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By analyzing the individual travel characteristics of persons, it occurs that most trips are not journeys to other
cities or countries but short trips, as the daily trip to work or the weekly meeting at the gym. For those trips,
people know the basic conditions, as e.g., the bus driving schedule or the journey duration and it represents
more effort to plan the trip beforehand, than just remember the data. But what if there is a problem, like a
stalled train or a car crash on the route. Unpredictable ocurrences might be noticed too late and affect the
parameters of the trip. A travelling assistant that is able to anticipate regular trips and that warns in case of
problems, without requesting dedicated user input might be a solution.

In this paper we consider the problem of creating an assistant based on the context information captured from
a smartphone. We discuss approaches based on histogram evaluation, a Bayesian network and a multilayer
perceptron that allow the prediction of locations and activities given a time and a date. These approaches are
benchmarked and compared to each other to find the solution that provides the best results in prediction quality

and training speed.

1 INTRODUCTION

Providing assistance in the planning of trips is an ela-
borately researched topic and subject of a large num-
ber of publications. Therein the focus often lies on
long journeys, like trips to different countries or to
another city. Often the assistance only extends to pro-
viding input form proposals, as proposing the name
of a city that a person often visited in the past.

Instead we focus on regular trips on a daily base,
as the daily trip to work or the weekly meeting at the
gym. These are trips a person travels repeatedly and
the basic conditions of the route, as e.g., the bus line
or the departure time, are learned and memorized.

If a person uses the bus for the daily ride to work
she knows that the bus departs at 8 a.m. and that she
has to leave the house at 7.55 a.m. A person following
this routine every day will not check the route for pos-
sible problems, as e.g., a bus cancellation, since most
of the time it is unnecessary effort.

Our interest is focused of answering the following
question: Is it possible to observe daily routes and au-
tomatically provide information about potential pro-
blems without additional user interaction?

We build an Android App that runs on mobile de-
vices and captures context information (timestamp,
location, calendar information, etc.) every 15 minu-
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tes. We notice that providing automatic travel assis-
tance is about knowing the location and activity of a
person for every point in time — particularly for times
lying in the future. Thus the challenge is to identify
an approach that predicts the context of a person gi-
ven a date in the future, while trained with data from
the past. Besides, additional constraints regarding the
learning speed and the accuracy need to be conside-
red, since a user can not train the system half a year
before actually benefit from it. Also the adaptability
of the system is important to react on changes in the
daily routine as moving to another city or quitting the
job.

To enable more personalized travel assistance we
additionally provide a mechanism to extend the loca-
tion information by recognizing and labeling them as
home or work location.

After the introduction in Section 1, we provide an
overview of existing similar approaches in Section 2.
In Section 3 we introduce three different approaches
that are able to predict the activity and location of
a person based on training data. We introduce a
rating-based mapping function that allows the identi-
fication of the home and work location and provide
benchmark results of the considered approaches in
Section 5. A conclusion of the results and a short out-
look is given in Section 6.
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2 RELATED WORK

The concept of personal travel assistants (PTA) is
introduced in (Foundation for Intelligent Physical
Agents, 2001). They describe an agent that learns and
follows the user’s instructions and acts like a real phy-
sical personal assistant. In this way the agent supports
the user in trip planning and execution.

Thereby the PTA aims at rather more comprehen-
sive journeys than daily travel and the training is ba-
sed on formerly done trips instead of continuously
captured device context information.

Automatic travel assistance systems have been
subject of research for years. In that context, existing
travel assistance systems can be sorted into two (non-
disjoint) sets differing in the type of assistance: There
is the set of travel assistants that support users at the
planning of journeys and, second, the set of assistants
that accompany the journey. These systems observe
the journey and alert users in case of problems.

Examples for the first set are given in (Ambite
etal., 2002; Waszkiewicz et al., 1999; Coyle and Cun-
ningham, 2003). The PTAs described there support
the user in the travel planning process. They learn
user preferences from journeys and trips in the past
and are partially able to deduce travel information like
the departure location from the calendar or a predefi-
ned user profile. The approach presented in (Ambite
et al., 2002) is also part of the second set, since it is
able to observe the journey just in time to notify about
upcoming problems.

In (Ambite et al., 2002), the authors present a tra-
vel assistant that supports the user in the travel plan-
ning process and automatically observes the planned
route afterwards. During the planning process the
assistant is able to compare different travel options,
as e.g., comparing the prices for taking the taxi or
renting a car. The assistant supports the process of
making choices by providing necessary and prepro-
cessed information. After the planning of a trip the
assistant continuously monitors the route to notify
promptly in case of, e. g., flight cancellations or other
unpredictable problems. Especially the PTA descri-
bed in (Coyle and Cunningham, 2003) focuses on the
planning of flights and describes the assistance in the
context of a booking system. These systems are rather
aimed at global journeys and not local trips.

The authors of (Dillenburg et al., 2002) introduce
the concept of an Intelligent Travel Assistant (ITA).
They describe a portable device that assists in travel-
ling by uniting a number of services, as ride sharing,
on-line traffic information and electronic payment.
Today this functionality is commonly provided by
smartphones.
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The device learns the user preferences from on-
going interactions and thus from former trips. The
departure point is assumed to be the current location
and the destination point can optionally be selected
from a predefined list of locations. In contrast to the
former approaches, the one presented in (Dillenburg
et al., 2002) aims at trips on a regular daily basis, but
the evaluation of context information like the calendar
of a user or the stay history are not part of the concept.

(Tran et al., 2012; Wolf et al., 2001; Ashbrook
and Starner, 2002) introduce approaches that are able
to evaluate the GPS data of a person to make a loca-
tion prediction given a date and a time. Although the
approach can be used to enable automatic route plan-
ning by using the predicted locations as arrival and
departure locations of a route, the actual functionality
is not part of the concept. Additionally the approa-
ches are not able to predict the activity of a person or
to autonomously provide a mapping of semantically
meaningful names to places.

A more comprehensive evaluation of the context
for location prediction is discussed in (Bhattacharya
et al., 2008; Kim and Cho, 2014). They also include
sensor data, like wifi, bluetooth or the acceleration
sensor to allow a more accurate location estimation.
However, neither the evaluation of the calendar for
the activity estimation is part of the concept nor the
direct application to automatic and autonomous mo-
bility planning.

There exists different approaches for location pre-
diction based on Markov models (Wang, 2012), neu-
ral networks (Mozer, 1998) and Bayesian networks
(Nazerfard and Cook, 2013). These approaches are
limited to the prediction of locations and do not cover
the prediction of activities or additional context infor-
mation. Automatic and autonomous mobility plan-
ning is a possible use case scenario, but they provide
no evaluation that benchmarks the actual appropria-
teness for automatic and autonomous mobility plan-
ning. Also the problem of the data acquisition for the
activity and location prediction is not covered, since
they focus on the location prediction methodology.

There is a lack of PTAs that support the daily tra-
velling in the background without requesting user in-
teraction. User preferences are often derived from the
planning of former trips instead of the device context
or calendar entries. Thereby propositions are strongly
connected to a certain type of route. In general, the
assistance rather covers the planning process of a cer-
tain trip than the proposal or prediction of potential
trips. There exists different approaches that are able
to make a location prediction, but their suitability for
mobility planning has not been tested yet. Additio-
nally these approaches focus on the prediction of lo-
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cation data and do not consider the activities of per-
sons. A combination of different approaches to pro-
vide the best results for the purpose of automatic and
autonomous mobility planning is a key concern of this

paper.

3 APPROACH

The activity prediction depends on the observation of
the context of a person. The idea is to analyze the
daily routine of a person by frequently capturing a tu-
ple of values in the following called context tuples.

Equation 1 defines the structure of a context tu-
ple ¢ € TP, with a timestamp ¢ defining a time
and a date, a movement state m € {IN_VEHICLE,
ON_BICYLE, ON_FOOT, RUNNING, STILL, TIL-
TING, UNKNOWN, WALKING}, an activity @ and
a location [ given in geocoordinates. 7P represents
the set of all context tuples.

c=(t,mya,l) (D

Captured context tuples are used to train and bench-
mark the regarded prediction methods. To determine
repeated characteristics classification relations cate-
gorize context tuples as follows: The timestamp va-
lues can be classified by the hour of the day classifier
(~hour-of day)- It sorts the time values into 24 equiva-
lence classes corresponding to the hours of the day.
The date part of a given timestamp can be classified
by the weekday (~\yeekday) Classifier that sorts the date
values into seven equivalence classes according to the
weekdays. A month classifier (~ o) allows the par-
titioning of dates by month and the day of the month
classifier (~gay_of monsn) distinguishes for every day of
the month one equivalence class.

3.1 Sliding Window

The classification relations sort the set of captured
context tuples 7 C ‘7P into a number of equivalence
classes. So the first approach to predict activity loca-
tion pairs is based on the quantity analysis of context
tuples in a certain equivalence class.

Given a timestamp ¢ and an equivalence relation
~, it is possible to evaluate the set of captured context
tuples using the max function described in Equation 2.
The max function returns the activity location tuple
that occurs most often in the equivalence class [c]~.
defined by ~ and selected by ¢ with ¢ = (¢r,m’,d’,l")
for arbitrary m’,d’,/l’.
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Table 1: The Sliding Window Variants.

[ operation mode | di

ID hour of the day

2D hour of the day, weekday

3D_1 hour of the day, weekday, day of month

3D2 hour of the day, weekday, month

4D hour of the day, weekday, day of month, month

max(T,~,t) = argmax |{(t',m,a,1) |
m,a,l

(t',m,a,l) € [c]. Nc= (t,m,a,l) € T}’ )

We extend the max function of Equation 2 to max*
that selects a random context tuple in the case that
there is no unique maximum and there are multiple
activity location pairs with a maximum number of
occurrences.

The whole prediction process using the sliding
window approach can be summarized as follows: The
classification relations define a number of equivalence
classes. So, e.g., the weekday classification relation
spans a number of seven different equivalence classes
and sorts the context tuple by the weekday of their
timestamp.

A prediction request contains a timestamp ¢ that
must be matched with the correct activity location
prediction pair. The timestamp is used to select the
equivalence class spanned by the classification rela-
tion, such that an arbitrary context tuple with times-
tamp ¢ is part of this equivalence class.

In the next step a histogram of activity location
pairs for the considered equivalence class is built to
identify the pair that occurs most often and this is ta-
ken as prediction result.

To restrict the size of the histogram and allow a
fast adaption we introduce a sliding window that li-
mits the context tuples that are used to saturate the
histogram. Equation 3 provides this functionality.

restrictyg.(T,A) ={c=(t,m,a,l) €T |t €A} (3)

Thereby A defines the interval of the sliding window.
Instead of using only one of the introduced classi-
fication relations, combinations are considered to in-
crease the number of equivalence classes (Table 1).
The reason for testing different combinations is to find
a configuration that ensures an adequate saturation of
the underlying histogram without oversaturating it.

3.2 Bayesian Network

The Bayesian approach is based on learning proba-
bility distributions of stochastic variables. In this
case the considered variables have discrete domains
so they can be modeled as multinomial variables.
A Bayesian network is then given as a triple A/ =



\

movement state

Figure 1: The Bayesian network.

location

(V,A, P) with a set of — in this case multinomial — va-
riables V, a function A : V — 2V defining relations be-
tween variables and a function P = {P(v|vi, -+ ,v,) :
veV,{vi,--,v,} € V"} assigning a probability dis-
tribution to variables.

In the Bayesian network approach a five node net-
work is used with relations as depicted in Figure 1.
Thereby we make some assumptions about the rela-
tions between the values of a context tuple. So we
assume that the movement state depends on the time
and date, since, e.g., at night when a person is sleep-
ing there is usually no movement. The activity de-
pends on the date, the time and the movement state.
The idea is that sport activities are rather related to
movement states like walking or running. Finally the
location depends on all of the aforementioned states.

We learn the probability distributions using maxi-
mum likelihood estimation.

The prediction process then comprises the evalua-
tion of Equation 4, where L,A,M and T are the proba-
bility variables representing the probability distributi-
ons of location, activity, movement-state and times-
tamp as learned from the training set. A prediction
result is then the most probable location [, activity a,
movement-state m tuple given a certain timestamp ¢.

argmax[P(L=1,A=a,M=m|T =¢)] (@)

La,m
3.3 Multilayer Perceptron

For the multilayer perceptron based approach a three
layer perceptron with only one hidden layer consis-
ting of 500 hidden nodes is applied. The input nodes
encode the equivalence classes of the classification re-
lation, while in the output layer every node represents
a certain activity location pair. That means the input
vector X has for every equivalence class of the clas-
sification relations one field. A field that evaluates to
1 means that the corresponding value determined by
the classification relation is set. So there exists a sta-
tic number of 74 input nodes and a variable number of
output nodes depending on the locations and activities
in the training set.

The training of the multilayer perceptron is done
by feeding the training data into a regular backpropa-
gation algorithm as follows: For a training tuple the
values of the classification relations can be evaluated

Context-based User Activity Prediction for Mobility Planning

to create the input vector X. Since we have the acti-
vity/location pair and every possible activity/location
pair is represented by a field in the output vector the
output vector Y can be also deduced from the training
set.

3.4 Place Name Mapping

The subject of this section is to map a geocoordinate
pair to a semantically meaningful place name.

To decide what geocoordinate belongs to a cer-
tain area a minimal separation distance is introduced.
Two points are considered as different places if the
distance between these points is greater than a cer-
tain threshold. In practice a separation value must be
estimated. In our case 45 meters provided adequate
results.

Another problem is to distinguish semantically
meaningful place names and personally semantically
meaningful place names. The difference lies in the
meaning to a person. So e.g. an address is a semanti-
cally meaningful place name for a certain pair of ge-
ocoordinates, but home or work depends on the per-
sonal context of a person. Different persons consider
different places as their home or work locations.

We determine the most important personal seman-
tically meaningful places as the home and the work
location.

The place name mapping follows a rating function
based approach. Thereby every context tuple is rated
with respect to its potential of being the home or work
location. Then the location of the context tuple with
the highest rating is taken as the prediction result.

The home location can be derived by taking the
most frequently visited location. Since commonly
persons sleep at home over night, the most frequen-
ted location of a persons is still her home location.

ph(l,T) _ ‘{P | pP= (t/7m,,a]:l/) ETANI'= l}| 3)

The rating function for deriving the work location
is based on a similar approach but has an additional
constraint. So we take the most frequented location
that is not the home location and that has a certain
uniformity in the stay intervals.

p(L,T)=p;- (1 _ |{P\P:(tﬂm’,alyl/]zeT/\d(l):d(l/)}‘> ©

The d function measures the length of the stay at
a position represented by the geocoordinates /.

Since there are always small variations in the work
start and work end times two intervals are considered
as equal if they differ only up to a certain value € in
their limits. For our experiments, we set the parameter
€ to 5 minutes.
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4 IMPLEMENTATION

The implementation can be divided into three major
parts: The Android App that captures the context tu-
ples, the implementation of the discussed approaches
— it trains and benchmarks the different approaches
and thus enables the evaluation — and a context tuple
generation tool that allows the creation of training sets
covering an arbitrary time interval.

The Android App provides two core features: It
captures the context tuples and uploads them to a ser-
ver.

Thereby the App runs as background process and
captures every 15 minutes the GPS location, the
movement-state, that is requested from the Android
framework, the time and the current calendar entry.
The calendar entry is used to deduce the activity of a
person. The automatic upload to a server is triggered
once per day at 11 p.m.

The evaluation program can be split into two main
parts. The first part downloads the captured context
tuples from the server and applies a preprocessing
chain. The preprocessing chain comprises a number
of tools: So it applies an address look-up tool that
uses geocoders to translate the GPS coordinates into
addresses. A merge tool merges locations that are not
considered as different semantic places (see Section
3 minimal separation distance) and a time filter tool
that can be used to restrict the considered context tu-
ples to a certain time interval.

The second part of the program allows the bench-
marking of the approaches. It divides the set of con-
text tuples into two equal parts and uses the first part
to train the systems and the second part to benchmark
the prediction quality. Additionally it provides functi-
onality for the result representation.

The context tuple generator works by simulating
the capturing of a context tuple every 15 minutes.
Starting with an empty calendar we consecutively fill
the empty spots with different types (regular and uni-
que) of appointments A periodic dropper drops ap-
pointments with a fixed frequency, while a random
dropper creates noise by dropping appointments at ar-
bitrary positions in the calendar. After filling the ca-
lendar with these types of appointments two special
droppers are applied: The work dropper drops ap-
pointments at every empty spot in the calendar during
work hours and the home dropper fills the remaining
gaps in the calendar.

Based on the created calendar the generator pro-
gram simulates the capturing process and outputs the
corresponding set of context tuples.
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Figure 2: Number of context tuples per user.

S EVALUATION

We provide two different types of benchmark data.
Benchmark data created by a generator tool and con-
text tuples captured over approximately 5 months by
an Android App in real world situations.

We used the context tuple generator of Section 4
to generate two data sets: The 6 months set consists of
16,561 context tuples and the 2 years set consists of
59,341 context tuples. The reason for testing the first
set is to provide benchmark data covering a time pe-
riod similar to the captured real world data, while the
second set allows to benefit from the advantage of ge-
nerating benchmark data covering a much longer time
period and thus provide a much larger set of context
tuples than possible by capturing a context tuple every
15 minutes over a period of 5 months.

The second type of benchmark data is cap-
tured in the real world. 8 persons agreed to
install the App on their smartphone that cap-
tures a context tuple every 15 minutes over a
period of 5 months. That means there are a the-
oretical number of 4 tracking points per hour X
24 hours aday x 30 mean length of a month X
5 months capturing interval = 14,880 context tuples.
Figure 2 shows that the ideal number of context
tuples could not be captured in any case. Problems
include smartphones running out of energy, the theft
of a smartphone, but also missing GPS signal cause
irregularities in the captured data.

The sets of context tuples are divided into two
equal parts, where the first part is used to train the
prediction approach, while the second part is used to
test the correctness of predictions.

5.1 Results

For the analysis of the considered activity/location
prediction methods we follow the order of their in-
troduction.



Table 2: Sliding Window results sim. data.

Mode Correctness 6 month  Correctness 2 years  Correctness

1D 81.97% 75.67% 78.82%
2D 92.84% 80.4% 86.62%
3D_1 23.48% 77.47% 62.22%
3D2 11.88% 60.85% 36.37%
4D 0% 0% 0%

5.1.1 Sliding Window

Applying the different sliding window variants to the
simulated benchmark data sets produces prediction
results as depicted in Table 2. The best results are pro-
vided by the 2D approach that uses the hour_of-day
classifier and the weekday classifier. It is able to pre-
dict about 86% of the activity location pairs correctly.
The prediction quality of the 3D_x and the 4D appro-
aches decreases, since the number of training context
tuples does not saturate the underlying histogram ade-
quately.

That partially explains the bad results of applying
the sliding window variants on the real world data sets
as shown in Table 3. The best results are provided
by the 1D approach with the least number of spanned
equivalence classes, but even then the prediction qua-
lity is too inaccurate to use it for the activity location
prediction in real world scenarios.

We tested the sliding window approach with diffe-
rent window lengths, but since the number of context
tuples in the real world data set was too low to satu-
rate the histogram adequately, we used the full range
of context tuples.

On the synthetic data set we found a global opti-
mum for the sliding window value at half of the con-
sidered period. So for the 6 month data set it is suf-
ficient to consider the last 3 months of context tuples
while on the 2 years data set 12 months must be con-
sidered.

5.1.2 Bayesian Network

The Bayesian approach shows a much better overall
performance on the simulated data as well as on the
real world data. By applying the Bayesian approach
on the simulated data we get a prediction quality of
over 80% (Figure 3) and on the real world data it is
still around 40% (Figure 4), if there is a reasonable
training set. Yet, a 100% prediction rate is not possi-
ble since there exist unique events in both, the training
data and the real world data.

The poor prediction results for the users D, F' and
G show, that also the Bayesian approach has a mini-
mal requirement of training data sets that must be rea-
ched to ensure a feasible prediction quality. However,
overall the results are much better on small training
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sets than the sliding window approach and we do not
need to estimate parameters, as the sliding window
value in the histogram based approach or the learning
parameters in the multilayer perceptron approach.

If we consider only the users A, B, C, E and F in
the real world data set (Figure 4), which provide 98%
of the tracking points the overall prediction quality is
41.95%. So given a reasonable time period to train
the Bayesian network it beats the sliding window ap-
proach.

5.1.3 The Multilayer Perceptron

A problem of the multilayer perceptron approach is
to find suitable learning parameters that optimize the
prediction quality as best as possible. We need to de-
termine a suitable learning rate and an epoch value.
The epoch represents the number of training iterati-
ons, while the learning rate determines the influence
of each training iteration. Given a training set 7' of
size k € N and an epoch [ € N : [ > k we randomly
pick a value in T [ times and train the system. With
I > k we ensure that every value in T is potentially
used for training and we do not restrict the training
set to a smaller subset.

In the following we use two different values for /:
10-k and 100 - k for the simulation and the real world
data, respectively. In this way every single context
tuple has the chance of being used ten times in the
first variant and a hundred times in the second variant.
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Table 3: Sliding Window results real world data.

Mode A B C D E F G H Overall
1D 217% 0.55% 1.49% 1.67% 0.66% 2.54% 135% 151% 1.49%
2D 0.30% 0.06% 045% 1.67% 0.12% 2.54% 1.35% 0.54% 0.88%
3D_1 0% 0% 0.05% 0% 0% 2.54% 1.35% 0% 0.49%
3D2  0.01% 0% 0.07% 0% 0% 254% 1.35% 0.54% 0.56%
4D 0% 0% 0.05% 1.67% 0.03% 2.54% 1.35% 0% 0.71%
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Figure 5: Multilayer perceptron user data x 10 epoch.

Nevertheless, there is still the problem of finding
a suitable learning rate e € (0,1]. If it is chosen too
big we overstep the minimum that optimizes the result
and if we choose it to small it needs too many itera-
tion to reach the minimum. Thus finding a suitable
learning rate is best done by comparing a number of
aspirants.

An overview of the overall correctness using the
synthetic benchmark data for different epoch values
and learning rates is given in Table 4.

Table 4: MLP benchmark results of the simulated data.

learning rate  0.05 0.2 0.4

%10 3.3% 6% 3%
x 100 4.5% 2.25% 4.63%

The best results for the 10 % k data sets is provided
by a learning rate of 0.2, while for an epoch of 100 x k
the best results are provided by a learning rate of 0.4.

The benchmark results for applying the multilayer
perceptron approach on the real world data is depicted
in the Figures 5 and 6. The first shows the result for
an epoch of 10 times the number of training context
tuples and the second figure shows the results for 100
times the number of training context tuples. Both re-
sults are very poor and similar to the results of the
synthetic benchmark data.

The prediction quality strongly depends on the
correct choice of the parameters. Thereby the choice
of the parameters depends both on each other and the
underlying training data. That means a good learning
rate for a certain epoch value is not necessarily a good
learning rate for another epoch value. Additionally a
good parameter pair for a certain training set doesn’t

574
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Figure 6: Multilayer Perceptron user data x 100 epoch.

Table 5: Correctness of home and work location prediction.

Location Correctness
home 62.5%
work 37.5%

necessarily provide good results for another training
set.

To ensure good prediction results using the multi-
layer perceptron much more training data is necessary
than can be captured by a common user. This will re-
duce the influence of training parameters on the pre-
diction results.

5.2 Place Name Mapping

Regarding the benchmark data we can derive the cor-
rect home location of a person with a probability of
62.5%. The correct work location is still estimated
with a correctness of 37.5% (cf. Table 5). Especi-
ally the home and work location estimation of users
that provide only a low number of tracking points D,
F and G in Figure 2 is erroneous. Thereby for users
F, G the home location was assumed to be the work
location.

If we consider only those users that provide a rea-
sonable number of tracking points we get success ra-
tes of 100% for the home location and still 62.5% for
the work location.



6 CONCLUSION

In this paper we examined the question whether it is
possible to automatically plan a trip by deriving the
departure location, the arrival location and the arrival
or departure time from a user’s device context.

We reduced the problem of providing travel as-
sistance to the problem of predicting the activity and
location of a person given a certain time and date.

We tested three different approaches providing
activity/location predictions and compared them to
each other. The best results are provided by the Bay-
esian network based approach that was able to make
correct predictions in about 40% of the cases. It also
provides the best results with respect to the training
speed, since it has the best prediction quality even on
a small number of context tuples. A system based on
the Bayesian approach can be used after a short initi-
alization and training period.

We further introduced an approach to identify the
home and work location of a person based on rating
functions. We were able to estimate the home location
in about 62.5% of the cases and the work location in
about 37.5% of the cases.

For future work we plan to tweak the multilayer
perceptron by testing different architectures. Eva-
luation results suggest that certain architectures that
work good on a small number of context tuples fail
on a great number of context tuples and vicit versa. A
combination of different architectures chosen with re-
spect to the number of available context tuples could
solve the problem.
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