
Image Based Localization with Simulated Egocentric Navigations

Santi A. Orlando1,2, Antonino Furnari1, Sebastiano Battiato1 and Giovanni M. Farinella1

1Department of Mathematics and Computer Science, University of Catania, Catania, Italy
2DWORD - Xenia Progetti s.r.l., Acicastello, Catania, Italy

Keywords: Image-Based Localization, Similarity Search, Metric Learning, Simulated Data.

Abstract: Current methods for Image-Based Localization (IBL) require the collection and labelling of large datasets of
images or videos for training purpose. Such procedure generally requires a significant effort, involving the use
of dedicated sensors or the employment of structure from motion techniques. To overcome the difficulties of
acquiring a dataset suitable to train models to study IBL, we propose a tool to generate simulated egocentric
data starting from 3D models of real indoor environments. The generated data are automatically associated to
the 3D camera pose information to be exploited during training, hence avoiding the need to perform “manual”
labelling. To asses the effectiveness of the proposed tool, we generate and release a huge dataset of egocentric
images using a 3D model of a real environment belonging to the S3DIS dataset. We also perform a benchmark
study for 3 Degrees of Freedom (3DoF) indoor localization by considering an IBL pipeline based on image-
retrieval and a triplet network. Results highlight that the generated dataset is useful to study the IBL problem
and allows to perform experiments with different settings in a simple way.

1 INTRODUCTION

Estimating the position of a camera in an indoor en-
vironment is useful in different application domains
related to computer vision and robotics. More in ge-
neral, any egocentric vision application can exploit
the camera pose information as a prior to solve ot-
her tasks (e.g. object recognition, augmented rea-
lity, etc.). Previous work investigated different ap-
proaches to Image-Based Localization for Simultane-
ous Localization And Mapping (SLAM) (Engel et al.,
2015), visual structure from motion (Hartley and Zis-
serman, 2003) and augmented reality (Schöps et al.,
2014). The approaches based on SLAM predict the
camera pose directly aligning images with a pose
graph. These approaches use the camera motion to
map the environment keeping history of key frames
assuming an unknown environment. Therefore, loca-
lization is memoryless and the environment needs to
be mapped in order to be able to localize the camera.
Differently, IBL aims to localize the camera position
in previously known indoor environments for which
labeled images are available. According to the litera-
ture, camera localization can be performed with diffe-
rent levels of precision, e.g., to recognize specific en-
vironments (Ragusa et al., 2018; Torralba et al., 2003;
Pentland et al., 1998) or to retrieve the pose of the ca-
mera (Kendall et al., 2015; Arandjelovic et al., 2016).

However, in order to train localization systems, a la-
belled dataset containing a large number of images of
the environment is generally needed.

In recent years, the amount of data required for
computer vision applications has increased signifi-
cantly. Often, the raw data have to be labelled in order
to train supervised learning algorithms, thus increa-
sing the costs of the system to be deployed. In parti-
cular, to tackle indoor localization, we need to collect
a large scale dataset as varied as possible. This is usu-
ally done by collecting real videos while following
different paths inside an environment. To include va-
riability during the acquisition, it is important that the
operators look around and observe different points of
interest inside the different rooms, walk down a cor-
ridor in both directions, as well as enter and leave the
rooms of interest.

The aforementioned operational constraints to be
considered during the acquisition of the training da-
taset are the main drawback of IBL systems and li-
mit the size and quality of the current datasets. For
instance, the datasets for indoor IBL proposed in
(Walch et al., 2017; Glocker et al., 2013) have been
acquired with dedicated sensor (e.g. laser scanners,
Kinect) and contain only few thousands of labelled
images. To address this issue, we propose a tool
which can be used to simulate different users naviga-
ting a 3D model of a real environment in order to col-

Orlando, S., Furnari, A., Battiato, S. and Farinella, G.
Image Based Localization with Simulated Egocentric Navigations.
DOI: 10.5220/0007356503050312
In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 305-312
ISBN: 978-989-758-354-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

305

lect videos with an egocentric point of view. This tool
can be used to automatically generate datasets of vi-
deo sequences labelled with the 6 Degrees of Freedom
(6DoF) pose of the camera. The tool has been deve-
loped as a plug-in for Unity 3D. Using the proposed
tool, we collected a huge dataset of labelled images
for IBL starting from a 3D model of a real building
proposed in (Armeni et al., 2016). Being able to ge-
nerate simulated data is useful for different aspects:

• It allows to obtain huge amounts of data without
increasing the cost of acquisition and labelling;

• It allows to easily introduce a controlled amount
of variability in the data, which would be diffi-
coult to introduce otherwise;

To demonstrate the effectiveness of the proposed met-
hodology to study the problem of IBL, we propose the
benchmark of a localization techniques based on me-
tric learning and image-retrieval on the generated da-
taset. It should be noted that the photorealism of the
dataset collected using the proposed tool depends on
the quality of the considered 3D model. Nevertheless,
the acquired data can be useful to study the problem
of IBL and compare different techniques.

In sum, the contributions of this paper are the fol-
lowings:

1. we propose and release a tool to create synthetic
datasets starting from 3D models of real environ-
ments to study egocentric IBL;

2. we collect and publicly release a large dataset for
IBL starting from a 3D model of a real building
proposed in (Armeni et al., 2016);

3. we perform a benchmark study of IBL based on
metric learning and image-retrieval on the gene-
rated dataset.

The remainder of the paper is organized as fol-
lows: Section 2 presents the related works; Section 3
describes in details the tool to produce simulated data
from a 3D model of an indoor environment; Section
4 describes the dataset acquired using the proposed
tool, whereas Section 5 reports the proposed IBL ben-
chmark study. Section 6 concludes the paper and gi-
ves insights for future works.

2 RELATED WORK

Image-Based Localization consists in determining the
location from which a given image has been acquired
in a known environment. When addressed with ma-
chine learning, this task can be tackled as a classifica-
tion problem or as a camera pose estimation task.

Figure 1: Pipeline for indoor simulation and generation of
the dataset.

In the case of classification, the environment is di-
vided into a fixed number of cells (N) of arbitrary
size. Given a set of images I, the classification ap-
proach aims to model a function f : I → RN which
assigns each input image xi ∈ I to one of the N cells.
The function f computes a class vector score s ∈ RN

which corresponds to a probability distribution over
the N possible cells of the environment. The most
probable location ŷ is then associated to the query
image considering the cell with the highest score:

ŷ = argmax
j
(s j). (1)

where s j is the j-th component of the class score vec-
tor s = f (xi). This model can be useful for room-level
localization where each room is considered as one of
the N cells in order to predict the room in which a
query image has been taken. Examples of IBL ba-
sed on classification are reported in (Pentland et al.,
1998; Torralba et al., 2003; Weyand et al., 2016; San-
tarcangelo et al., 2018; Ragusa et al., 2018).

The second class of approaches aims to model
a function f to estimate the pose pi = f (xi) of an
image xi ∈ I. The pose pi is usually related to the
6DoF values determining the location and orientation
of the camera in a 3D space. In this case, the labels
y = {p,q} related to an image represent the position
p ∈ R3 and the orientation of the camera q ∈ R4 (ex-
pressed as a quaternion). Given the inferred location
label ŷ = { p̂, q̂} and the ground truth pose y, we can
define a loss function for training a localization model
as follows (Kendall et al., 2015):

J(θ) = dp(p, p̂)+βdq(q, q̂) (2)

where dp and dq denote distance functions with re-
spect to position and orientation, whereas β regulates
the trade-off between position and orientation error.
Example of this second class of IBL approaches are
reported in (Kendall et al., 2015; Arandjelovic et al.,
2016).

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

306

3 SIMULATED NAVIGATIONS

We propose a general procedure and a tool for Unity
3D which can be used to generate synthetic datasets
suitable to study IBL. The overall pipeline of our ap-
proach is depicted in Figure 1 and comprises two
main steps:

1. Virtualization of the environment;

2. Simulation and generation of the dataset;

3.1 Virtualization of the Environment

The first step requires the virtualization of a real 3D
environment to obtain a 3D model suitable for navi-
gation. This procedure can be performed using com-
mercial products such as Matterport 3D1. In our ex-
periments, we consider a 3D model of a real building
(Area 3) which is part of the S3DIS dataset (Armeni
et al., 2016). The considered model has been acquired
using the Matterport scanner. This scanner provides a
cloud service to process the scans of the environment
and returns as output both the 3D model and the point
clouds (including the related textures).

3.2 Simulation and Dataset Generation

To simulate navigations inside the 3D model, our tool
uses the AIModule of the Unity Engine. This module
allows to mark the floor of the 3D mesh as walka-
ble and provides a path finding algorithm to reach 3D
points (x,y,z) in the model space. The Unity engine
uses a left-handed coordinate system, which implies
that the floor of the building lies on the XZ plane.

We define a set of reachable target points P ∈ R2

(we consider y = 1) arranged in a regular grid on the
floor of the 3D model, as shown in Figure 2. The tar-
get points are placed at a step of 1m both horizontally
and vertically. In this way, we obtain a grid of tar-
get points to be used during the simulated egocentric
navigations.

The tool allows to discard all the points that cannot
be reached because they fall outside of the walkable
area (see Figure 2). The target points to reach during
a navigation are chosen randomly from a uniform dis-
tribution in order to create N paths π j containing T
target each. We let each path π j terminate with the
same target as the starting one to obtain closed loops:

π j = (t0, ..., tT−1, tT) : t0 = tT
f or j = 0, ...,N

(3)

1Matterport: https://matterport.com/

Algorithm 1: NavigationProcedure.

1: N: number of paths
2: T: number of reachable targets for each path
3:
4: currentPath=currentTarget=0;
5: while currentPath<N do
6: if targetReached() then
7: currentTarget+=1;
8: nextTarget = currentTarget;
9: if currentTarget==T then

10: currentPath+=1;
11: currentTarget = 0;
12: end if
13: setNextDestination(nextTarget);
14: end if
15: end while

Once a path π j is defined, the AIModule of Unity
3D is used to let a virtual agent navigate the environ-
ment, sequentially reaching each target belonging to
the path π j.

In order to simulate the movement of the head of
the virtual egocentric agent, we specified 7 different
animations for the camera rotation:

1. no rotation: no animation is applied to the camera;

2. clockwise rotation: the camera rotates clockwise;

3. triangle up: the camera first looks at the top left
corner, then at the top right corner;

4. triangle down: similar to triangle up, but the ca-
mera first looks at the bottom left corner, then at
the bottom right corner;

5. yaw: the camera rotates from center to left/right
along the Y -axis;

6. pitch: the camera looks up and down along the
X-axis;

7. roll: a little tilt is applied to the Z-axis of the ca-
mera.

These animations are chosen randomly with a
uniform distribution during the simulated navigati-
ons. All the aforementioned animations have the
same duration of 4 seconds with the exception of
the clockwise animation which have been set to
9 seconds. The y coordinates of the camera can
be adjusted to simulate agents with different heig-
hts. The pseudo code of the navigation procedure is
shown in Algorithm 1. The method (SetNextDesti-
nation(nextTarget)) sets the next point to be reached
using the AIModule in line “14”. During the navi-
gation, random camera animations are applied as dis-
cussed above.

Image Based Localization with Simulated Egocentric Navigations

307

Figure 2: A section of the mesh used to acquire our dataset. The walkable area is marked in blue. Black dots indicate the
reachable points, while the red ones are discarded because they fall outside the walkable area.

We attach the FrameCapturer2 component to the
Unity camera. This provides a method to acquire
different channels from the Unity camera including:
RGB, depth map and normal map. We set the frame-
rate of the FrameCapturer component to 30 f ps (fra-
mes per seconds). Our tool allows to save a label with
the following information for each frame:
- path number
- camera position (x, y, z)
- camera rotation quaternion (w, p, q, r)
- next target to reach

where, path number is the ID of the current path, ca-
mera position and camera orientation represent re-
spectively the coordinates and the rotation quater-
nion of the camera, whereas next target to reach is
the ID of the next target to be reached. The de-
veloped tool and the related supplementary mate-
rial containing details on how to use it are avai-
lable at the following link: http://iplab.dmi.unict.it/
SimulatedEgocentricNavigations/tool.html.

4 DATASET

We employed our tool to collect the Dataset exploited
in this paper by using the “Area 3” 3D model propo-
sed in (Armeni et al., 2016). We generated the da-
taset simulating the navigation of 3 different agents
each one with a different height among the following:
[1.50m;1.60m;1.70m]. During the simulation, each

2FrameCapturer:
https://github.com/unity3d-jp/FrameCapturer

Table 1: Amount of data generated to perform the experi-
ments.

Dataset generated from “Area 3”
Agent height 1.50 m 1.60 m 1.70 m Total Images
of Frames 301,757 296,164 288,902 886,823

agent followed 30 different random paths each, com-
posed by T = 21 targets.

For each frame, we stored the RGB buffer and the
depth map of the camera. Table 1 reports the amount
of images acquired during the generation of the data-
set. Please note that the proposed tool allows to ea-
sily acquire huge amounts of data which can be use-
ful, for instance, to study how much data we need to
tackle the IBL problem. Each frame has a resolution
of 1280x720 pixels. Each path is composed of 9,853
frames on average. The generation of all the 90 paths
required 3 days on a notebook with an Intel i7 proces-
sor and an Nvidia GTX960M GPU. Each path has an
average duration of 5.47 minutes for a total of about
8.21 hours for the whole dataset.

After the generation, we preprocessed the data as
follows:

• each image has been resized to 455x256 pixels;

• each position label has been converted from 6DoF
to 3DoF.

The images have been resized to be subsequently used
within a learning method, whereas the pose labels
have been converted to perform our benchmark consi-
dering 3DoF camera localization following the work
in (Spera et al., 2018). In this regard, we localize the
camera with respect to the X and Z axes according to
the left handed system of Unity. The 3rd DoF is given

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

308

Figure 3: Detail of 3DoF pose representation. We described
the camera pose of each frame with the position (x,z) of the
camera and the orientation vector (u,v) which represents
the angle θ of rotation of the camera about the Y -axis.

by the rotation of the camera around the Y -axis. The
camera orientation is converted from quaternions to
Euler angles then the rotation along the Y - axis is con-
sidered, whereas the rotations about the other axes are
discarded. Orientation is represented as a unit vector
as shown in Figure 3. The unit vector (u,v) is compu-
ted as follows:

u = cosθ ; v = sinθ (4)

where θ is the rotation of the camera along the Y -axis.
We applied this transformation to each camera posi-
tion label of our dataset obtaining the new labels for
localization in the 3DoF format [(x,z);(u,v)]. The da-
taset is available at the following URL: http://iplab.
dmi.unict.it/SimulatedEgocentricNavigations/.

5 BENCHMARK STUDY

In this section, we report a benchmark study perfor-
med on the dataset generated using the proposed tool
to study the IBL problem. We cast IBL as an image
retrieval problem and use a Triplet Network (Hof-
fer and Ailon, 2015) to learn a suitable representa-
tion space for images. We follow the approach in
(Spera et al., 2018) and consider a Triplet Network
with an Inception V3 backbone (Szegedy et al., 2016).
The Triplet Network follows the model proposed in
(Hoffer and Ailon, 2015) and uses a Margin Ranking
Loss for training. During test, we perform 3DoF lo-
calization by considering an image-retrieval approach
which assigns a 3DoF label to a new query image by
performing a K-Nearest Neighbor search (with K = 1)
on a set of labelled images mapped to the learned re-
presentation space. The network architecture is trai-

ned using triplets, each comprising three images: the
anchor frame I, an image I+ similar to the anchor
frame and a dissimilar image I−. The network per-
forms the forward process evaluating the embedded
representation Net(I) for each of the three images and
returns as output the two L2 distances defined as fol-
lows:

d+ = ||Net(I)−Net(I+)||2
d− = ||Net(I)−Net(I−)||2

(5)

For training, we employ a margin ranking loss which
encourages d− to be grater then d+. The loss is defi-
ned as follows:

loss(d+,d−) = max(0,d+−d−+m) (6)

where m is the margin value of this function (we set
m = 0.2 in our experiments).

To measure the distance between two images,
we consider two distances, one for the position
dpos(Euclidean Distance) and one for the orientation
dor. The latter is defined as:

dor = arccos(u0u1 + v0v1). (7)

Hence, to generate the training triplets (I, I+, I−) for
each anchor frame I, we randomly sampled two ima-
ges to have one similar image I+ and one dissimilar
image I− using the following rule:

I+ : dpos(I, I+)≤ T hxz∧dor(I, I+)≤ T hθ

I− : dpos(I,I−)> T hxz∨dor(I, I−)> T hθ

(8)

where T hxz and T hθ are respectively thresholds used
for position distance (dpos) and orientation distance
(dor).

We investigated the use of the va-
lues [60◦; 45◦; 30◦] as thresholds T hθ

for dor, whereas we considered the values
[200cm; 100cm; 75cm; 50cm; 25cm] for the
threshold T hxz related to dpos. Figure 4 shows some
examples of triplets sampled from our dataset.

To perform the benchmark study, we split the da-
taset into three parts: Training set, Validation set and
Test set. More specifically:

• the Training set contains the images of the three
agents from Path0 to Path17.

• the Validation set contains the images of the three
agents from Path18 to Path23.

• the Test set contains last six paths of the agents,
from Path24 to Path29.

To study the influence of the training set dimension,
we randomly sampled 4 subset of triplets with diffe-
rent size from the Training set for the learning pro-
cedure of the Triplet Network. We started with a
Training set of 10,000 images. A fixed number of

Image Based Localization with Simulated Egocentric Navigations

309

Anchor (I) Similar (I+) Dissimilar (I−)

E
nv

ir
on

m
en

t1
E

nv
ir

on
m

en
t2

E
nv

ir
on

m
en

t3

Figure 4: Three examples of triplets sampled from the proposed dataset. The first column (Anchor) shows the pivot image of
each Triplet. The second column (Similar) satisfies the first condition of Eq.(8), whereas the third column (Dissimilar) shows
an images which satisfies the second condition in Eq.(8).

Table 2: Results related to the selection of the two thresholds T hxzand T hθ when 10,000 training samples are considered to
build the embedding space with the triplet network. For each considered value of T hθ, we marked in bold the best result.

Thxz

Thθ 60◦ 45◦ 30◦

2m 0.73m±1.79m;11.93◦±22.06◦ 0.71m±1.73m;12.17◦±22.47◦ 0.71m±1.82m;11.16◦±21.72◦

1m 0.68m±1.81m;11.52◦±20.54◦ 0.72m±1.88m;11.57◦±21.93◦ 0.67m±1.79m;10.34◦±19.88◦
0.75m 0.64m±1.68m;11.42◦±20.97◦ 0.72m±1.94m;11.59◦±22.33◦ 0.67m±1.72m;10.89◦±21.21◦

0.5m 0.74m±2.09m;11.59◦±21.62◦ 0.69m±1.86m;11.61◦±21.98◦ 0.71m±1.88m;11.19◦±21.98◦

0.25m 0.64m±1.71m;11.41◦±21.62◦ 0.71m±1.87m;11.65◦±22.41◦ 0.76m±2,06m;11.68◦±22.65◦

5,000 images have been considered for the Validation
set and 10,000 images for the Test set. The triplets
used for learning the representation model are gene-
rated at run time at the beginning of each epoch du-
ring training, whereas the set of triplets for Validation
have been generated just once and have been used for
all training procedures. The Test set is used for tes-
ting purposes, so we don’t need to generate triplets
for this subset. After learning the embedding network
“Net”, the model is used to represent each training
and test image. Localization is performed through a
K-Nearest Neighbor search (K = 1). We train each tri-
plet model for 50 epochs with a learning rate of 0.001
using a SGD optimizer with momentum equal to 0.9.
We then select the model corresponding to the epoch
which achieves the best validation performance.

We performed experiments aimed at assessing the
influence of the selection of the thresholds used to
generate the triples for training. We then considered
the best combinations of thresholds and performed a

study on the number of images exploited during trai-
ning by considering the training sets of dimensions
20,000, 30,000 and 40,000 samples to understand
the impact of the training size on performances.

5.1 Results

Table 2 reports the results related to the different po-
sition/orientation threshold values involved in the ge-
neration of the triplets when 10,000 samples are con-
sidered for the training of the triplet network. The
results are reported using the notation ȳ± σ, where
ȳ is the mean error and σ is the error standard de-
viation. The best results for each T hθ threshold are
marked in bold. As pointed out by the results, we
obtained an average position error of 0.64m± 1.68m
and an average orientation error of 11.42◦ ± 20.97◦

by setting T hxz = 0.75m and T hθ = 60◦. However,
the results in Table 2, seam to be similar for different
choices of the considered thresholds, which suggests

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

310

Table 3: Results related to different training set dimensionality during training.

Thθ Thxz Training Samples Position Error Orientation Error

60◦ 0.75m

10000 0.64m±1.68m 11.42◦±20.97◦
20000 0.50m±1.37m 8.83◦±16.52◦
30000 0.46m±1.21m 8.71◦±17.45◦
40000 0.42m±1.21m 7.85◦±15.35◦

45◦ 0.5m

10000 0.69m±1.86m 11.61◦±21.98◦
20000 0.47m±1.27m 8.58◦±17.07◦
30000 0.44m±1.19m 8.05◦±15.49◦
40000 0.40m±1.13m 7.72◦±15.65◦

30◦ 1m

10000 0.67m±1.79m 10.34◦±19.88◦
20000 0.56m±1.68m 8.86◦±17.67◦
30000 0.48m±1.37m 8.01◦±16.61◦
40000 0.43m±1.25m 7.49◦±16.31◦

Table 4: The table shows the percentage of test images with
error below of 0.5m and below of 30◦ for varying the num-
bers of triplets used during the training of the network. The
last row reports the average time spent during the training
phase.

Training Samples
Thresholds 10000 20000 30000 40000

0.75m, 60◦ 72.34% 78.92% 80.22% 82.20%
0.5m, 45◦ 72.26% 79.56% 81.03% 83.26%

1m, 30◦ 71.75% 76.70% 80.34% 82.47%

Avg Training time
(in hours) 8.59 16.45 23.98 33.85

that the choice of the pair of thresholds T hxz and T hθ

does not appear critical since the method is not very
sensible to them. This might be due to the fact that the
thresholds are used to learn an embedding space and
not directly for camera pose estimation. Therefore,
different thresholds might lead to similar triplet trai-
ning objectives, and hence similar embedding space.

For each of the optimal threshold pairs highligh-
ted in Table 2, we also performed experiments to as-
sess the influence of the training set dimensionality
on performance. Specifically, we trained the triplet
network by using: 20,000,30,000, and 40,000 ima-
ges. The results of these experiments are reported in
Table 3. We observe that the localization accuracy
increases by increasing the dimensionality of the trai-
ning set. This encourages the use of the proposed tool
to generate a huge amount of labelled data with mi-
nimum effort. The best results (' 0.40m, ' 7.72◦)
are obtained exploiting 40,000 samples during trai-
ning. To better highlight the results, Table 4 reports
the percentages of images correctly localized with re-
spect to an acceptance error of 0.5m for position and
30◦ for orientation (i.e. the proportion of test ima-
ges localized with an error below of 0.5m for position
and below of 30◦ for orientation). In this case, the
two considered thresholds on the error represent a to-
lerance admittable for practical applications based on
localization. Results point out that more than 70% of

test samples are correctly classified when the training
set containing 10,000 images, and the percentage in-
creases by increasing the number of training samples.
Table 4 also reports the average training times obtai-
ned using an Nvidia GeForce GTX 1080 with 12GB
of RAM. The time spent for training is approximately
linear with respect to the dimension of the training set.

6 CONCLUSIONS

We proposed a tool to create synthetic datasets to
study the problem of Image Based Localization gene-
rating Simulated Egocentric Navigations. The images
generated during the navigations are automatically la-
belled with 6DoF camera pose information. Using
this tool, we considerably reduce the cost of acqui-
sition and labelling time.To assess the usefulness of
the proposed tool we performed a study of localiza-
tion methods based on image retrieval and a Triplet
Network to learn a suitable image representation. The
best obtained results shown a mean position error of
0.40m and a mean orientation error of 7.72◦. The re-
sults can be useful to understand the amounts of data
required to tackle the problem and to fine tune the
thresholds used to generate triplets.

Future works can consider techniques which ex-
ploit the depth information to improve localization
performances. Moreover, we will also investigate
methods of domain adaptation to transfer the learned
embedding space to the case of real data.

ACKNOWLEDGEMENT

This research is supported by DWORD - Xenia Pro-
getti s.r.l. and Piano della Ricerca 2016-2018 linea di
Intervento 2 of DMI, University of Catania.

Image Based Localization with Simulated Egocentric Navigations

311

REFERENCES

Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., and Sivic,
J. (2016). Netvlad: Cnn architecture for weakly super-
vised place recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
5297–5307.

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I.,
Fischer, M., and Savarese, S. (2016). 3d semantic par-
sing of large-scale indoor spaces. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 1534–1543.

Engel, J., Stckler, J., and Cremers, D. (2015). Large-scale
direct slam with stereo cameras. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 1935–1942.

Glocker, B., Izadi, S., Shotton, J., and Criminisi, A. (2013).
Real-time rgb-d camera relocalization. In IEEE Inter-
national Symposium on Mixed and Augmented Reality
(ISMAR), pages 173–179.

Hartley, R. and Zisserman, A. (2003). Multiple view geome-
try in computer vision. Cambridge university press.

Hoffer, E. and Ailon, N. (2015). Deep metric learning
using triplet network. In International Workshop on
Similarity-Based Pattern Recognition, pages 84–92.

Kendall, A., Grimes, M., and Cipolla, R. (2015). Posenet:
A convolutional network for real-time 6-dof camera
relocalization. In IEEE international conference on
computer vision (ICCV), pages 2938–2946.

Pentland, A., Schiele, B., and Starner, T. (1998). Visual
context awareness via wearable computing. In Inter-
national Symposium on Wearable Computing, pages
50–57.

Ragusa, F., Furnari, A., Battiato, S., Signorello, G., and Fa-
rinella, G. M. (2018). Egocentric visitors localization
in cultural sites. In Journal on Computing and Cultu-
ral Heritage (JOCCH).

Santarcangelo, V., Farinella, G. M., Furnari, A., and Batti-
ato, S. (2018). Market basket analysis from egocentric
videos. In Pattern Recognition Letters, volume 112,
pages 83–90.

Schöps, T., Engel, J., and Cremers, D. (2014). Semi-dense
visual odometry for ar on a smartphone. In IEEE In-
ternational Symposium on Mixed and Augmented Re-
ality (ISMAR), pages 145–150.

Spera, E., Furnari, A., Battiato, S., and Farinella, G. M.
(2018). Egocentric shopping cart localization. In
International Conference on Pattern Recognition
(ICPR), pages 2277–2282.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818–
2826.

Torralba, A., Murphy, K. P., Freeman, W. T., Rubin, M. A.,
et al. (2003). Context-based vision system for place
and object recognition. In International Conference
on Computer Vision (ICCV), volume 3, pages 273–
280.

Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsen-
beck, S., and Cremers, D. (2017). Image-based locali-
zation using lstms for structured feature correlation. In
International Conference on Computer Vision (ICCV),
pages 627–637.

Weyand, T., Kostrikov, I., and Philbin, J. (2016). Pla-
net - photo geolocation with convolutional neural net-
works. In European Conference on Computer Vision,
pages 37–55.

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

312

