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This paper presents an approach to upsampling point cloud sequences captured through a wide baseline camera

setup in a spatio-temporally consistent manner. The system uses edge-aware scene flow to understand the
movement of 3D points across a free-viewpoint video scene to impose temporal consistency. In addition
to geometric upsampling, a Hausdorff distance quality metric is used to filter noise and further improve the
density of each point cloud. Results show that the system produces temporally consistent point clouds, not
only reducing errors and noise but also recovering details that were lost in frame-by-frame dense point cloud
reconstruction. The system has been successfully tested in sequences that have been captured via both static

or handheld cameras.

1 INTRODUCTION

Recent years have seen a spike in interest towards vir-
tual/augmented reality (VR/AR), especially at consu-
mer level. The combined maturity and affordability is
reducing the barrier to entry for content creators and
enthusiasts alike. As a result, it has become largely
apparent that there is a need to close the content cre-
ation gap, specifically with respect to the capture and
reconstruction of live scenes and performances.

Free-viewpoint video (FVV) technology provides
the necessary tools for creators to capture and dis-
play real-world dynamic scenes. Current state-of-
the-art systems usually feature large arrays of high-
resolution RGB cameras and IR depth sensors in a
professional studio environment (Collet et al., 2015;
Liu et al., 2010). These systems normally operate
on a frame-by-frame basis, where they compute a
dense point cloud using different multi-view stereo
(MVS) techniques. With such high-density camera
configurations, temporal inconsistencies in the 3D re-
constructions are less conspicuous. However, these
systems are likely to be inaccessible to low-budget
productions and independent content creators. New
approaches are emerging that enable FVV capture
using wide-baseline camera setups that include only
consumer-grade cameras, some of which can even
be handheld (Pagés et al., 2018). However, frame-
by-frame reconstructions (Mustafa et al., 2015) of-
ten include temporal artifacts in the sequence. This
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is most often due to common fail case scenarios for
photogrammetry-based systems such as a lack of tex-
ture information or attempting to reconstruct non-
lambertian surfaces. In the absence of any spatio-
temporal constraints, it can be observed that sa-
lient geometric features can become distorted and
temporally incoherent across FVV sequences. Fi-
gure 1 demonstrates such an example as frame-wise
reconstruction suffers a loss of geometric informa-
tion where the reconstruction system failed to identify
enough feature points to guarantee an accurate recon-
struction, specifically in extremities such as hands and
feet. Temporal inconsistencies can also be observed
between frames in the form of structured noise pat-
ches and holes in the model.

We propose a system that both, upsamples low
density point clouds, and also enforces a temporal
constraint which encourages the selective recovery of
lost geometric information. They key contributions of
our work can be summarised as follows:

e A spatio-temporal consistency system for point
cloud sequences that coherently merges consecu-
tive point clouds, based on estimation of the Edge
Aware Scene Flow on the original wide-baseline
images.

e A self regulating noise filter based on a Hausdorff
distance quality metric as the conditioning crite-
rion of the coherent mesh.

As a baseline for improvement we compare this
proposed method to temporally-incoherent alternati-
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Figure 1: Four frames from a typical FVV sequence. These
unprocessed results show inconsistencies and noise due to
occlusions, fast-moving elements and sparse feature de-
tection. Some temporally-inconsistent structured noise pat-
ches can be observed also. Our system implements spatio-
temporal consistency which aims to remove the majority of
structured noise patches as well as recovering some lost ge-
ometry leading to a more temporally coherent result.

ves whereby point cloud densification is achieved so-
lely by geometric upsampling.

2 RELATED WORK

Spatio-temporal consistency has been widely addres-
sed by modern FVV systems and dynamic recon-
struction algorithms. The addition of this consistency
ensures the reconstruction of smooth and realistic se-
quences with minimal temporal artifacts. However,
most techniques apply a registration-based temporal
constraint to the final 3D meshes, and not in the early
processing stages (Huang et al., 2014; Klaudiny et al.,
2012). These techniques normally use some varia-
tion of non-rigid ICP (Li et al., 2009; Zollhofer et al.,
2014), such as the coherent drift point algorithm (My-
ronenko and Song, 2010). An example of this has
been demonstrated in the work by Collet et al. (Col-
let et al., 2015): they apply mesh tracking in the final
processing stage, not only to provide a smoother FVV
sequence but also to improve data storage efficiency
as, between keyframes, only the vertex positions vary
while face indices and texture coordinates remain the
same. However, they do not apply temporal cohe-
rence in any other stage of the process, mainly be-
cause their system uses 106 cameras (both RGB and
IR) in a studio environment and the resulting dense
point clouds are very accurate on a frame-to-frame
basis. Another technique has been proposed by Mus-
tafa el al. (Mustafa et al., 2016), where they ensure
temporal coherence of the FVV sequence by using
sparse temporal dynamic feature tracking, as an ini-
tial stage, and also in the dense model, using a shape
constraint based on geodesic star convexity. However,
these temporal features are used to initialize a con-
straint which refines the alpha masks used in visual-
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hull carving and are not directly applied to the input
point cloud. The accuracy of these methods are again,
highly influenced by the density of viewpoints and ba-
seline width. Furthermore, this constraint is applied
at a refinement stage and so the initial point cloud is
still temporally unrefined before the poisson mesh has
been generated. Other techniques address temporal
coherence by trying to find an understanding of the
scene flow to recover not only motion, but also depth.
Examples of this are the works by Basha et al. (Basha
et al., 2013) and Wedel et al. (Wedel et al., 2011).
However, these techniques require a very precise and
dense motion estimation for almost every pixel in or-
der to acquire accurate depth maps and cameras confi-
gured with a very narrow baseline. In our system, we
use the temporally consistent flow proposed by Lang
et al. (Lang et al., 2012) which we apply to multi-view
sequences, allowing us to track dense point clouds
across the sequence even when we use cameras with
a wide baseline. While not specifically targeting FVV
systems, there is a well-established state of the art
for improving general 3D reconstruction accuracy via
point cloud upsampling or densification (Huang et al.,
2013; Wu et al., 2015; Yu et al., 2018). However,
given that these systems are designed to perform ups-
ampling for a single input point cloud, they are unable
to leverage any of the temporal information within a
given sequence of point clouds. As a result, the use
of such techniques alone will still suffer from tem-
porally incoherent noise. Our system takes advan-
tage of the geometric accuracy of the state of the art
Edge-Aware Point Set Resampling technique propo-
sed by Huang et al. (Huang et al., 2013) and sup-
ports it using the temporal information obtained from
the inferred 3D scene flow along with some spatio-
temporal noise filtering. This is performed with the
rationale that increasing the density of coherent points
improves the accuracy of point cloud meshing proces-
ses such as Poisson Surface Reconstruction (Kazhdan
and Hoppe, 2013).

3 METHODOLOGY

3.1 Point Cloud Reconstruction &
Edge-Aware Upsampling

The input to our system is a temporally-incoherent
FVYV point cloud sequence captured using an affor-
dable FVV pipeline similar to the system proposed
by (Pagés et al., 2018). The target scene is captured
across a setup of multi-view videos spanning wide
baselines with known camera intrinsics. Extrinsics
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Figure 2: Temporally-Coherent upsampling and filtering: system overview. The system input is the framewise-independent
point cloud sequence as well as the RGB images and calibration parameters used to generate it. The system upsamples the
input point cloud for a given timeframe j, then calculates the edge-aware scene flow to project the upsampled cloud into
timeframe j+ 1. The final output is the result of a temporally-coherent merging and filtering process which retains upsampled
geometric information from the previous frame as well as pertinent data from following frame.

are automatically calibrated using sparse feature ma-
tching and incremental Structure from Motion (Mou-
lon et al., 2012). When the cameras are handheld, ot-
her more advanced techniques such as CoOSLAM (Zou
and Tan, 2013), can be used to estimate their position
and rotation. At every frame, a point cloud is initi-
ally calculated using structure from motion and den-
sified using multi-view stereo. For instance, the ex-
amples shown in this paper use a denser sparse point
cloud estimation proposed by Berjon et al. (Berjon
et al., 2016), which is later densified even further
using the unstructured MVS technique proposed by
Schonberger et al. (Schonberger et al., 2016). For-
mally, we define S = {s;—1,...,5»} as the set of all
m video sequences, where s;(j), j € {1,...,J} deno-
tes the jth frame of a video sequence s; € S, with J
frames. Then for every frame j, there will be an es-
timated point cloud ?;. In a single iteration, %; is
taken as the input cloud which is upsampled using
Edge-Aware Resampling (EAR) (Huang et al., 2013).
This initializes the geometry recovery process with a
densified point cloud prior which will be temporally
projected into the next time frame j+ 1 and geometri-
cally filtered to ensure both temporal and spatial cohe-
rence. Figure 2 presents an overview of the proposed
pipeline following the acquisition process in which
we present our temporally-coherent filtering and ups-
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ampling algorithm.

3.2 Spatio-Temporal Edge-Aware Scene
Flow

We use a pseudo scene flow in order to project as
much pertinent geometry from the previous frame as
possible. In the context of the proposed system, scene
flow is defined as an extension of 2D optical flow to
include depth information and provide a framework
for tracking point clouds in 3D. Dense scene flow in-
formation is generated by computing the 2D optical
flow for each input video, thus, for every sequence s;
we compute its corresponding scene flow f;. This ap-
proach of accumulating multiple 2D flows ensures a
robustness to wide-baseline input in as each input is
calculated independently.

To retain edge-aware accuracy and reduce additive
noise we have chosen a dense optical flow pipeline
that guarantees spatio-temporal accuracy:

e Initial dense optical flow is calculated from the
RGB input frames using the Coarse to fine Pa-
tch Match(CPM) approach described in (Hu et al.,
2016).

e The dense optical flow is then refined using a
spatio-temporal edge aware filter based on the
Domain Transfer (Lang et al., 2012).



Table 1: Effect of STEA filter initialization on geometry
recovered expressed as % increase in points. Tested on
a synthetic ground-truth sequence. Flow algorithms tes-
ted: Coarse-to-Fine Patch Match (CPM) (Hu et al., 2016),
Fast Edge-Preserving Patch Match (FEPPM) (Bao et al.,
2014), Pyramidial Lukas-Kanade (PyLK) (Bouguet, 2001)
and Gunnar-Farnebick (FB) (Farnebick, 2003).

STEA Initialization Area Increase (%)

CPM 37.73
FEPPM 349
PyLK 34.77
FB 29.7

The CPM optical flow is used to initialize a spatio-
temporal edge aware (STEA) filter which regularizes
the flow across a video sequence, further improving
edge-preservation and noise reduction.

While the STEA can be initialized with most
dense optical flow techniques such as the popular
Gunnar-Farnebick algorithm (Farnebick, 2003), the
given initialization is less sensitive to temporal noise
and emphasizes edge-aware constraints at input, thus
producing more coherent results. We analysed other
approaches from the state-of-the-art and concluded
that they lack global regularization, edge-preservation
or are sensitive to large displacement motion. Table 1
demonstrates how initializing the filter with different
flow algorithms affects the geometry recovered by the
proposed algorithm.

The STEA filter is implemented as in (Lang et al.,
2012) which features an extension to the Domain
Transform (Gastal and Oliveira, 2011) in the spatial
and temporal domains using optical flow as a primary
application:

1. The filter is initialized as suggested in (Schaffner
et al., 2018), using coarse-to-fine patch match (Hu
et al., 2016). The CPM algorithm estimates opti-
cal flow as a quasi-dense nearest neighbour field
(NNF) using a subsampled grid.

2. The edges of the RGB input are then calcula-
ted using the Structure Edge Detection Toolbox
(Dollar and Zitnick, 2013).

3. Using the calculated edges, the dense optical flow
is then interpolated using Edge-Preserving In-
terpolation of Correspondences (Revaud et al.,
2015).

The interpolated dense optical flow is then fed into the
STEA filter as an optical flow video sequence where
it is filtered in multiple passes through the spatial and
temporal domains to reduce temporal inconsistencies
and improve edge fidelity. An example of the STEA
processing pipeline can be seen illustrated in Figure 3.
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Figure 3: Pictured left to right, the STEA flow processing
pipeline: input RGB image from a given viewpoint, (1)
CPM nearest neighbour field estimate, (2) SED detected
edges, (3) interpolated dense STEA output. Conventional
colour coding has been used to illustrate the orientation and
intensity of the optical flow vectors. Orientation is indicated
by means of hue while vector magnitude is proportional to
the saturation i.e. negligible motion is represented by white,
high-speed motion is shown in highly saturated color.

3.3 Point Cloud Motion Estimation

Knowing the camera parameters (Cj,,...,C;,,, at the
Jjth frame), the set of scene flows (fj,,...,fj,), and
the set of point clouds (%},...,%;), we can predict
how a certain point cloud moves across the sequence.
For this, we back-project every point P; € P; to each
flow f; at that specific frame j. To avoid the back-
projection of occluded points, we check the sign of
the dot product between the camera pointing vector
and the normal of the point Pj. Using the flow, we can
predict the position of the back-projected 2D points
pix in sequential frames, p/,.

Therefore, the predicted point cloud IP;, at frame
j—+ 1, is the result of triangulating the set of predicted
2D points p);, using the camera parameters of frame
Jj+ 1. This is done by solving a set of overdetermined
homogeneous systems in the form of HP) = 0, where
P, is the estimated 3D point and matrix H is defined
by the Direct Linear Transformation algorithm (Hart-
ley and Zisserman, 2004). The resulting point un-
dergoes a Gauss-Markov weighted non-linear optimi-
sation which minimises the reprojection error (Luh-
mann et al., 2007).

3.4 Geometry-based Filtering &
Reconstruction

The last step of the proposed system involves per-
forming a coherent merging of the predicted point
cloud and the target frame. This coherent merge uses
a Hausdorff distance-based quality metric to allow
neighbouring geometry to persist and deform natu-
rally whilst also removing noise in an adaptive man-
ner. The Hausdorff distance threshold is computed
as the average resolution of the predicted and tar-
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Figure 4: A visual representation of the coherent merge
process. Pictured is the result of merging the predicted
point cloud (left) with the target cloud (middle) . All points
are color-coded with respect to the distance between their
nearest-neighbour match in the other cloud. Points labelled
hihger than the threshold for the given frame will be remo-
ved from the merged result.

get point clouds reduced by one order of magnitude.
This constrains the threshold to be set at some small
distance relative to the point cloud resolution which
ensures that only pertinent points remain. Formally,
d; is the Hausdorff distance threshold between the
flow-predicted point cloud £P]’» and the target sequen-
tial point cloud P; .

The coherent merged cloud iP;‘Jrl is given by the
logical definition in equation 1.

Given an ordered array of values DTJ( such that

D4 is the distance from point 2;(k)’ to its indexed
J

match in P;,;. We also define Dy, as an array of

distances in the direction of ?;, to 2. We then de-

fine the merged cloud to be the union of two subsets
M C P;and T C P4 such that,

M C P}V Pi(k) : Dy < dj ke{1...j},

TC‘.Pj+1V?j+1(k) : D?jﬂ(k) < dj, kE{l]},

Py =MUT
1

By this definition, EPJ’»‘ 1 contains only the points

in Pj; and ?j’. whose distance to their nearest neig-
hbour in the other point cloud is less than the com-
puted threshold d;. The intention of this design is
effectively to remove any large outliers and incohe-
rent points while encouraging consistent and impro-
ved point density. Figure 4 shows an example of how

the coherent merge works.
3.5 Dynamic Object Point Validation

The result of the coherent merge, described in
Section 3.4, are the points upon which the input
cloud and the projected cloud agree. While this co-
dependence is well-suited to filtering noise, it fails
to recover pertinent geometry that doesn’t happen to
reside within the distance threshold. In particular,
faster-moving objects tend to be trimmed as the over-
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Figure 5: Filtered point clouds from two sequences, one
extracted from hand held cameras in outdoor setting (left)
and the other captured in a green screen studio (right). Both
show a comparison between the point cloud extracted from
framewise reconstruction (a), and the filtered results (b).

lap between frames can be small. To further im-
prove the recovery of geometry we added a valida-
tion process which considers a confidence value for
projected points in #}. Given that 7} is a prediction
for frame j+ 1, we validate each predicted point by
back-projecting ij’. into the respective scene flow fra-
mes for time j+ 1. The average magnitude of the
optical flow vectors for each view of the given point
is then used as a confidence value for that point. In
this way, points for which a high flow magnitude ex-
ists in the sequential frame can be considered dynami-
cally tracked. A confidence value proportional to the
average scene flow magnitude is applied as a weight
to adaptively adjust the distance threshold d; for dyn-
amically tracked points. This allows for the retention
of pertinent, fast-moving geometry without hindering
the performance of the noise filter.

4 RESULTS

Figure 5 shows a direct comparison between two fra-
mes from two typical yet challenging FVV sequences.
The performance of the system was evaluated qualita-
tively on sequences captured outdoors using handheld
devices (i.e. phone and tablet device cameras) and on
sequences captured in a modest green screen studio
using 12 mounted (6 full HD and 6 4K) cameras. A
synthetic sequence was used to evaluate the results on
a quantitative basis. This sequence consists of a digi-
tally created character placed in a virtual environment
with simulated cameras.

4.1 Outdoor Handheld Camera
Sequences

Unique challenges arise from filtering point clouds
extracted from unstable cameras with a non-uniform
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Figure 6: A selection of frames from a handheld outdoor
sequence. The RGB input from a single camera (top),
the result of poisson reconstruction on raw input (middle),
the result of poisson reconstruction on proposed method
(bottom).

and dynamic background. Errors in the camera ex-
trinsics, differences in colour balance, and irregular
lighting conditions result in reconstruction errors: in-
consistency in the frame-by-frame reconstruction and
a significant amount of noise. An example of this is
shown in Figure 5 (left model): the figure shows the
difference between using framewise reconstruction
(a) and our method (b). As can be seen, large holes
in the subject have been filled and most of the un-
desirable noise has been filtered. However, while the
Hausdorff quality metric is able to remove most of the
noise, the system is still sensitive to structured noise
patches, typical of MVS reconstruction inaccuracies.

Figure 6 shows four non-consecutive frames for
another outdoor sequence shot on the same location.
In the top row, the input images from one of the hand-
held cameras. The second and third rows demon-
strate the result of applying Screened Poisson Recon-
struction (PSR) (Kazhdan and Hoppe, 2013) to the
resulting point clouds. The meshes shown are the re-
sult of sampling the initial PSR-generated mesh with
the input point cloud to remove outlier vertices. As a
result, holes in the input point cloud become apparent
in the resulting mesh. This figure demonstrates the ef-
fect of coherent point cloud upsampling on reducing
the perforations in the mesh.
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4.2 Indoor Studio Sequences

The use of stabilized, high resolution cameras in a
green screen studio brings many advantages to filte-
ring the reconstruction such as more accurate flow in-
formation and far less temporal noise. In order to add
an extra degree of challenge to this sequence an ad-
ditional and fast-moving dynamic object has been ad-
ded to the scene by having the subject volley a soccer
ball. While this setup enables the estimation of com-
pelling dense point clouds, the relatively sparse ca-
mera array still suffers from occlusions, as demon-
strated when the ball crosses in front of the subject
(Figure 5, right model). Despite this, it can be seen
that similar to outdoor sequences, large portions of
the subject have been recovered while retaining the
fast-moving football.

4.3 Synthetic Data Sequences

In order to conduct a ground-truth analysis we have
performed an evaluation of our system using a synt-
hetic dataset. The dataset consists of a short 25 frame
sequence in which a digitally created human per-
forms some dynamic motion against an otherwise sta-
tic background. In this dataset, 12 camera views ar-
ranged in a 180° arc, with known parameters, have
been synthesized to provide the input multi-view vi-
deo sequences. We compare the result of our system
with the results of framewise reconstructions by mes-
hing the output point clouds using PSR and calcula-
ting their Hausdorff distance with respect to the ori-
ginal model. Figure 9 illustrates the error heatmap of
the reconstructed mesh in the absence of point cloud
processing and following the proposed temporally-
coherent system. It can be seen that the proposed
coherent upsampling approach manages to recover
accurate geometry that would be otherwise missing
for the same frame.

As a baseline for comparison we have measured
the performance of our system against two framewise
reconstructions, SIFT+PMVS (Furukawa and Ponce,
2010) and RPS (Pagés et al., 2018) as well as some
state of the art upsampling algorithms using the RPS
method as input; PU-Net (Yu et al., 2018) and the
Edge-Aware Resampling (Huang et al., 2013) met-
hod. The comparison with RPS+EAR also functions
as an ablation study as this is used as the initializer for
the proposed system.

The results of Table 2 show improvement on the
compared methods but may also be hindered by the
synthetic nature of the test data. This is, in part, due to
the lack of natural noise that one would expect for the
equivalent real-world application. In such a scenario
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SIFT+PMVS RPS

Figure 7: Results of applying PSR to resulting pointclouds. PSR is first applied and then the input cloud is used to clean the
resulting mesh by removing faces which exceed a given distance to any input vertices. All inputs were processed using the
same octree depth and distance threshold for cleaning.

Figure 8: A selection of the images used to generate synthe-
tic data for a ground-truth analysis of the fvv reconstruction
system.

where more temporally-incoherent structured noise is
more prominent it would be expected that a further
margin of improvement could be achieved. We have
provided Figure 7 as a qualitative demonstration of
the margin of improvement achievable by the propo-
sed system when applied to noisy scenario. It should
also be noted that while the SIFT+PMVS method de-
monstrates a more complete mesh, it is largely conta-
minated with noisey data as evidenced by the results
of the quantitative study in Table 2.

4.4 Flow Initialization

The STEA filter described in section 3.2 is robust in
that it can be initialized using practically any dense
optical flow algorithm, but in order to retain spatial
accuracy with regards to point projection it requires
an appropriate selection. Table 1 shows the effect of
initialization using the chosen CPM method in com-
parison to popular alternatives. CPM demonstrably
out-performs the chosen alternatives due to its edge-
preserving application. While FEPPM (Bao et al.,
2014) uses an edge-preserving patch match and NNF
approach, cpm improves upon typical NNF field type
matching by adding global regularization.
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Figure 9: Hausdorff distance with respect to the synthetic
model. On the left, using the result of a framewise recon-
struction. On the right, using our system. As the model is
synthetic, the units were scaled with respect to the bounding
box diagonal such that it’s length becomes 150cm.

Table 2: Hausdorff error (mean and root mean square
(RMS)) comparison between reconstruction results and
ground truth synthetic dataset. Figures presented are ex-
pressed as % with respect to bounding box diagonal of the
ground truth.

Method Mean Error(%) RMS Error(%)
SIFT+PMVS 6.18 8.09
RPS 2.17 3.27
RPS + PU-Net 2.44 3.50
RPS + EAR 2.40 3.64
Proposed 1.78 2.72

S CONCLUSIONS

It remains a challenge for amateur and low-budget
productions to produce FVV content on a compara-



ble scale with that of more affluent studios. Wide-
baseline FVV systems are likely to always be more
susceptible to inherent noise in the form of occlusi-
ons and photogrammetry errors. While this noise pre-
sents a difficult obstacle we have shown that it is of-
ten temporally incoherent and so it can be corrected
by enforcing spatio-temporal constraints.

By leveraging the permanence of temporally co-
herent geometry, our system is able to effectively filter
noise while retaining pertinent geometric data which
has been lost on a frame to frame basis. By enforcing
this spatio-temporal consistency we demonstrate the
improvements that our system will have for modern
and future FVV systems alike.

We have shown that our system is suited to filte-
ring point clouds from both studio setups and hand-
held “dynamic camera” outdoor scenes. Although the
effects are most appreciable for dynamic outdoor sce-
nes in which there tends to be much more noise, the
advantage of more accurate flow information demon-
strates visible improvements for indoor, studio-based
sequences also. Some inherent limitations exist in the
amount of noise which can be filtered whilst retaining
important geometry, as is typical of many signal-to-
noise filtering systems. This is particularly evident in
the case of fast moving objects but our system allevia-
tes this problem by using a dense optical flow method
with demonstrably good sensitivity to large displace-
ment as well as our proposed dynamic object tracking
constraint.

In comparison to temporally-naive geometric ups-
ampling approaches we can see that supplying spatio-
temporal information leads to more accurate results
and provides tighter framework for seeding geometric
upsampling processes. This is confirmed by the re-
sults obtained from the synthetic dataset test whereby
the most accurate approach was achieved by spatio-
temporal filtering of an edge-aware upsampled point
cloud.
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