the vulner-
abilities regarding the current configuration and the
attacker competencies.

In the following parts we exemplify the usage of
the behavioral methods of shared semantics.

5.2.2 Usage and Dynamic Update of the Shared
Semantics

To focus on the use of the shared semantics, we ex-
emplify the gathering of vulnerabilities on an ex-
ploitable element targeted by the attacker. Thanks to
the behavioral method getVulnerabilities of Informa-
tionElementRole, we gather model data from the con-
figuration, the attacker competencies and the vulner-
ability DSMLs. Finally, this method selects and re-
turns all the exploitable vulnerabilities relative to the
InformationElementRole instance.

In our example, Figure 7, we take an instance
of InformationElementRole called webServer. Web-
Server corresponds to the federation of a PimCa ma-
chinery instance called ”pimcaWebServer”, a dedi-
cated configuration defining WordPress version 4.6.1
and Symposium version 14.11, and attacker compe-
tencies with a network access and without authentica-
tion privilege like in Figure 4.

The instantiation schema, illustrated in Figure 6,
provides a webServer as a containerRole and three
instances: webServerConfigWP, webServerConfigSP
and webServerAttack as containedRoles.

To accomplish a simulation step, the simulator
must request the message getVulnerabilities. This
simulator DSL is based on a dedicated set of roles
and on an interactive approach. Without an in-depth
presentation of this simulator, we consider here that
this environment requests the federation and waits for
a response from the role model with or without infor-
mation from the DSMLs.

So the request of getVulnerabilities by the simula-
tor, triggers the behavior of the federation in several
steps, illustrated in Figure 7 and presented below:

Figure 7: Federation mechanism details for information
gathering and updating role model.

1 The simulator triggers the behavior method
getVulnerabilities on the containerRole, web-
Server. This method requires arguments: a con-
figuration and attacker’s competencies. So web-
Server must request this information from its
containedRoles.

2 The containerRole requests all the containe-
dRoles, and especially webServerConfigWP and
webServerConfigSP about the configuration of
webServer and webServerAttack about the at-
tacker’s competencies.

3 WebServerConfigWP, webServerConfigSP and
webServerAttack are linked to their player, i.e
the model elements of the DSMLs. Conforming
to the metamodel, the PlayRelation and Adapter
instances collect the data from the players.

4 WebServerConfigWP, webServerConfigSP and
webServerAttack send the requested information
to webServer. Then the containerRole calls the
method getVulnerabilities with arguments result-
ing of the collected information.

5 The method getVulnerabilities generates an in-
stance of VulnerabilityRole contained by web-
Server, called webServerVuln1.

6 WebServerVuln1 triggers the method collectVul-
nerabilities. This method requires the same ar-
guments as getVulnerabilities and generates in-
stances of VulnerabilityRole. This method se-
lects all the existing vulnerabilities for the web-
Server configuration which are exploitable by
the attacker. For each selected vulnerability, an
instance of VulnerabilityRole is created with a
sub-set of the features from NVD vulnerability
database. In our example webServer has three
selected vulnerabilities, so we generate three in-
stances of VulnerabilityRole to update the role
model with the vulnerabilities.

7 Each instance of VulnerabilityRole sends the vul-

Model Federation based on Role Modeling

81

nerability content to webServer.

8 Then the containerRole returns all the federated
VulnerabilityRole instances to the simulator.

In our use case, the returned list of vulnerabilities con-
tains the vulnerability CVE-2014-10021. This vulner-
ability allows remote attackers to execute an arbitrary
code by uploading an executable file. Thanks to this
vulnerability, the attacker obtains full access to the
Web server. Thus the attacker has access to the tar-
get local network, and he can obtain the administrator
account of the Active Directory using Trojan horse.

With this example we illustrate the use of the
shared semantics and highlight the relation between
containerRole and containedRole to ensure the infor-
mation gathering and the update of the role model.
The role model is composed of role classes and be-
havioral methods. These methods act on the DSML
elements, the players, to get and set the element prop-
erties without any copy of these elements. The cre-
ation of playRelation at run time (Step 6 of Figure 7)
allows the federation system to be adapted dynami-
cally to the evolution of the players. As a future work
we would like to try a web based implementation sim-
ilar to WebDPF (Rabbi et al., 2016).

6 CONCLUSION

DSML interoperability remains tedious to obtain and
it is traditionally handled by transformations with po-
tential extensions to have bi-directional transforma-
tions. Our claim is that the model federation approach
facilitates the DSML interoperability issue. In this
paper, we demonstrate that role modeling provides
the capacity to define a shared semantics between the
considered DSMLs. The goal of our role modeling
approaches is to act as a semantics viewpoint on the
model elements.

In this approach, the model elements remain in-
dependent of the federated model and no transforma-
tions are applied. The role model is based on behav-
ioral functions to obtain and set model elements with-
out the creation of intermediate model elements. Our
Role4All metamodel is based on a formalization of
the role concept which provides a clear context of our
work. The framework must be extended to take into
account, for example, dedicated connectors to facili-
tate the interaction with classic data formats such as
JSON.

The case study used to illustrate our approach is
really relevant in the sense that cyber threat analy-
sis requires several tools to improve this kind of criti-
cal analyses. The analysis needs to take into account

many data and metadata on a system, correlate these
data and process the resulting federated data. This ex-
ample must be extended to increase the data sources
but it remains a very interesting field of study for the
federation approach.

ACKNOWLEDGEMENTS

This work is accomplished in the context of a PhD
grant from the French Ministry of Armed Forces and
the Brittany Regional Council.

REFERENCES

Alexander, I. (2003). Misuse cases: Use cases with hostile
intent. IEEE software, 20(1):58–66.

Champeau, J., Leilde, V., and Diallo, P. I. (2013). Model
federation in toolchains. In MODELS Companion
Proceedings.

Conti, M., Dargahi, T., and Dehghantanha, A. (2018). Cy-
ber Threat Intelligence: Challenges and Opportuni-
ties, pages 1–6. Springer International Publishing,
Cham.

Elahi, G., Yu, E., and Zannone, N. (2010). A vulnerability-
centric requirements engineering framework: analyz-
ing security attacks, countermeasures, and require-
ments based on vulnerabilities. Requirements engi-
neering, 15(1):41–62.

Gottlob, G., Schrefl, M., and Röck, B. (1996). Extending
object-oriented systems with roles. ACM Transactions
on Information Systems (TOIS), 14(3):268–296.

Guychard, C., Guerin, S., Koudri, A., Beugnard, A.,
and Dagnat, F. (2013). Conceptual interoperability
through models federation. In Semantic Information
Federation Community Workshop.

Hemery, D. (2015). PimCa: Définition du langage. Techni-
cal report, DGA Maitrise de l’Information.

Holik, F., Horalek, J., Marik, O., Neradova, S., and Zitta, S.
(2014). Effective penetration testing with Metasploit
framework and methodologies. In 2014 IEEE 15th In-
ternational Symposium on Computational Intelligence
and Informatics (CINTI), pages 237–242. IEEE.

Kühn, T., Böhme, S., Götz, S., and Aßmann, U. (2015).
A combined formal model for relational context-
dependent roles. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Lan-
guage Engineering, pages 113–124. ACM.

Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., and Aß-
mann, U. (2014). A metamodel family for role-based
modeling and programming languages. In Interna-
tional Conference on Software Language Engineer-
ing, pages 141–160. Springer.

Lee, W.-S., Grosh, D. L., Tillman, F. A., and Lie, C. H.
(1985). Fault tree analysis, methods, and applica-
tions - a review. IEEE transactions on reliability,
34(3):194–203.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

82

Li, Q. and Chen, Y.-L. (2009). Data flow diagram. In Mod-
eling and Analysis of Enterprise and Information Sys-
tems, pages 85–97. Springer.

Mauw, S. and Oostdijk, M. (2005). Foundations of attack
trees. In Proceedings of the 8th international confer-
ence on Information Security and Cryptology, pages
186–198. Springer-Verlag.

Mell, P., Scarfone, K., and Romanosky, S. (2006). Com-
mon vulnerability scoring system. IEEE Security &
Privacy, 4(6).

Myagmar, S., Lee, A. J., and Yurcik, W. (2005). Threat
modeling as a basis for security requirements. In Sym-
posium on requirements engineering for information
security (SREIS), volume 2005, pages 1–8. Citeseer.

Niemoller, J., Mokrushin, L., Vandikas, K., Avesand, S.,
and Angelin, L. (2013). Model federation and proba-
bilistic analysis for advanced OSS and BSS. In Next
Generation Mobile Apps, Services and Technologies
(NGMAST), 2013 Seventh International Conference
on, pages 122–129. IEEE.

Pauli, J. and Xu, D. (2005). Threat-driven architectural de-
sign of secure information systems. In Proceeding of
First International Workshop on Protection by Adap-
tation PBA 2005, Miami.

Rabbi, F., Lamo, Y., Yu, I. C., and Kristensen, L. M.
(2016). Webdpf: A web-based metamodelling and
model transformation environment. In Model-Driven
Engineering and Software Development (MODEL-
SWARD), 2016 4th International Conference on,
pages 87–98. IEEE.

Rio, M. (2012). A l’interface de l’ingénierie et de
l’analyse environnementale, fédération pour une éco-
conception proactive. PhD thesis, Université de Tech-
nologie de Troyes.

Schneider, F. B. (1999). Trust in cyberspace. National
Academy Press Washington, DC.

Schneider, J.-P., Champeau, J., Teodorov, C., Senn, E.,
and Lagadec, L. (2015). A role language to inter-
pret multi-formalism system of systems models. In
9th Annual IEEE International Systems Conference
(SysCon), pages 200–205. IEEE.

Seifert, M., Wende, C., and Aßmann, U. (2010). Anticipat-
ing unanticipated tool interoperability using role mod-
els. In Proceedings of the First International Work-
shop on Model-Driven Interoperability, pages 52–60.
ACM.

Shostack, A. (2014). Threat modeling: Designing for secu-
rity. John Wiley & Sons.

Steimann, F. (2000). On the representation of roles in
object-oriented and conceptual modelling. Data &
Knowledge Engineering, 35(1):83–106.

Wende, C., Thieme, N., and Zschaler, S. (2009). A role-
based approach towards modular language engineer-
ing. In International Conference on Software Lan-
guage Engineering, pages 254–273. Springer.

Zhang, S., Caragea, D., and Ou, X. (2011). An empiri-
cal study on using the national vulnerability database
to predict software vulnerabilities. In International
Conference on Database and Expert Systems Appli-
cations, pages 217–231. Springer.

Model Federation based on Role Modeling

83

