
Improved Forensic Recovery of PKZIP Stream Cipher Passwords

Sein Coray, Iwen Coisel and Ignacio Sanchez
European Commission, Joint Research Centre (DG JRC) - Via Enrico Fermi 2749, 21027 Ispra (VA), Italy

Keywords: Stream Cipher, High Performance Computing, Forensics, Passwords, Cybersecurity, Cryptanalysis.

Abstract: Data archives are often compressed following the PKZIP format and can optionally be encrypted with either
the PKZIP stream cipher or the AES block cipher. In this article, we present new implementations of two
attacks against the PKZIP stream cipher. To our knowledge, this is the first time those attacks have been
demonstrated on Graphical Processing Unit (GPU). Our first implementation is retrieving archive passwords
using the internal state of the PKZIP stream cipher obtained through the known-plaintext attack of Biham and
Kocher. Passwords up to length 14 can be recovered within a month considering a single Nvidia 1080 Ti GPU.
If one hundred of those cards are available, passwords up to length 15 would be recovered in less than 27 days.
The second implementation is a more direct attack designed to retrieve an archive’s password without requiring
any additional knowledge than the ciphertext. Experimental results show that our two implementations are at
least ten times faster than the state of the art. This is an undeniable asset for investigators who may be
particularly interested in further deepening their forensic analysis on an encrypted archive.

1 INTRODUCTION

Digital forensic investigations often come across the
need to access content protected by a password based
authentication mechanism. Forensic investigators
have a variety of techniques at their disposal to ac-
cess such content, usually by retrieving the associated
password. The most common password guessing ap-
proaches are an exhaustive search trying all possible
combinations of characters from a specific alphabet
(e.g. all numbers, letter and special characters) or a
more targeted search exploring most common pass-
words with or without classical modification (e.g. dic-
tionary attack with mangling rules). The available
computational power as well as the speed of the algo-
rithm used to test password candidates heavily limit
the success rate of those attacks. Therefore only short
passwords or predictable ones are generally recovered
in practice. If the algorithm used by the target of the
forensic analysis has a known weakness or vulnera-
bility, it can be sometimes exploited to recover the
target’s password in a more efficient way than an ex-
haustive search over all possible candidates.

The PKZIP standard falls into such category of
vulnerable algorithms as Biham and Kocher (Biham
and Kocher, 1994) have exhibit a known-plaintext at-
tack against the PKZIP stream cipher used to encrypt
the compressed archive. Such attack can retrieve the

internal state of the cipher using the knowledge of at
least 12 bytes of the plaintext. The PKZIP standard
supports nowadays AES encryption, yet, an analy-
sis of the main ZIP encryption software available in
the market reveals that in up to 50% of the cases, the
PKZIP stream cipher remains the default encryption
method for ZIP archives. There is no statistics avail-
able about the usage of one encryption method or the
other, however, we assume that in those tools where it
is set as a default method, the original PKZIP stream
cipher encryption is still heavily used.

In this paper, we present a new implementation
of the known-plaintext attack of Biham and Kocher
(Biham and Kocher, 1994) that takes advantage of
Graphical Processing Units (GPUs) hardware allow-
ing the retrieval of even long passwords (up to 15
characters depending on the available hardware re-
sources) of ZIP archives encrypted using the PKZIP
stream cipher. Furthermore, we also present a novel
GPU implementation that can recover the PKZIP
stream cipher password when no plaintext is known.

It is the first time that such attacks against the
PKZIP steam cipher are implemented for GPU hard-
ware. The obtained benchmark results invalidate
the existing hypothesis1 that GPU implementations

1As discussed in https://hashcat.net/forum/
thread-5709.html and https://github.com/magnumripper/
JohnTheRipper/issues/718

328
Coray, S., Coisel, I. and Sanchez, I.
Improved Forensic Recovery of PKZIP Stream Cipher Passwords.
DOI: 10.5220/0007360503280335
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 328-335
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

would not make a meaningful performance difference
compared to existing CPU implementations due to the
nature of the encryption algorithm. Our experimental
results show that our two implementations are at least
ten times faster than the current implementations.

The rest of the paper is structured as follows. In
Section 2, we describe the PKZIP stream cipher and
review the existing attacks and respective implemen-
tations. Our GPU based implementation to retrieve
the PKZIP stream cipher password from a known in-
ternal state is described in Section 3. In Section 4, we
describe our more generic attack to retrieve the en-
cryption password without any plaintext knowledge.
Finally, we present our conclusions in Section 5.

2 BACKGROUND

PKZIP is a data compression program designed in
1989 by Phil Katz and his company PKWARE mostly
famous for the introduction of the .zip format. In
1993, PKZIP v2.X was released with the introduction
of the DEFLATE algorithm, an efficient lossless data
compression algorithm. Whereas the main objective
of the software is to archive file(s) in a compressed
manner, the archive can optionally be encrypted to
secure the data at rest. As mentioned earlier, several
encryption algorithms are available, yet in this paper
we will only focus on the PKZIP stream cipher that is
described in what follows.

2.1 PKZIP Encryption Format

The PKZIP stream cipher is a symmetric encryption
scheme, where the secret key is required for both en-
cryption and decryption. This key is used to produce
a keystream of bytes for the one-time pad algorithm.

The stream cipher has a 96-bit internal state split
into three 32-bit values denoted key0, key1 and key2.
This internal state is updated every round using a
plaintext byte to produce a single byte of keystream.
Twelve bytes, denoted p1, . . . , p12, are prepended to
the plaintext in a matter of randomization of the pro-
duced keystream. The last (or two lasts for some ver-
sions of PKZIP) of those bytes, called the checksum
byte(s), are dependent of the plaintext and are used as
control bytes to detect wrong decryption (e.g. decryp-
tion process carried out with an incorrect password).

The algorithm producing the keystream byte is de-
scribed in Algorithm 1. The notations used in this
algorithm are the following. pi and ci denote re-
spectively a byte of plaintext and a byte of cipher-
text. P is the complete plaintext (including the twelve

prepended bytes). ⊕ is the exclusive or, | the inclu-
sive or, >> is a right shift and LSB and MSB de-
notes respectively the least and the most significant
byte of a value. The CRC32 used in this algorithm
is the classical cyclic redundancy check code used in
this specific case with the reversed polynomial repre-
sentations 0xEDB88320.

Algorithm 1: Encryption(P, pwd).

initialize internal state(pwd);
for pi ∈ P do

ci = pi⊕ ki;

key(i+1)
0 =CRC32(key(i)0 , pi);

key(i+1)
1 = (key(i)1 +LSB(key(i+1)

0))
∗0x08088405+1;

key(i+1)
2 =CRC32(key(i)2 ,MSB(key(i+1)

1));

temp = key(i+1)
2 |3;

k(i+1) = LSB(temp∗ (temp⊕1)>> 8);

The initialization phase corresponds to the deriva-
tion of the password into the initial state. The three
keys key0, key1, and key2 are respectively set to
0x12345678, 0x23456789 and 0x34567890. The in-
ternal state is then updated with each byte of the pass-
word as it is done with each plaintext byte except
that the keystream byte is not computed. We denote
(key(1)0 ,key(1)1 ,key(1)2) the obtained initial internal state
considered to be the secret key of the stream cipher.

2.2 Related Attacks

Biham and Kocher (Biham and Kocher, 1994) have
designed a known plaintext attack aiming at retrieving
the secret key of the stream cipher. Once in posses-
sion of the internal state, the encrypted archive can be
fully decrypted, as well as any other archive encrypted
with the same password. It requires the knowledge of
some consecutive bytes, at least twelve, of the plain-
text that is encrypted in the archive.

This strong requirement is not that inconceivable
in practice. The filenames contained in the archive are
always accessible even when the archive is encrypted.
If headers of known file types can be extracted or if
known files (e.g. system files) are included into the
archive, this knowledge can be used to perform the
attack. Michael Stay later on softened this knowledge
requirement in his article (Stay, 2001) at a price of
a higher complexity of the attack and/or a minimum
number of files. Jeong et al (Jeong et al., 2011) have
also exploited the presence of several files to reduce
the complexity of the attack of Biham and Kocher.

In all cases, the retrieved internal state does not al-
low the direct recovery of the password that was used
to encrypt the archive. An additional process needs to

Improved Forensic Recovery of PKZIP Stream Cipher Passwords

329

be undertaken to retrieve this password with a com-
plexity of 28(l−6) where l is the length of the pass-
word. This means that if the password has a maxi-
mum of six characters2, it is retrieved instantly.

In case there is no knowledge about the plaintext
inside a zip archive, the only way left to retrieve the
password is by carrying out an exhaustive search over
all possible password candidates. This is done by try-
ing a password, decrypting the data and checking if
the CRC32 checksum for the file matches.

There are multiple tools currently supporting
PKZIP attacks in CPU, for example John The Ripper
(JohntheRipper, 2018) and also proprietary tools like
Passware (Passware, 2017) or ARCHPR (Elcomsoft,
2018). Having only CPU implementations available
puts a limit in the length of the password that is feasi-
ble to recover3. So far, no efforts were done in imple-
menting the algorithm in GPU, as it was hypothesized
that a GPU would not offer a meaningful gain in per-
formance compared to existing implementations4.

3 RETRIEVING THE PASSWORD
FROM THE INTERNAL STATE

This section introduces our high-performance GPU
implementation to recover the password from the in-
ternal state resulting of the known-plaintext attack of
Biham and Kocher (Biham and Kocher, 1994).

3.1 Determining the Internal State

The known-plaintext attack of Biham and Kocher re-
quires the knowledge of n > 12 consecutive bytes of
the plaintext, together with the corresponding cipher-
text. This position does not matter as long as they are
consecutive. Indeed, once the internal state of a given
round is known, it is possible to go backward or for-
ward to decrypt the full archive or retrieve the initial
internal state.We briefly describe the attack below and
refer interested readers to the original article (Biham
and Kocher, 1994) for further details.

The strategy of the attack is to determine a reduced
list of sequences of internal states using the knowl-

2To be correct, we should consider the password in bytes
instead of characters. Therefore, most ZIP encryption soft-
wares only accept ASCII passwords in which each character
is encoded by a single byte.

3E.g. for covering length 7 of the ASCII readable range
(95 chars) it would already need more than three weeks on
a normal CPU.

4As discussed in https://hashcat.net/forum/
thread-5709.html and https://github.com/magnumripper/
JohnTheRipper/issues/718

edge of the plaintext and exploiting the linearity of
most of the functions used in the key update. This list
must be composed so that: i) the correct sequence,
that is the one produced by the correct password, be-
longs to the list, ii) there exists a discriminator allow-
ing to identify it, iii) the list is small enough to be ex-
plored in reasonable time. We will use the following
notations to describe the attack. We will denote the
known plaintext bytes as p1, . . . , pn, the correspond-
ing ciphertext as c1, . . . ,cn and the keystream used to
produce the ciphertext as k1, . . . ,kn. By construction,
the relation ci = ki⊕ pi always hold.

The temp value used in Algorithm 1 is made of
the 16 least significant bits of key2 where the two least
significant ones are forced to one. Consequently, the
keystream byte kn is only determined by 14 bits of
key(n)2 . The function producing this keystream byte
is therefore mapping a space of size 214 to a space
of size 28 as a single byte of keystream is produced
by this function. This function is balanced so each
keystream byte will have exactly 26 = 64 preimages
in the space 214. The 16 most significant bits of
key2 do not influence at all the byte kn, therefore no
information can be guessed on those bits and, con-
sequently, all possible combinations for those bits
should be considered at this stage. The two least sig-
nificant bits are useless, and are ignored for the mo-
ment. To summarize, we have defined a list C con-
taining 222(= 26×216) candidates for key(n)2 .

The CRC32 function can be inverted, thus we can
express key(n−1)

2 as follows.

key(n−1)
2 =CRC32−1(key(n)2 ,MSB(key(n−1)

1)) (1)

A list of 64 possible values for 14 bits of key(n−1)
2

can be determined following the previously described
approach. The 22 most significant bits of the right
part of the equation can be determined for each candi-
date key(n)2 in C as the MSB(key(n−1)

1) only influences
the least significant byte. A single value key(n−1)

2 out
of the 64 possible values will match the correspond-
ing bits of the right part of the equation. Conse-
quently, we can associate to each candidate in C a
value key(n−1)

2 , for which we know 30 bits (22 bits
from the right parts plus the 14 from the keystream
minus the 6 that are in common). We can repeat this
operation for each round until we reach the first one.
We therefore know a list of 222 sequences for the key2

from round 1 to n, denoted abusively {key(1..n)2 } in the
following for clarity reason.

Using the value key(1)2 , we can complete the 2
missing bits of key(2)2 and similarly for other key2 val-

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

330

ues up to round n. Then, from each value key(i)2 , we
can determine MSB(key(i+1)

1) by still using the equa-
tion. The list C is now containing 222 sequences
{MSB(key(3..n)1),key(2..n)2 }.

Given MSB(key(n)1) and MSB(key(n−1)
1) from each

candidate in C and given Equation 2, we can calculate
216 values of key(n)1 increasing the size of C up to 238

sequences of candidates.

(key(n)1 −1) =
key(n−1)

1 +LSB(key(n)0)

0x08088405
(mod 232) (2)

Exploiting Equation 2, we know the 24 most
significant bits of key(n−1)

1 for each candidate in
C . The last byte can be retrieved thanks to
the knowledge of MSB(key(n−2)

1), determining at
the same time the value LSB(key(n)0). We conse-
quently know at this point a list of 238 sequences
{LSB(key(5..n)0),key(4..n)1 ,key(2..n)2 }.

A value key0 can be reconstructed using the least
significant bytes of four consecutive values thanks
to the linearity of the CRC32 function. Such value
can also be determined by its predecessor or succes-
sor when the corresponding plaintext is known. As a
consequence, key(n−3)

0 can be computed for each se-
quence in C . The previous values of key0 can then be
derived from this value and compared with the cor-
responding LSB contained in the sequence. Consid-
ering five of those bytes, it is certain that a fraction
of 2−40 sequences will match. As a consequence, as
long as we have a list containing less than 240, a single
list should be output by this process. In practice, the
list of candidates can be reduced by at least a factor
of 28 because of redundant values, therefore requiring
only 4 bytes of key0 for the matching process.

Once in possession of a single candidate, and
therefore one triplet (key0,key1,key2), the cipher can
be rewind into its initial state. Such state is sufficient
to decrypt completely the archive and any archive that
has been encrypted using the same password.

3.2 Retrieving the Password

Biham and Kocher describe in the original article (Bi-
ham and Kocher, 1994) how to retrieve the password
from the initial internal state of the stream cipher with
a complexity of 28(l−6) where l is the length of the
password allowing the instant recovery of passwords
of length lower or equal to 6. For passwords of length
l > 6, the last l − 6 characters need to be retrieved
with traditional password guessing techniques (i.e.
exhaustive search, dictionary with mangling rules...),

whilst the 6 first characters are determined automati-
cally for each evaluated candidates using construction
properties of the stream cipher.

The step-by-step approach of the attack is summa-
rized in Figure 1 where (key(1)0 ,key(1)1 ,key(1)2) denotes
the initial internal state retrieved by the known plain-
text attack. To simplify the notations, we denote abu-
sively (key(0)0 ,key(0)1 ,key(0)2) (the subscript should be
1− l +6) the internal state that has been obtained by
rewinding the internal state using the l−6 last charac-
ters of the evaluated candidate. This initial step, also
called step 0 later, is for example depicted in Figure
1 where the (key(0)0 ,key(0)1 ,key(0)2) is calculated from

the internal state (key(1)0 ,key(1)1 ,key(1)2) using the last
three letters from the candidate. The following steps
are aiming at retrieving the missing values of the in-
termediate internal states to a point where the first six
characters can be determined for the evaluated can-
didate. The last step of this approach is therefore to
check if the obtained l characters match the known
initial internal state (key(−6)

0 ,key(−6)
1 ,key(−6)

2).

Step 1: key(−1)
1 can be computed using the regular up-

date function of key(0)0 and key(0)1 . We cannot go fur-

ther at this stage as we do not know key(−1)
0 . key(−1)

2

can be computed using key(0)1 and key(0)2 . As we al-
ready know key(−1)

1 we can also compute key(−2)
2 .

Step 2: We do not know the most significant byte of
key(−2)

1 , yet we can determine the three most signifi-
cant bytes of key(−3)

2 and continuing to determine the
two most significant bytes of key(−4)

2 and the most sig-
nificant byte of key(−5)

2 .
Step 3: We can use the partial knowledge of the pre-
vious key2 to determine the most significant byte of
key(−5)

1 to key(−2)
1 . Those bytes are sufficient to com-

pute values key(−5)
2 to key(−3)

2 .
Step 4: This step will reconstruct the missing val-
ues key1 and the lowest significant bytes of the key0.
For this reconstruction, we are using the following
equation derived from the key update algorithm of the
stream cipher, where const = 0x08088405.

MSB

 key(−1)
1 −1

const −1
const

 (3)

= MSB(key(−3)
1)+MSB

(
LSB(key(−1)

0)

const

)
(4)

As we know the most significant byte of key(−3)
1

and we can compute the left part of the equation as
well, we can obtain the second value of the right part
of the equation. We then use a lookup table to check

Improved Forensic Recovery of PKZIP Stream Cipher Passwords

331

Figure 1: Summary of the Process Recovering the Password.

if there exist pair of values (key(−2)
1 ,LSB(key(−1)

0))
that would generate such value as done in libzc (Fer-
land, 2018). If not, we can abort the search for the
candidate and start again in step 1 for the next candi-
date. If there are one or two of such pair (there cannot
be more than two), we reconstruct the next pair of val-
ues in a similar fashion until either all the values key1
and the lowest significant bytes of the key0 are either
retrieved or all the branches lead to a failure.
Step 5: Thanks to the linearity of the CRC function
we can extract the six first bytes of the password can-
didates and reconstruct totally the key0 values. If the
reconstructed value key(−6)

0 matches the initialization
value, then we have found a valid password candidate.

This password guessing process allows to reduce
the keyspace in a noticeable manner. For example, all
the possible password candidates of length 10 (a final
space of 9510 candidates) are tested with a maximum
of 954 evaluations. As it will be exhibited in Section
3.4, a space of 14 characters can be explored in a rea-
sonable amount of time with a single modern GPU.

3.3 OpenCL Implementation

There is no known GPU implementation available for
retrieving the password from a given internal state.
We implemented a high-performance OpenCL ker-
nel to run the attack on GPU. We have used Hashcat
(Steube, 2018) to run our OpenCL kernel, as it is open
source and offers a well designed structure for GPU
implementations of hash algorithms.

To allow the derivation of the 6 first bytes, we had
to do the calculation backwards starting from the in-
ternal state (key0, key1, key2) and trying to reach the
initial state (0x12345678, 0x23456789, 0x34567890)
which would show that we have the right password.

As table lookups heavily affect GPU perfor-
mances, we tried to keep them to a minimum. We
needed both the CRC32 and INVCRC32 lookup ta-
bles and additionally another one to be used in the
step 4 (see Subsection 3.2). By optimizing the way in
which the lookups are stored and used, we were able
to shrink the lookup table to one third of its original
size which fits into the fast memory of the GPU cores.
In contrary to the more logical approach, we encap-

sulated all iterations happening in step 4 into nested
loops (depth-first) to avoid having to save intermedi-
ary data and being able to abort earlier.

3.4 Results

We compared our new GPU implementation to exist-
ing applications, namely pkcrack and libzc. There are
other CPU applications available being able to run the
known plaintext attack, but none of them is able to just
take the internal state to retrieve the password. In the
case of pkcrack we also modified it to run on multiple
cores as it was only implemented for single core to
have one of the single-core applications compared to
our kernel running on CPU.

An Intel Xeon CPU E5-2623 3.00GHz was used
to benchmark the CPU implementations. A Nvidia
GTX 1080 as well as a 1080 Ti were used to bench-
mark the GPU variants. Figure 2 shows the speeds, in
terms of number of candidates evaluated per second,
during the password guessing process. Note that this
speed gives the number of candidates tested, exclud-
ing the recovery of the 6 additional bytes. Even run-
ning on the CPU with OpenCL our implementation
is faster than the available applications. Performance

lib
zc

p
kc

ra
ck

p
kc

ra
ck

(M
T
)

H
a
sh

ca
t(

C
P
U

)

G
T
X

 1
0

8
0

G
T
X

 1
0

8
0

 T
i0

1×10⁹

2×10⁹

3×10⁹

S
p

e
e
d

 [
H

/s
]

Figure 2: Speed comparison of existing implementations.

on GPUs is noticeably higher than on CPUs. The full
readable ASCII range (95 characters) can be exhaus-
tively explored for passwords up to length 14 within
a reasonable amount of time, less than 30 days to be
precise, using a single GTX 1080 Ti. Having 30 of

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

332

them would complete the same process in less than
a day. Considering one hundred cards, performing
the exhaustive search of the full readable ASCII range
for passwords up to length 15 is achieved in approxi-
mately 27 days.

4 HIGH PERFORMANT PKZIP
ATTACK IMPLEMENTATION

When the stream cipher internal state of a PKZIP
archive cannot be retrieved, there is the possibility to
retrieve the password using a general PKZIP attack.

4.1 PKZIP Hash Format

In order to crack a PKZIP password with John the
Ripper, the relevant information first needs to be ex-
tracted from the archive and saved in a hash format
which is readable by John afterwards. This is done
with the utility zip2john giving a hash in the follow-
ing format (JohntheRipper, 2017):

$pkzip2$C*B*[DT*MT{CL*UL*CR*OF*OX}
*CT*DL*CS*TC*DA]*$/pkzip2$

Note that the part of the hash encapsulated here
with the curly brackets is not always present, but only
when the data type of the file is 2 or 3. The size of the
PKZIP hash can vary depending on the amount and
size of the files inside the zip archive. The following
elements are the most important in our case:

C Hash Count: Specifies how many files are con-
tained between the square brackets.

B Bytes: Number of valid bytes (1 or 2) in the check-
sum. The Linux command line zip saves 2, all
other programs only 1.

CR The CRC32 checksum of the plaintext file allows
to check the consistency of the extracted file.

CT The encrypted file data can either be compressed
(value 8) or just stored in plaintext (value 0), de-
pending if the plaintext was considered to be com-
pressible or not (or the user creating the archive
manually enforced no compression).

CS and TC Depending on the tool with which the
archive was created there are either 2 or just 1
checksum bytes present. These contain the last
2 respective 1 bytes of the IV for the file.

DA If the file inside the archive is not too big, the full
file data is included in the hash, otherwise the data
is only referenced by the zip’s filename. These
bytes include the 12 IV bytes at the beginning,
which can be discarded after the decryption. If

the file was also compressed, the data has to be
inflated to retrieve the original data. If the DT is 1
or 3 only the first 36 bytes are present.

4.2 Retrieving the Password

A straightforward approach for retrieving the pass-
word used to encrypt a PKZIP archive would be: cre-
ate the internal stream cipher out of the password can-
didate, decrypt the full file data with the stream ci-
pher, inflate the data (if it is compressed), compute the
corresponding CRC32 checksum and finally check if
it matches the one provided in the hash. However, in-
flating and checking the CRC32 are costly operations
with a cost increasing with the size of the file(s). Sev-
eral checks can be performed to detect if the process
can be aborted at an earlier stage, therefore speeding
up the overall process. John the Ripper has already
implemented such checks in the CPU implementa-
tion. We have reused and adapted some of them in
our OpenCL implementation.

Candidate

Internal State

L rounds

File

Decrypt 1 byte
IV11 == 0x02 ?

Decrypt 1 byte X
x2x1 == ?

Decrypt all
Inflate plaintext
Compare CRC32

NoYes

Yes

No

No

Yes

00

01 10

11

Yes Yes

No

Password

OK

No

Fail

Decrypt 11 bytes
B == 2 ?

IV10 == 0xab ?

Decrypt 36 bytes
Code1() ?

Decrypt 10 bytes
Code2() ?

X < 2 ?

Figure 3: Password candidates evaluation process.

Figure 3 shows the order of the checks which are
executed when attacking PKZIP. The circled crosses
shows when the process can be aborted and started
again with another candidate. The CODEx and In-
flate checks are only possible if the data is compressed
with deflate, if we have a non-compressed file, after
the first IV checks, we have only the possibility to
fully decrypt the file and check the CRC32 checksum.
We use the term encoding method in the following de-

Improved Forensic Recovery of PKZIP Stream Cipher Passwords

333

scription to refer to the 2nd and 3rd bit of the first byte
of the compressed data, which is defined in the deflate
compression specifications.

IV Check 1. If possible (when B is 2), after decrypt-
ing 11 bytes of the IV, we can check if it matches
one of the second bytes of the provided check-
sums (CS and TC). If not, we abort.

IV Check 2. After decrypting 12 bytes of the IV, we
can check if it matches one of the first bytes of the
checksums (CS and TC). If not, we abort.

CODE0. If the encoding method is 0 (raw/stored
block), the only bit which is allowed to be set, is
the first one. We abort if any other bit is set.

CODE1. If the encoding method is 1 (static Huff-
man), we can check if there is a proper encoding
present in the next 36 bytes. If not, we abort.

CODE2. If the encoding method is 2 (dynamic Huff-
man), we check if the next 10 bytes contain valid
encoded data, otherwise we abort.

CODE3. If the encoding method is 3, we abort as
such value is reserved and should not be used.

Inflate. If the inflation algorithm reports any problem
in reading the data, we abort.

CRC32. We calculate the CRC32 of the inflated full
file data and check if it matches the checksum pro-
vided. If yes, we have found the password.

Empirical results of our implementation have
shown the proportion of candidates for which we can
abort at an earlier stage because of invalid checks. We
have to distinguish between the two cases where we
either have one or two checksum bytes. Table 1 shows
the rejected percentages when having two checksum
bytes, Table 2 shows the rejected percentages when
only having one checksum byte. When the hash pro-
vides two checksum bytes, it allows to reject more
candidates at an earlier stage of the process, which
avoids all the more costly checks.

4.3 OpenCL Implementations

The first challenge to have the PKZIP cracking pro-
cess in OpenCL was the ability to inflate data. In
CPU implementations the libzip library bindings5 can
be used to achieve this, but in OpenCL this is not
possible. The libzip implementation is quite com-
plex and heavily dependent on all the components in

5The libzip library is widely used to han-
dle/modify/create zip archives and is provided as a
C implementation which can be used by many other
languages and applications.

Table 1: Number of rejected candidates per check for 2-byte
hashes (Total 543’257’459 candidates).

Check Candidates Rejected
IV Check 1 543257459 541136146 (99.6%)
IV Check 2 2121313 2113156 (99.6%)
CODEx 8157 8069 (89.9%)

CODE0 2024 1948 (96.2%)
CODE1 2054 2050 (99.8%)
CODE2 2026 2018 (99.6%)
CODE3 2053 2053 (100%)

Inflate 88 83 (94.9%)
CRC32 5 4 (80.0%)

Table 2: Number of rejected candidates per check for 1-byte
hashes (Total 543’257’459 candidates).

Check Candidates Rejected
IV Check 1 543257459 – (–%)
IV Check 2 543257459 541136764 (99.6%)
CODEx 2120695 2099858 (99.0%)

CODE0 530845 514353 (96.8%)
CODE1 530247 527827 (99.5%)
CODE2 529821 527896 (99.6%)
CODE3 529782 529782 (100%)

Inflate 20837 18984 (91.1%)
CRC32 1853 1852 (94.8%)

the library. Miniz (Miniz, 2018) is an alternative im-
plementation that is very compact and licensed with
MIT. Only the functions which were required to do an
inflation were extracted and included in our OpenCL
kernel. We had to do some minor modifications to the
code to get it working in OpenCL to overcome some
specific casting of pointers which crashed the kernel.

Due to the variety of inputs (from the hash format)
output by zip2john, the implementation looks differ-
ent in OpenCL, as some checks/parts are only needed
for specific cases. To always benefit from the most
optimal implementation for the type and get the best
possible speed, we decided to split all the hash vari-
ants into three families.
Compressed. If there is a single compressed file in
the archive the normal attack described in Figure 3
and Section 4.2 is performed.
Uncompressed. If there is a single uncompressed file
in the archive, we cannot benefit from the CODEx
checks but we also do not have to include the inflate
code in the kernel. Therefore, the kernel is running
slower (depending on the file size) but is also cleaner
and does not require the CODEx lookup tables.
Multifile. The process can use the 1 (or 2) byte check-
sums of the files without knowing more than the first
few bytes of each file. John The Ripper already pro-
posed a similar approach for exactly 3 files with 2 byte
checksums available. The size of the output space,
namely (28× 28)3 = 248, is relatively small. There-
fore, this approach would quickly lead to collisions
with our GPU implementation. For example, a col-

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

334

lision would be found in less than an hour using 30
GTX 1080 Ti. Our kernel consequently accept up to
8 files as input with 1 or 2 checksum byte reducing
the chance of having a collision.

4.4 Results

We compared the high-performance GPU implemen-
tation to the existing PKZIP password retrieval appli-
cations. There are no other known implementations
of this attack on GPU. We used the same hardware for
the benchmark, namely an Intel Xeon CPU E5-2623
3.00GHz, a GTX 1080, and a GTX 1080 Ti. In order
to have a fair comparison between the available CPU
implementations and our OpenCL implementation we
also ran Hashcat with only using the CPU OpenCL
device (-D 1) and all runs were executed with the
same hash. As Figure 4 shows, even on the CPU, the
OpenCL implementation is faster than the other ap-
plications. Using the hashcat kernel on GPUs we can
further increase the speed compared to todays avail-
able PKZIP password retrieval solutions by a factor
of more than 16, comparing the fastest CPU imple-
mentation to a GTX 1080 Ti.

Jt
R

Jt
R

(f
o
rk

e
d
)

Pa
ss

w
a
re

lib
zc

H
a
sh

ca
t(

C
P
U

)

G
T
X

 1
0

8
0

G
T
X

 1
0

8
0

 T
i0

5.0×10⁸

1.0×10⁹

1.5×10⁹

2.0×10⁹

S
p
e
e
d
 [

H
/s

]

Figure 4: Speed of PKZIP cracking implementations

5 CONCLUSION

In this paper we have presented the first GPU imple-
mentations for the recovery of PKZIP stream cipher
passwords. Our results show that our GPU imple-
mentations are able to outperform even the fastest ex-
isting implementations by at least one order of mag-
nitude. These results invalidate the existing hypothe-
sis that GPU implementations would not outperform
CPU implementations significantly.

When enough known plaintext is available, our
implementation can recover passwords up to 15 char-
acters long in practical time. For example, a 15-
characters long password can be recovered in less

than 27 days using one hundred Nvidia 1080 Ti GPU.
To make the parallel with the fastest CPU implemen-
tation, it would require one thousand Xeon E5 CPU
to recover such password within the same amount of
time. This offers a higher chance for forensic analysts
to recover the password of an encrypted archive.

In addition to the five kernels presented in this ar-
ticle, further implementations could be done in the
future to increase the performance of the attack by
targeting specific scenarios. As an example, separate
kernels could be developed to handle different max-
imum sizes of encrypted files. This further special-
ization of the kernels could allow to use the available
computational resources more efficiently potentially
leading to additional performance gains.

REFERENCES

Biham, E. and Kocher, P. C. (1994). A known plaintext
attack on the pkzip stream cipher. In International
Workshop on Fast Software Encryption, pages 144–
153. Springer.

Elcomsoft (2018). https://www.elcomsoft.de/archpr.html.
[Accessed Sept-2018].

Ferland, M. (2018). https://github.com/mferland/libzc. [Ac-
cessed Septr-2018].

Jeong, K. C., Lee, D. H., and Han, D. (2011). An improved
known plaintext attack on pkzip encryption algorithm.
In International Conference on Information Security
and Cryptology, pages 235–247. Springer.

JohntheRipper (2017). zip2john utility. https:
//github.com/magnumripper/JohnTheRipper/blob/
bleeding-jumbo/src/zip2john.c. [Accessed Sept-
2018].

JohntheRipper (2018). John the ripper is a fast pass-
word cracker. https://github.com/magnumripper/
JohnTheRipper/. [Accessed Sept-2018].

Miniz (2018). miniz: Single c source file zlib-replacement
library. https://github.com/richgel999/miniz. [Ac-
cessed Sept-2018].

Passware (2017). Passware kit forensic. https://www.
passware.com/kit-forensic/. [Accessed Sept-2018].

Stay, M. (2001). Zip attacks with reduced known plaintext.
In International Workshop on Fast Software Encryp-
tion, pages 125–134. Springer.

Steube, J. (2018). World’s fastest and most advanced
password recovery utility. https://github.com/hashcat/
hashcat/. [Accessed Sept-2018].

Improved Forensic Recovery of PKZIP Stream Cipher Passwords

335

