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Abstract: Novel view synthesis is an important problem in computer vision and graphics. Over the years a large number
of solutions have been put forward to solve the problem. However, the large-baseline novel view synthesis pro-
blem is far from being ”solved”. Recent works have attempted to use Convolutional Neural Networks (CNNs)
to solve view synthesis tasks. Due to the difficulty of learning scene geometry and interpreting camera mo-
tion, CNNs are often unable to generate realistic novel views. In this paper, we present a novel view synthesis
approach based on stereo-vision and CNNs that decomposes the problem into two sub-tasks: view dependent
geometry estimation and texture inpainting. Both tasks are structured prediction problems that could be ef-
fectively learned with CNNs. Experiments on the KITTI Odometry dataset show that our approach is more
accurate and significantly faster than the current state-of-the-art.

1 INTRODUCTION

Novel view synthesis (NVS) is defined as the problem
of rendering a scene from a previously unseen camera
viewpoint, given other reference images of the same
scene. This is an inherently ambiguous problem due
to perspective projection, occlusions in the scene, and
the effects of lighting and shadows that vary with a
viewpoint. Due to this inherent ambiguity, this can be
solved only by learning valid scene priors and hence,
is an effective problem to showcase the application of
machine learning to computer vision.

In the early 1990s, methods for NVS were propo-
sed to deal with slight viewpoint changes, given ima-
ges taken from relatively close viewpoints. Then NVS
can be performed through view interpolation (Chen
and Williams, 1993), warping (Seitz and Dyer, 1995)
or rendering with stereo reconstruction (Scharstein,
1996). There are a few methods proposed over the ye-
ars to solve the problem of large-baseline NVS (Chau-
rasia et al., 2013), (Zitnick et al., 2004), (Flynn et al.,
2016), (Goesele et al., 2010), (Penner and Zhang,
2017). Some methods are based on structure from
motion (SFM) (Zitnick et al., 2004), which can pro-
duce high-quality novel views in real time (Chaura-
sia et al., 2013), but has limitations when the input
images contain strong noise, illumination change and
highly non-planar structures like vegetation. These
methods need to preform depth synthesis for poorly

reconstructed areas in SFM, which is challenging for
intricate structures. In contrast to these methods, neu-
ral networks can be trained end-to-end to render NVS
directly (Flynn et al., 2016). This is the paradigm we
follow in this paper.

Many recent works have addressed end-to-end
training of neural networks for NVS (Dosovitskiy
et al., 2015), (Tatarchenko et al., 2016), (Zhou et al.,
2016), (Yang et al., 2015). These methods typi-
cally perform well under a restricted scenario, where
they have to render geometrically simple scenes.
The state-of-the-art large-baseline view synthesis ap-
proach that works well under challenging scenarios
is DeepStereo, introduced by Flynn et. al. (Flynn
et al., 2016). DeepStereo generates high-quality no-
vel views on the KITTI dataset (Geiger et al., 2012),
where older SFM based methods such as (Chaura-
sia et al., 2013) do not work at all. This algorithm
uses plane-sweep volumes and processes them with a
double tower CNN (with color and selection towers).
However, processing plane-sweep volumes of all re-
ference views jointly imposes very high memory and
computational costs. Thus, DeepStereo is far slower
than previous SFM based methods such as (Chaurasia
et al., 2013).

In this work we propose a novel alternative to
DeepStereo which is two orders of magnitude fas-
ter. Our method avoids performing expensive cal-
culations on the combination of plane-sweep volu-
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Figure 1: Two sample renderings from the KITTI dataset (Geiger et al., 2012), using our proposed method. Images are
rendered using four neighbouring views. From left to right, the median baseline between consecutive input views increases
from 0.8m to 2.4m.

mes of reference images. Instead, we predict a proxy
scene geometry for the input views with stereo-vision.
Using forward-mapping (section 3.3), we project in-
put views to the novel view. Forward-mapped images
contain a large number of pixels with unknown color
values. Rendering of the target view is done by ap-
plying texture inpainting on the warped-images. Our
rendering pipeline is fully-learnable from a sequence
of calibrated stereo images. Compared to DeepStereo,
the proposed approach produces more accurate results
while being significantly faster. The main contributi-
ons of this paper are the following.

• We present a novel view synthesis approach based
on stereo-vision. The proposed approach decom-
poses the problem into proxy geometry prediction
and texture inpainting tasks. Every part of our
method is fully learnable from input stereo refe-
rence images.

• Our approach provides an affordable large-
baseline view synthesis solution. The proposed
method is faster and even more accurate than
the current state-of-the-art method (Flynn et al.,
2016) . The proposed approach takes seconds to
render a single frame while DeepStereo (Flynn
et al., 2016) takes minutes.

2 RELATED WORK

Image based rendering has enjoyed a significant
amount of attention from the computer vision and
graphics communities. Over the last few decades, se-
veral approaches of image-based rendering and mo-
delling were introduced (Chen and Williams, 1993),
(Seitz and Dyer, 1995), (Seitz and Dyer, 1996),
(Adelson et al., 1991), (Scharstein, 1996). Fitzgib-
bon et. al. (Fitzgibbon et al., 2005) present a solu-
tion that solves view synthesis as texture synthesis by

using image-based priors as regularization. Chaura-
sia et. al. (Chaurasia et al., 2013), presented high-
quality view synthesis that utilizes 3D reconstruction.
Recently, Penner at. al. (Penner and Zhang, 2017)
presented a view synthesis method that uses soft 3D
reconstruction via fast local stereo-matching similar
to (Hosni et al., 2011) and occlusion aware depth-
synthesis. Kalantari et. al. (Kalantari et al., 2016)
used deep convolutional networks for view synthesis
in light-fields.

Encoder-decoder Networks have been used in ge-
nerating unseen views of objects with simple geo-
metric structure, (e.g. cars, chairs, etc) (Tatarchenko
et al., 2016), (Dosovitskiy et al., 2015). However, the
renderings generated from encoder-decoder architec-
tures are often blurry. Zhou et al. (Zhou et al., 2016),
used encoder-decoder networks to predict appearance
flow, rather than directly generating the image. Com-
pared to direct novel view generating methods (Tatar-
chenko et al., 2016), (Dosovitskiy et al., 2015), the
appearance-flow based method produces crispier re-
sults. Nonetheless, the appearance flow based also
fails to produce any convincing results in natural sce-
nes.

Flynn et. al. (Flynn et al., 2016), proposed the
first CNN based large baseline novel view synthe-
sis approach. DeepStereo has a double-tower(color
and selection towers) CNN architecture. DeepSte-
reo takes a volume of images projected using multiple
depth planes, known as plane-sweep volume as input.
The color-tower produces renderings for every depth
plane separately. The selection-tower estimates pro-
babilities for the renderings computed for every depth
plane. The output image is then computed as a weig-
hted average of the rendered color-images. DeepSte-
reo generates high-quality novel views from a plane
sweep volume generated from few(typically 4) refe-
rence views. To the best of our knowledge, Deep-
Stereo is the most accurate large-baseline method,
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proven to be able to generate accurate novel views
of challenging natural scenes. Recently, monocular
depth prediction based view synthesis methods have
been proposed (Liu et al., 2018), (Yin et al., 2018).
Despite being fast, these works produce results with
significantly lower quality compared to multiview ap-
proaches such as DeepStereo (Flynn et al., 2016).
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Figure 2: Illustration of our novel view synthesis approach.
in the first stage(a), we begin by estimating dense depth
maps from the input reference stereo pairs using an unsu-
pervised stereo-depth prediction network. Estimated depth
maps are used to project input views to the target view via
Forward-mapping, shown in Equation 7. As shown in (b),
the output novel view is rendered with the texture inpainting
applied on the forward mapped views.

3 PROPOSED METHOD

In this section we discuss our proposed view
synthesis approach. Our aim is to generate
the image X t of a scene from a novel vie-
wpoint, using a set of reference stereo-pairs
{{X 1

L ,X
1
R},{X 2

L ,X 2
R}, . . . ,{X V

L ,X V
R }}1 and their po-

ses {P 1,P 2, . . . ,PV} w.r.t the target view. The pro-
posed method has three main stages, namely proxy
scene geometry estimation, forward-mapping and tex-
ture inpainting. As shown in Figure 2 the view synt-
hesis is performed as follows: first, a proxy scene ge-
ometry is estimated as a dense depth map. The es-
timated depth map is used to forward-map the input

1subscripts L and R indicate left and right views, re-
spectively

views to the desired novel viewpoint. Forward map-
ping (described in section 3.3) leads to noisy images
with a large number of holes. The final rendering is,
therefore, generated by applying texture inpainting on
the forward-mapped images. Both the depth estima-
tion and texture inpainting tasks are learned via con-
volutional networks. Components of our view synthe-
sis pipeline are trainable using a dataset that contains
a sequence of stereo-pairs with known camera poses.

3.1 Depth Prediction Network

We train a convolutional network to estimate depth
from an input stereo pair. The training set for the
depth prediction CNN is generated by sampling M
stereo pairs from our training set. The proposed
network is composed of the following stages: feature
extraction, feature-volume aggregation and feature-
volume filtering. Architecture-wise our network is
similar to GCNet (Kendall et al., 2017). However,
there are several key differences, including the
fact that our network is trained in an unsupervised
manner. Similar to our depth prediction network, a
recent work (Zhong et al., 2017) also investigates
learning stereo disparity prediction without using
ground truth data.

3.2 Feature Extraction

Generating robust feature descriptors is an important
part of stereo matching and optical flow estimation
systems. In this work we extract image-features using
a convolutional network. Applying the fully convo-
lutional network (Table 1) on left and right stereo-
images, we extract features FL and FR.

Feature-volume Generation

Features FL and FR are aggregated into feature-
volumes VL and VR for the left and right images, re-
spectively. Feature volumes are data structures that
are convenient for matching features. Feature volume
VL is created by concatenating FL with FR translated
at different disparity levels di ∈ {d1,d2, . . .dD}. VL =

[(FL,F d1
R ),(FL,F d2

R ), . . . ,(FL,F dD
R )]2 Similarly, VR

is created by translating FL and concatenating it with
FR.

2We used (X ,Y ) to denote concatenating X and Y across
the first dimension and we use [ X and Y] to denote stacking
X and Y , which creates a new first dimension
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Table 1: Details of the feature extraction stage. In the first entry of the third row, we use res 1 to res 9, as a shorthand
notation for a stack of 9 identical residual layers.

Layers Kernel
size Stride Input

channels
Output
channels Nonlinearity

conv 0 5x5 2x2 32 32 ReLU
res 1 to res 9 3x3 1x1 32 32 ReLU + BN
conv 10 3x3 1x1 32 32 -

Feature-volume Filtering

Generated feature volumes aggregate left and right
image features at different disparity levels. This stage
is posed with the task of computing pixel-wise proba-
bilities over disparities from feature volumes. Since
VL and VR are composed of features vectors spanning
3-dimensions (disparity, image-height, and image-
width) it is convenient to use 3D convolutional layers.
3D convolutional layers are able to utilize neighbor-
hood information across the above three axes. The
3D-convolutional encoder-decoder network used in
this work is similar to Kendal et. al. (Kendall et al.,
2017).

Let’s denote the output of applying feature-
volume filtering on VL and VR as CL and CR, respecti-
vely. CL and CR, are tensors represent pixel-wise dis-
parity ”confidences”. In order to convert confidences
into pixel-wise disparity maps, a soft-argmin function
is used. CL and CR represent negative of confidence,
hence, we use soft-argmin, instead of soft-argmax.
The soft-argmin operation (Equation 1) is a differen-
tiable alternative to argmin (Kendall et al., 2017). For
every pixel location, soft-argmin first normalizes the
depth confidences into a proper probability distribu-
tion function. Then, disparities are computed as the
expectation of the disparity under the normalized dis-
tributions. Thus applying soft-argmin on CL and CR
gives disparity maps DL and DR, respectively.

PL(i,x,y) =
e−CL(i,x,y)

∑
D
j=1 e−CL( j,x,y)

DL(x,y) =
D

∑
i=1

disp(i)∗PL(i,x,y)

(1)

The estimated disparities DL,DR are disparities
that encode motions of pixels between the left and
right images. We convert the predicted disparities into
a sampling grid in order to warp left image to the
right image (and vice versa). Once sampling grid is
created we apply bi-linear sampling (Jaderberg et al.,
2015) to perform the warping. Denoting the bi-linear
sampling operation as Φ, the warped left and right
images could be expressed as X̃L = Φ(XR,DL) and
X̃R = Φ(XL,DR), respectively.

Disparity Estimation Network Training Objective

Our depth prediction network is trained in unsu-
pervised manner by minimizing a loss term which
mainly depends on the photometric discrepancy be-
tween the input images {XL,XR} and their respective
re-renderings {X̃L,X̃R}. Our network minimizes, the
loss term LT which has three components: a photo-
metric discrepancy term LP, smoothness term LS and
left-right consistency term LLR, with different weig-
hting parameters λ0,λ1, and λ2.

LT = λ0LP +λ1LLR +λ2LS (2)

Photometric discrepancy term LP is a sum of an
L1 loss and a structural dissimilarity term based on
SSIM (Wang et al., 2004) with multiple window si-
zes. In our experiments we use S = {3,5,7}. N in
Equation 3 is the total number of pixels.

LP =
λ

p
1

N
(||X̃L−XL||1 + ||X̃R−XR||1)+

λ
p
s

N ∑
s∈S

(SSIMs(X̃L,XL)+SSIMs(X̃R,XR))
(3)

Depth prediction from photo-consistency is an ill-
posed inverse problem, where there are a large num-
ber of photo-consistent geometric structures for a gi-
ven stereo pair. Imposing regularization terms en-
courages the predictions to be closer to the physically
valid solutions. Therefore, we use an edge-aware
smoothness regularization term LS in Equation 5 and
left-right consistency loss (Godard et al., 2016) Equa-
tion 4. LLR is computed by warping disparities and
comparing them to the original disparities predicted
by the network.

LLR = ||D̃L −DL ||1 + ||D̃R−DR||1

where D̃L = Φ(DR,DL) and D̃R = Φ(DL,DR)
(4)

Smoothness term LS forces disparities
DL and DR to have small gradient magnitudes
in smooth image regions. However, the term allows
large disparity gradients in regions where there are
strong image gradients.

LS =∇xDLe(−∇xXL)+∇yDLe(−∇yXL)+

∇xDRe(−∇xXR)+∇yDRe(−∇yXR)
3 (5)
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Bilinear sampling, Φ allows back-propagation of
error (sub-)gradients from the output such as X̃ s back
to the input images X s and disparities Ds. There-
fore, it is possible to use standard back-propagation
to train our network. Formal derivations for the back-
propagation of gradients via a bilinear sampling mo-
dule could be found in (Jaderberg et al., 2015).

3.3 Forward Mapping

(a) Sample view-warping

(b) Close-up view of warped and target images
Figure 3: View-warping with forward mapping.

We apply our trained stereo depth pre-
dictor on the V input stereo pairs
{{X 1

L ,X
1
R},{X 2

L ,X 2
R}, . . . ,{X V

L ,X V
R }} and gene-

rate disparities for the left camera input views,
{D1

L ,D2
L , . . .DV

L }. The right stereo views are used
only for estimating disparities. Forward mapping
and texture inpainting are done only on the images
from the left camera. In this section, unless specified
otherwise, we refer the images from left camera as
the input images/views and we drop the subscripts L
and R.

Forward-mapping projects input views to the
target-view using their respective depth-maps. The
predicted disparities of the input views could be con-
verted to depth values. Depth Zi

w,h for a pixel at loca-
tion (w,h) in the i− th input view, can be computed
from the corresponding disparity D i

w,h, as follows:

Zi
w,h =

fx ∗B
D i

w,h
(6)

where K is the intrinsic camera matrix, B is the base-
line, and fx is focal length.

3∇x is gradient w.r.t x, similarly ∇y is gradient w.r.t y

The goal of forward mapping is to project the in-
put views to the target view, t. Given the relative pose
between the input-view i and target-view as a transfor-
mation matrix Pi = [Ri|T i], pixel pi

h,w (pixel location
{h,w} in view i) will be forward mapped as follows,
to a pixel location pt

x,y on the target view:[
x′,y′,z′

]
∼ KPiZi

h,wK−1[h,w,1]T

x =
⌊
x′/z′

⌋
and y =

⌊
y′/z′

⌋ (7)

Following a standard forward projection Equa-
tion 7, the reference input frames {X 1,X 2, . . . ,X V}
are warped to the target view {W 1,W 2, . . . ,W V}.
As shown in Figure 3, forward-mapped views have
a large number of pixel locations with unknown color
values. These holes are created for various reasons.
First, forward-mapping is a one-to-one mapping of
pixels from the input views to the target view. This
creates holes as it doesn’t account for zooming in ef-
fects of camera movements, which could lead to one-
to-many mapping. Moreover, occlusion and rounding
effects lead to more holes. In addition to holes, some
warped pixels have wrong color values due to inaccu-
racies in depth prediction.

3.4 Texture Inpainting

The goal of our texture inpainting network is to learn
generating the target view X t from the set of warped
input views {W 1,W 2, . . . ,W V}. This is a structu-
red prediction task where the input and output images
are aligned. Due to the effects mentioned above in
section 3.3, texture mapping results in noisy warped
views, see Figure 3. Forward-mapped images W is
contain two kinds of pixels: noisy-pixels, those with
unknown (or wrong) color values and good-pixels,
those with correct color value. Ideally we would like
to hallucinate the correct color value for the noisy
pixels while maintaining the good pixels.

The architecture of our proposed inpainting net-
work is inspired by Densely Connected (Huang et al.,
2017) and Residual (He et al., 2016) network archi-
tectures. Details of the network architecture are pre-
sented in Table 2. The network has residual layers
with long range skip-connections that feed features
from early layers to the top layers, similar to Den-
seNets (Huang et al., 2017). The architecture is de-
signed to facilitate flow of activations as well as gra-
dients through the network. The texture inpainting
network is trained by minimizing L1 loss between the
predicted novel views and the original images.

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

796



Table 2: Texture inpainting network architecture. The network is mainly residual, except special convolution layers which
could be used as input and output layers.

Block Layer Input Input,Out.
channels Output size

Block 0 conv 0 warped views 4*4,32 H, W
Block 0 res 1 conv 0 32,32 H, W
Block 1 res 2 pool(res 1), pool(warped views) 32+16, 48 H/2, W/2
Block 1 res 2 to res 7 (repeat res 2, 5 times) res 2 48 ,48 H/2, W/2
Block 1 res 8 res 7 48 ,48 H/2, W/2
Block 2 conv 9 upsample(res 8), res 1 48+32,48 H, W
Block 2 res 10 conv 9 48, 48 H, W
Block 2 res 11 res 10 48, 48 H,W
Block 3 conv 12 res 11 48, 16 H,W
Block 3 output conv 12 16, 3 H,W

(a) Rendering with our approach and DeepStereo (Flynn
et al., 2016)

(b) Close-up view of warped and target images

Figure 4: Rendering of a sample scene for qualitative eva-
luation. Close-up views show that preserves the geometric
structure better than DeepStereo and textitDeepStereo has
ghosting where the traffic sign is replicated multiple times.
Our rendering resembles the target except for slight amount
of blur.

4 EXPERIMENTS

We tested our proposed approach on the KITTI (Gei-
ger et al., 2012) public computer vision benchmark.

Our approach has lower rendering error than the cur-
rent state-of-the-art (Flynn et al., 2016) (see Table 3).
Qualitative evaluation also show that out method bet-
ter preserves the geometric details of the scene, shown
in Figure 4.
Network Training and Hyper-parameters. The
depth predictor loss term has three weighting para-
meters: λ0 for photometric loss, λ1 for left-right con-
sistency loss and λ2 for local smoothness regulariza-
tion. The weighting parameters have to be set pro-
perly, wrong weights might lead trivial solutions such
as a constant disparity output for every pixel. The
weighting parameters used in our experiments are the
following: λ0 = 5, λ1 = 0.01, λ2 = 0.0005. The pho-
tometric loss is also a weighted combination of l1 loss
and SSIM losses with different window sizes. These
weighting factors are set to be λ1

P = 0.2, λ3
P = 0.8,

λ5
P = 0.2 and λ7

P = 0.2. As discussed in section 3. the
depth-prediction and texture inpainting networks are
trained separately. We train the networks with back-
propagation using Adam optimizer (Kingma and Ba,
2014), with mini-batch size 1 and learning rate of
0.0004. The depth prediction network is trained for
200,000 iterations and the inpainting network is trai-
ned for 1 Million iterations.

Dataset

We evaluate our proposed method on the publicly
available KITTI Odometry Dataset (Geiger et al.,
2012). KITTI is an interesting dataset for large-
baseline novel view synthesis. The dataset has a large
number of frames recorded in outdoors sunny urban
environment. The dataset contains variations in the
scene structure (vegetation, buildings, etc), strong il-
lumination changes and noise which makes KITTI a
challenging benchmark.

The dataset contains around 23000 stereo pairs di-
vided into 11 sequences (00 to 10). Each sequence
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Table 3: Quantitative evaluation of our method against DeepStereo. We used our texture inpainting network with residual
blocks as shown in Table 2. Our approach outperforms DeepStereo (Flynn et al., 2016) in all cases. Each row shows the
performance of a method that is trained on a specific input camera spacing and tested on all three spacings.

Spacing Method Test 0.8 m Test 1.6 m Test 2.4 m

Train 0.8 m Ours 6.66 8.90 12.14
DeepStereo 7.49 10.41 13.44

Train 1.6 m Ours 6.92 8.47 10.38
DeepStereo 7.60 10.28 12.97

Train 2.4 m Ours 7.47 8.73 10.28
DeepStereo 8.06 10.73 13.37

contains a set of images captured by a stereo camera,
mounted on top of car driving through a city. The ste-
reo camera captures frames every ≈ 80 cms. In order
to make our results comparable to DeepStereo (Flynn
et al., 2016), we hold out sequence 04 for validation,
sequence 10 for test and used the rest for training. In
our experiments, 5 consecutive images are used, with
the middle one is held out as target and the other 4
images are used as reference. Tests are done at diffe-
rent values of spacing between consecutive images.
Taking consecutive frames gives spacing of around
0.8 m. Sampling every other frame give a spacing
of ≈ 1.6m and every third frame gives ≈ 2.4m spa-
cing. The error metric used to evaluate performance
of rendering methods a mean absolute brightness er-
ror, computed per pixel per color channel.

Results

Table 3 shows the results of our proposed approach
compared to DeepStereo (Flynn et al., 2016), on the
KITTI dataset. Our approach outperforms DeepSte-
reo in all spacings of the input views, while being sig-
nificantly faster. In Figure 4, sample renderings are
shown for a qualitative evaluation of our approach and
DeepStereo. As shown in the lowest two rows of Fi-
gure 4, renderings of DeepStereo suffer from ghosting
effects due to cross-talk between different depth pla-
nes, which led to the replicated traffic sign and noisy
bricks(as could be seen in the close-up views).

We performed tests to compare our texture inpain-
ting architecture against the so called UNet architec-
ture (Ronneberger et al., 2015). Furthermore, in or-
der to evaluate the significance of the texture inpain-
ting stage, we measured the accuracy of our system
when the texture inpainting stage is replaced by sim-
ple median filtering scheme applied on the warped
views. In an ablation test, we found out that our in-
painting network achieves lower error than a com-
monly used architecture called UNet (Ronneberger
et al., 2015)(error 6.66 vs 7.08). A test performed to
investigate the effect of using residual layers instead
of convolutional layers shows that residual layers give
slightly better performance (error 6.66 vs 6.70).

Timing. During the test phase, at a resolution of
528×384, our depth prediction stage and the forward
mapping take 6.08 seconds and 2.60 seconds (for four
input neighbouring views), respectively. The texture
rendering takes takes 0.05 seconds. Thus, the total
time adds up to 8.73 seconds, per frame. This is much
faster than DeepStereo which takes 12 minutes to ren-
der a single frame of resolution 500×500. Our expe-
riments are performed on a multi-core cpu machine
with single Tesla V100 GPU.

5 CONCLUSION AND FUTURE
WORK

We presented a fast and accurate novel view synthe-
sis pipeline based on stereo-vision and convolutional
networks. Our method decomposes novel view synt-
hesis into, view-dependent geometry estimation and
texture inpainting problems. Thus, our method uti-
lizes the power of convolutional neural networks in
learning structured prediction tasks.

Our proposed method is tested on a challenging
benchmark, where most existing approaches are not
able to produce reasonable results. The proposed
approach is significantly faster and more accurate
than the current state-of-the-art. As part of a future
work, we would like to explore faster architectures to
achieve real-time performance.
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