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Abstract: The paper describes a deep network based object detector specialized for ball detection in long shot videos.
Due to its fully convolutional design, the method operates on images of any size and produces ball confidence
map encoding the position of detected ball. The network uses hypercolumn concept, where feature maps from
different hierarchy levels of the deep convolutional network are combined and jointly fed to the convolutional
classification layer. This allows boosting the detection accuracy as larger visual context around the object of
interest is taken into account. The method achieves state-of-the-art results when tested on publicly available
ISSIA-CNR Soccer Dataset.

1 INTRODUCTION

An ability to accurately detect and track the ball in
a video sequence is a core capability of any system
aiming to automate analysis of the football matches
or players’ progress. Our method aims to solve the
problem of fast and accurate ball detection. It is de-
veloped as a part of the computer system for football
clubs and academies to track and analyze player per-
formance during both training session and regular ga-
mes. The system is intended to help professional foot-
ball analysts to evaluate the players’ performance, by
allowing automatic indexing and retrieval of interes-
ting events.

Detecting the ball from long-shot video footage of
a football game is not trivial to automate. The object
of interest (the ball) has very small size compared to
other objects visible in the observed scene. Due to
the perspective projection, its size varies depending
on the position on the play field. The shape is not
always circular. When a ball is kicked and moves at
high velocity, its image becomes blurry and elliptical.
Perceived colour of the ball changes due to shadows
and lighting variation. The colour is usually similar
to the colour of white lines on the pitch and someti-
mes to players’ jerseys. Other objects with similar
appearance to the ball can be visible, such as small
regions near the pitch lines and regions of players’
bodies such as a head. Situations when the ball is in
player’s possession or partially occluded are especi-
ally difficult. Figure 1 shows exemplary image pat-

ches illustrating high variance in the ball appearance
and difficulty of the ball detection task.

Traditional ball detection methods, e.g. based on
variants of circular Hough transform, deal well with
situations where ball is visible as a single object, se-
parated from the player body. They have problems to
detect the ball when it’s possessed or partially occlu-
ded by a player. But for players performance ana-
lysis purposes, the most informative are frames sho-
wing players in close contact with the ball. In this
paper we present a ball detection method expanding
upon the state-of-the-art deep convolutional object
detection network. The method operates on a single
video frame and is intended as the first stage in the
ball tracking pipeline. Our method does not have li-
mitations associated with earlier methods based on a
circular Hough transform. It can deal with situations
where the perceived ball shape is not circular due to
the motion blur. It detects the ball when it’s in a close
contact with or partially occlude by a player’s body.
It can detect multiple balls, located relatively close to
each other, in the same image. Another benefit of the
proposed method is its flexibility. Due to the fully
convolutional design it can operate on images of any
size and produces the ball confidence map of a size
proportional to the input image. The detection net-
work is designed with performance in mind. Evalu-
ation performed in Section 4 proves that our method
can efficiently process high definition video input in a
real time.
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Figure 1: Exemplary patches illustrating high variance in ball appearance and difficulty of the ball detection task.

2 RELATED WORK

The first step in the traditional ball detection met-
hods, is usually the process of background sub-
traction. It prevents ball detection algorithms from
producing false detections on the static part of the
image such as stadium advertisement. The most com-
monly used background subtraction approaches are
based on chromatic features (Gong et al., 1995; Ali
et al., 2012; Kia, 2016) or motion detection (D’Orazio
et al., 2002; D’Orazio et al., 2004; Leo et al., 2008;
Mazzeo et al., 2012). Segmentation methods based
on chromatic features use domain knowledge about
the visible scene: football pitch is mostly green and
the ball mostly white. The colour of the pitch is usu-
ally modelled using a Gaussian Mixture Model and
hardcoded in the system or learned. When the video
comes from the static camera, motion-based segmen-
tation is often used. For computational performance
reasons, a simple approach is usually applied based on
an absolute difference between consecutive frames or
the difference between the current frame and the mean
or median image obtained from a few previously pro-
cessed frames (Higham et al., 2016).

After the background segmentation, heuristic cri-
teria based on chromatic or morphological features
are applied on the resulting blobs to locate the ball.
These criteria include blob size, colour and shape
(circularity, eccentricity) (Gong et al., 1995). Vari-
ants of Circle Hough Transform (Yuen et al., 1990),
modified to detect spherical rather than circular ob-
jects, may be used to verify if a blob contains the
ball (D’Orazio et al., 2002; D’Orazio et al., 2004;
Leo et al., 2008; Poppe et al., 2010; Halbinger and
Metzler, 2015). A two-stage approach may be em-
ployed to achieve real-time performance and high de-
tection accuracy (D’Orazio et al., 2002; Leo et al.,
2008; Mazzeo et al., 2012). In this scenario the re-
gions that probably contain the ball are found (ball
candidates extraction). Then, the candidates are vali-
dated (ball candidate validation).

In (Ali et al., 2012) straight lines are detected
using kernel-based Hough transform and removed
from the foreground image to overcome problem of
ball interfusing with white lines on the pitch. Very
similar method is proposed in (Rao and Pati, 2015).
(Gong et al., 1995; Pallavi et al., 2008; Halbinger and
Metzler, 2015) use multiple successive frames to im-
prove the detection accuracy. In (Gong et al., 1995),
detection is confirmed by searching a neighbourhood
area of each ball candidate in the successive frame.
If the white area with similar size and circularity is
found in the next frame, the ball candidate is valida-
ted. In (Pallavi et al., 2008) authors extract ball can-
didate positions using morphological features (shape
and size of the ball). Then, a directed weighted graph
is constructed from ball candidates in successive fra-
mes. The vertices of the graph correspond to candi-
date ball positions and edges link candidates found in
consecutive frames. The longest path in the graph is
computed to give the ball trajectory.

Ball detection methods using morphological fea-
tures to analyze shape of blobs produced by back-
ground segmentation, fail if a ball is touching a player.
See bottom row of Fig. 1 for exemplary images where
these methods are likely to fail. (Halbinger and Metz-
ler, 2015) addresses this limitation by using two-stage
approach. First, the ball is detected in not occluded si-
tuations, where it appears as a single object. This is
done by applying background subtraction to filter out
temporally static part of the image. Then, foreground
blobs are filtered by size and shape to produce ball
candidates. Ball candidates are verified by examining
a few successive frames and detecting robust partial
ball trajectories (tracklets). When the first stage de-
tector is not able to locate the ball, the second stage
detector specialized for partially occluded situations
is used. Ball candidates are found using a Hough cir-
cle detector. Foreground object contours are extracted
and their Freeman chain code is examined. If a ball
candidate corresponds to a ’bump’ in the foreground
object silhouette it is retained as a true match.

In recent years a significant progress was made
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in the area of neural-network based object detection.
Deep neural-network based YOLO detector (Red-
mon et al., 2016) achieves 63.4 mean Average Pre-
cision (mAP) on PASCAL VOC 2007 dataset, whe-
reas traditional Deformable Parts Models (DPM) de-
tector (Felzenszwalb et al., 2010) scores only 30.4.
Current state-of-the-art object detectors can be cate-
gorized as one-stage or two-stage. In two-stage detec-
tor, such as: Fast R-CNN (Girshick, 2015) or Faster
R-CNN (Ren et al., 2015), the first stage generates a
sparse set of candidate object locations (region propo-
sals). The second stage uses deep convolutional neu-
ral network to classify each candidate location as one
of the foreground classes or as a background. One-
stage detectors, RetinaNet (Lin et al., 2017), SSD (Liu
et al., 2016) or YOLO (Redmon et al., 2016), do not
include a separate region-proposal generation step. A
single detector based on deep convolutional neural
network is applied instead.

(Speck et al., 2017) uses convolutional neural net-
works (CNN) to localize the ball under varying en-
vironmental conditions. The first part of the network
consists of multiple convolution and max-pooling lay-
ers which are trained on the standard object classifica-
tion task. The output of this part is processed by fully
connected layers regressing the ball location as pro-
bability distribution along x- and y-axis. The network
is trained on a large dataset of images with annotated
ground truth ball position. The network is reported
to have 87% detection accuracy on the custom made
dataset. The limitation of this method is that it fails if
more than one ball, or object very similar to the ball,
is present in the image. Our method does not have this
limitation.

(Reno et al., 2018) presents a deep neural net-
work classifier, consisting of convolutional feature ex-
traction layers followed by fully connected classifica-
tion layer. It is trained to classify small, rectangular
image patches as ball or no-ball. The classifier is used
in a sliding window manner to generate a probability
map of the ball occurrence. The method has two dra-
wbacks. First, the set of negative training examples
(patches without the ball) must be carefully chosen
to include sufficiently hard examples. Also the rec-
tangular patch size must be manually selected to take
into account all the possible ways the ball appears on
the scene: big or small due to the perspective, sharp
or blurred due to its speed. The method is also not op-
timal from the performance perspective. Each rectan-
gular image patch is separately processed by the neu-
ral network using a sliding-window approach. Then,
individual results are combined to produce a final ball
probability map. Our method, in contrast, requires
only a single pass of an entire image through the fully

convolutional detection network.

3 DEEP NETWORK-BASED BALL
DETECTION METHOD

The method presented in this paper, called DeepBall,
is inspired by recent advances in a single-pass deep
neural network based object detection methods, such
as SSD (Liu et al., 2016) or YOLO (Redmon et al.,
2016). A typical architecture of a neural network-
based one stage object detector is modified, to make
it more appropriate for the ball detection task. Modi-
fications aim at increasing accuracy of locating small
objects and reducing the processing time. The net-
work is designed to take larger visual context into the
consideration to correctly classify fragments of the
scene containing objects similar to the ball. This is
achieved by using hypercolumn concept introduced in
(Hariharan et al., 2015). In order to increase the per-
formance, we removed unnecessary components ty-
pical for single stage neural network object detector.
Multiple anchor boxes, with different size and aspect
ratios, are not needed as we detect objects from a sin-
gle class (the ball) with a limited shape and size vari-
ance. Localization module, predicting the centre and
size of object bounding boxes relative to a grid cell
is unnecessary, as proposed method produces a dense
confidence map predicting the ball location on a pixel
level.

The method takes a video frame of any resolution
as an input and produces scaled down ball confidence
map encoding probability of ball presence at each lo-
cation. The size of the output ball confidence map
is h f × w f , where h f and w f equal to the original
image height and width divided by the scaling fac-
tor k (k = 4 in our case). Position in the ball confi-
dence map with coordinates (x f ,y f ) corresponds to
the position (bk(x f − 0.5)c,bk(y f − 0.5)c in the in-
put image. See Fig. 2 for an exemplary input image
and corresponding ball confidence map computed by
the trained network. The actual ball position is re-
trieved from the confidence map using the following
approach. First, the location with the highest confi-
dence is found in the ball confidence map. If the con-
fidence is lower than a threshold θ, no balls are de-
tected. Otherwise, the location with the highest con-
fidence is returned. In ’training game mode’, where
more than one ball can be present in the image, more
balls are detected. This is done by zeroing-out confi-
dence map values at the previously found maximum
and its close neighbourhood (non-max suppression)
and searching for the second global maximum. The
process is repeated until no new maximum with con-
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Figure 2: Part of the exemplary input frame from the test se-
quence with highlighted ball position (left) and correspon-
ding ball confidence map (right).

fidence above the threshold θ can be found. Pixel
coordinates of the ball (xp,yp) in the input frame are
calculated using the following formula: (xp,yp) =
(bk(x f −0.5)c,bk(y f −0.5)c, where (x f ,y f ) are coor-
dinates in the ball confidence map with the maximum
confidence and k = 4 is a scaling factor. The thres-
hold θ is set experimentally, as the value maximizing
detection accuracy on the validation set.

Table 1: Detailes of DeepBall network architecture. Output
size is specified in the format: (number of channels, height,
width). Each convolutional layer is followed by BatchNorm
layer and ReLU non-linearity (not show for brevity). All
convolutions use same padding and stride one (except for
the first one).

Block Layers Output size
Conv1 Conv: 8 7x7 filters

stride 2
Conv: 8 3x3 filters
Max pool: 2x2 filter (8, 268, 480)

Conv2 Conv: 16 3x3 filters
Conv: 16 3x3 filters
Max pool: 2x2 filter (16, 134, 240)

Conv3 Conv: 32 3x3 filters
Conv: 32 3x3 filters
Max pool: 2x2 filter (32, 67, 120)

Conv4 Conv: 56 3x3 filters
Conv: 2 3x3 Filters (2, 268, 480)

Softmax Softmax (2, 268, 480)

Network Architecture. The diagram depicted in
Fig. 3 shows components of our ball detection net-
work and size of outputs of each block. Note that
output size depends on the size of the input image,
as the network is fully convolutional and can operate
on the image of any size. The input image is proces-
sed by three convolutional blocks (Conv1, Conv2 and
Conv3) producing convolutional feature maps with
decreasing spatial resolution and increasing number
of channels. In contrast to a typical convolutional
network design, the output from each convolutional
block is concatenated and jointly fed into the final
classification layer. Feature maps produced by con-
volutional blocks Conv2 and Conv3 are first upsam-
pled to the same spatial resolution as a feature map
produced by the first convolutional block (Conv1).
Then, the feature map produced by the first convoluti-
onal block (Conv1) and upsampled feature maps from

second and third convolutional blocks (Conv2 and
Conv3) are concatenated along the dimension corre-
sponding to the number of channels to form a hyper-
column. Concatenated feature map is fed to the fi-
nal fully convolutional classification block (Conv4).
The classification block consists of two convolutional
layers followed by the softmax layer. It outputs two
channel ball confidence map. One channel is inter-
preted as the probability of the location being a back-
ground and the other as probability of the ball. For the
ball detection task, one output channel, interpreted as
the ball probability, would be sufficient. But the pro-
posed design is extensible and can be easily adapted
to accommodate detection of additional object cate-
gories, such as players. Detailed architecture of each
block is given in Table 1.

Concatenation of multiple convolutional feature
maps from different level of the network, allows using
both low-level features from the first convolutional
layers and high-level features computed by higher
convolutional layers. Information from first convolu-
tional layers is necessary for a precise spatial location
of the object of interest. Further convolutional layers
operate on feature maps with lower spatial resolution,
thus they cannot provide exact spatial location. But
they have bigger receptive fields and their output can
provide additional context to improve classification
accuracy. This design is inspired by the hypercolumn
concept (Hariharan et al., 2015), where outputs from
intermediary convolutional layers are upsampled and
concatenated in order to allow find-grained object lo-
calization.

The network architecture described above was
chosen experimentally by evaluating a number of al-
ternative designs. See Section 4 for information on
examined variants and their performance.

Loss Function: is a modified version of the loss
used in SSD (Liu et al., 2016) detector. Proposed net-
work does not regress position and size of the object’s
bounding box. The ball position is determined by the
maxima of the confidence map computed by the net-
work. Hence only the classification component of the
original SSD loss function is used. The loss L optimi-
zed during the training is cross-entropy loss over ball
and background class confidences:

L (c) =
1
N

(
− ∑

(i, j)∈Pos
log
(

cball
i j

)
− ∑

(i, j)∈Neg
log
(

cbg
i j

))
,

(1)

where cbg
i j is the value of the channel of the ball con-

fidence map corresponding to the background proba-
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Conv1 Conv2 Conv3
(3, 1080, 1920)

(56, 268, 480)

Concatenate

(8, 268, 480)

Upsample x 2 Upsample x 2

(32, 67, 120)

(32, 268, 480)(16, 268, 480)

Conv4

Softmax

(16, 134, 240)

(2, 268, 480)

(2, 268, 480)

Input image
Size: 1080 x 1920

Ball confidence map
Size: 268 x 480

Figure 3: High-level architecture of DeepBall network. The input image is processed by three convolutional blocks (Conv1,
Conv2 and Conv3) producing convolutional feature maps with decreasing spatial resolution and increasing number of chan-
nels. Feature maps are upsampled to the same spatial resolution and concatenated along channels dimension. Concatenated
feature map is fed to the final fully convolutional classification block (Conv4) followed by Softmax. The output is two channel
ball confidence map.

bility at the spatial location (i, j) and cball
i j is the is the

value of the channel of the ball confidence map corre-
sponding to the ball probability at the spatial location
(i, j). Pos is a set of positive examples, that is the set
of spatial locations on the ball confidence map corre-
sponding to the ground truth ball location. Neg is a
set of negative examples, that is the set of spatial lo-
cations on the ball confidence map corresponding to
the ground truth background.

Set of positive examples Pos is constructed as fol-
lows. If (x,y) is a true ball position for the image
I, then the corresponding confidence map location
(i, j) = (bx/4,y/4c) and all its nearest neighbours are
added to Pos.

Negative examples (locations without the ball)
correspond to locations on the confidence map, where
the ball, according to the ground truth data, is not pre-
sent. The number of negative examples is orders of
magnitude higher than a number of positive examples
(locations with the ball) and this would create highly
imbalanced training set. To mitigate this, we employ
hard negative mining strategy as in (Liu et al., 2016).
We chose a limited number of negative examples with
the highest confidence loss, so the ratio of negative to
positive examples is at most 3:1.

Training Dataset. DeepBall network is trained
using the publicly available ISSIA-CNR Soccer Da-
taset (D’Orazio et al., 2009). The dataset contains
six synchronized, long shot views of the football pitch
acquired by six Full-HD DALSA 25-2M30 cameras.
Three cameras are designated for each side of the
playing-field, recording at 25 fps. Videos are acqui-

Figure 4: Exemplary frame from the training dataset.

red during matches of the Italian ’serie A’. There’re
20,000 manually annotated frames in the dataset, out
of which 7,000 contain the ball and 13,000 doesn’t or
the ball is occluded by players. The ball radius varies
from 8 to 16 pixels. Sequences 1, 2, 3 and 4, covering
one penalty area and the centre of the football pitch,
are used for training. Sequences 5 and 6, covering
the side of football pitch not visible on the training
sequences, are left aside for the evaluation purposes.

Fig. 4 shows exemplary frames from the sequence
1 and 3. As the training dataset is relatively small,
we use data augmentation to increase the variety of
training examples and decrease the risk of overfitting.
The following transformations are randomly applied
to the training images: random color jitter (random
change in brightness, contrast, saturation or hue), ho-
rizontal flip, random cropping and random scaling
(with scale factor between 0.5 and 1.1). The ground
truth (ball position) is modified accordingly to align
with the transformed image.
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The network is trained using a standard gradient
descent approach with Adam (Kingma and Ba, 2014)
optimizer. The initial learning rate is set to 0.001 and
decreased by 10 after 50 epochs. The training runs for
75 epochs in total. Batch size is set to 16.

4 EXPERIMENTAL RESULTS

Evaluation Dataset. Evaluation is performed on
two datasets. The first contains of sequence 5 and 6
from the ISSIA-CNR Soccer Dataset. This sequence
covers the part of the football pitch not seen on the
training sequences (sequence 1, 2, 3 and 4). ISSIA-
CNR dataset is quite demanding because the video
has a moderate quality and there’s noticeable blur.
One of the team wears white jerseys which makes
difficult to distinguish the ball when it’s close to the
player.

Evaluation Metrics. We evaluate Average Preci-
sion (AP), a standard metric used in assessment of
object detection methods. We follow Average Pre-
cision definition from Pascal 2007 VOC Challenge
(Everingham et al., 2010). The precision/recall curve
is computed from a methods ranked output. Recall is
defined as a proportion of all positive examples ran-
ked above a given threshold to all positive examples
in the ground truth. Precision is a proportion of all
positive examples above that threshold to all exam-
ples above that threshold. The AP summarizes the
shape of the precision/recall curve, and is defined as
the mean precision at a set of eleven equally spaced
recall levels:

AP =
1

11 ∑
r∈{0,0.1,...1}

p(r) , (2)

where p(r) is a precision at recall level r.
The ball detection method usually operates under

the additional constraint, that no more than one object
of interest (the ball) is present in the image. Under
this constraint, for each image the detector returns the
highest response from the ball confidence map gre-
ater than the threshold θ as the ball position. If no
location in the ball confidence map is greater than θ,
no ball is detected. In this scenario, an image with
the ball is classified correctly, if the ball is detected
at the correct location. The image without the ball is
classified correctly, if ball is not detected. Ball de-
tection accuracy is defined as the proportion of cor-
rectly classified images to all processed images. θ is
chosen experimentally, as the value maximizing the
accuracy on the validation set.

Evaluation Results. Evaluation results are summa-
rized in Table 2. The results contain Average Preci-
sion and Accuracy of evaluated methods, as defined
in the previous section. The table also lists a number
of trainable parameters in each evaluated model and
frame rate, expressed in frames per second, achieva-
ble when detecting the ball in a Full HD (1920x1080
resolution) video. Frame rates given in the table take
into account the time needed to feed a frame through
the detection network and infer the ball position from
the resultant feature map. They do not include the
time needed to load the frame from an input file,
convert it to the tensor and load into the GPU. All
methods are implemented in PyTorch (Paszke et al.,
2017) and run on nVidia Titan X GPU platform.

Our method yields the best results on the test set
(Sequences 5 and 6 from ISSIA-CNR Soccer Data-
set). It achieves 0.877 Average Precision and 0.951
ball detection accuracy. For comparison we evalu-
ate two recent ball detection methods: (Speck et al.,
2017) and (Reno et al., 2018) using the same training
and test sets and the same data augmentation appro-
ach as in our method.

(Speck et al., 2017) uses the neural network with
three convolutional layers followed by two two-layer
fully connected heads estimating the ball x and y
coordinates. For evaluation we implemented the best
performing model proposed in the paper: Model 1
soft-sign. The model performs poorly on the test da-
taset, achieving only 0.220 Average Precision. This
can be attributed to the fact, that the original model
is intended to detect the ball in videos from Robo-
Cup Soccer matches taken from closer distance. The
ball image is larger and there are no visible distrac-
tors such as advertisement stands around the pitch.
The method regresses only one ball position on the
input image. If there are multiple objects with ball-
like appearance, it likely gets confused and fails to
produce the meaningful result. Our method computes
a dense confidence map indicating probable ball po-
sitions. It’s more robust against presence of objects
with similar appearance to the ball.

(Reno et al., 2018) uses the network consisting
of four convolutional layers followed by a fully con-
nected classification layer. This method scores 0.834
Average Precision and 0.917 accuracy. In contrast
to the original method, we enhanced the training set
construction process. Negative examples (no ball pa-
tches) do not need to be manually selected. They are
mined online during the network training, as regions
of the image not containing the ball but incorrectly
classified with the highest confidence (hard negative
mining). Even with this improvement, the method
yields worse Average Precision and detection accu-
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Table 2: Ball detection method evaluation results.

Method Average
Precision Accuracy No. of trainable

parameters FPS

DeepBall 0.877 0.951 48 658 190
DeepBall (no data augmentation) 0.792 0.899 48 658 190
DeepBall (no hypercolumns/context) 0.833 0.911 29 146 270
(Speck et al., 2017) 0.220 0.220 332 365 744 22
(Reno et al., 2018) 0.834 0.917 313 922 32

Figure 5: Visualization of incorrect detection results. Top
row show image patches where the ball is not detected (false
negatives). The bottom row shows patches with incorrectly
detected ball (false positives).

racy than our method.
It must be noted that, while our method outper-

forms two other neural network based ball detection
methods in terms of average precision and detection
accuracy, it has significantly lower number of traina-
ble parameters and much higher video processing rate
(FPS).

Due to the relatively small size of the training set,
data augmentation proved to be the key allowing ge-
neralization of the trained network and good perfor-
mance on the testing set. Without data augmentation
Average Precision drops down from 0.877 to 0.792.

Implementing hypercolumn concept by combi-
ning convolutional feature maps from different levels
of the hierarchy have a positive impact on the method
performance. Using a network with a simpler archi-
tecture, which bases classification on the output from
the last convolutional layer, without combining mul-
tiple feature maps, produces worse results. Such ar-
chitecture scored only 0.833 Average Precision.

Fig. 5 show examples of incorrect detections. Two
top rows show image patches where our method fails
to detect the ball (false negatives). It can be noticed,
that misclassification is caused by severe occlusion,
where only small part of the ball is visible, or due
to blending of the ball image with white parts of the
player wear or white background objects outside the

play field, such as stadium advertisement. The bottom
row shows examples of patches where a ball is incor-
rectly detected (false positives). The detector is so-
metimes confused by players’ white socks or by the
background clutter outside the play field.

5 CONCLUSIONS

The article describes an efficient and effective deep
neural network based ball detection method. The
proposed network has a fully convolutional architec-
ture processing entire image at once, in a single pass
through the network. This is much more computatio-
nally effective than a sliding window approach propo-
sed in (Reno et al., 2018). Additionally, the network
can operate on images of any size that can differ from
size of images used during the training. It outputs
scaled down ball confidence map, indicating estima-
ted ball location. The method performs very well on
a challenging ISSIA-CNR Soccer Dataset (D’Orazio
et al., 2009) resulting in 0.877 Average Precision and
0.951 accuracy. It outperforms two other, recently
proposed, neural network-based ball detections met-
hods: (Speck et al., 2017) and (Reno et al., 2018),
while having lower number of trainable parameters
and significantly higher frame rate.

In the future we plan to use temporal information
to improve the system accuracy. Combining convolu-
tional feature maps from few subsequent frames gives
additional information that may help to discriminate
static, ball-like objects (e.g. parts of stadium adver-
tisement or spare balls located outside the play field)
from the moving ball.
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