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Abstract: Consider a newsvendor model, which we extend to include both multiple inputs and outputs. Different input
types possess different levels of quality, and are purchased at different prices by a processing firm. Each type
of input is processed into multiple outputs, which are sold at different prices. The yield for each output type
is random and depends on the input type. We need to determine the purchase quantities of different types
of input, before demands of different types of output are known. In our analytical results, we show that the
expected total profit is jointly concave in the purchasing quantities and derive the optimality condition. Our
multi-input and -output newsvendor model is suitable for processing industries in agriculture supply chain. In
our numerical example, we apply our model to the rice milling industry, whose primary output is head rice
and byproducts are broken rice, bran and husk. Our model can help the rice mill to decide which paddy types
to procure and how much, in order to maximize the total expected profit from all outputs. We also show that
the expected profit can be significantly better than using the standard newsvendor model.

1 INTRODUCTION

In a newsvendor (single-period inventory) model,
there is a single opportunity to place an order be-
fore a random demand is known. Leftovers cannot
be kept from one selling season to the next, due to
obsolescence or perishability. The applications of the
newsvendor model include a newspaper, a style good,
a Christmas tree, bakery, and fresh produce. In a clas-
sical newsvendor model, there is only one product and
no resource constraint. In a multi-item newsvendor
model, the decision maker needs to decide the order
quantities of multiple items before their random de-
mands materialize, subject to several resource con-
straints. For instance, a news vendor, who manages
a “newsstand,” offering many different newspaper ti-
tles, needs to determine how many of each title to
buy, in order to maximize the total expected profit
from all titles, subject to a budget constraint and a
limited newsstand size. We modify this multi-item
model to include both multiple outputs and inputs:
Each type of input has a different quality level and
is processed into several types of outputs at different
rates. The purchase price for the high-quality input
is typically greater than the low-quality output, and
the high-quality inputs gives a better yield. After pro-
cessing, multiple outputs (e.g., a primary product and

byproducts) are obtained and sold at different prices.
Our model is suitable for agricultural processing

industries. The processing company needs to deter-
mine the purchase quantity for each type of input, be-
fore the random demands for all outputs are known,
in order to maximize the total expected profit. In an
agriculture supply chain, yield and crop quality are in-
fluenced by many factors including seeding time, har-
vest time, weather conditions, presence of nutrients
within the soil at the farm location, and use of fertil-
izers and pesticides. An input type can be specified
by yield and quality. For instance, in a rice process-
ing industry, outputs from milling a paddy include
head rice, broken rice, rice bran and husk (Wilasi-
nee et al., 2010). A high-quality paddy gives a high
yield of head rice. An input type can also specify
other factors such as the percent impurity, the per-
cent moisture content, the farm location, and the rice
species. In a sugarcane milling process, the yield of
raw sugar depends on the cane quality and the juice
extraction efficiency. The supplier of sugarcane with
the greater commercial cane sugar (CCS) receives the
higher purchasing price (Higgins et al., 1998). In a
vineyard harvesting problem, grape qualities depend
on, e.g., the time of harvest, a wine block (a group
of adjacent vineyard’s fields growing the same vari-
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ety of grapes), sugar and acidity levels determined by
a winery’s oenologist. The end-products can be clas-
sified into four different types, e.g., Vins de Prestiges
and Vins de Charme (Arnaout and Maatouk, 2010).
In many fresh fruit supply chains (e.g., apple, pear,
banana, coconut), fruits are categorized into different
grades, which usually depend on their sizes, among
other factors. The low-quality farm with many ag-
ing trees and poor soil quality produces smaller sizes,
which are bought at lower prices. Most agricultural
raw materials need to be harvested at certain times of
year. They are prone to deterioration after harvesting
and processing. They are processed into different out-
puts before the demands for the outputs are known.
The yield of the primary (most valuable) output de-
pends on the crop quality. Thus, our multi-input and
-output newsvendor model is applicable.

A literature review of the newsvendor (single-
period inventory) model includes (Qin et al., 2011)
and (Choi, 2012b). Multi-period inventory models are
covered extensively in textbooks in inventory man-
agement, e.g., (Nahmias, 2009), (Silver et al., 1998),
(Zipkin, 2000) and (Porteus, 2002). The multi-item
newsvendor model was first formulated in (Hadley
and Whitin, 1963): The order quantity of each item
needs to be made in order to maximize the total ex-
pected profit subject to a single resource constraint.
The budget constraint is a special case of the resource
constraint. When the number of products is small, the
exact solution can be obtained using a dynamic pro-
gramming approach. When the number of products
is large, several heuristics are proposed in, e.g., (Nah-
mias and Schmidt, 1984). (Moon and Silver, 2000)
extends the multi-item newsvendor problem with a
single resource constraint to include fixed ordering
costs. (Lau and Lau, 1995) extends the multi-item
newsvendor problem with a single resource constraint
to multiple resource constraints. To contrast with the
newsvendor problem, they refer to their multi-item
multi-constraint model as the “newsstand problem.”
In the newsstand problem, there is no random yields;
for instance, if we place an order of 50 units of the
New York Times and 50 units of the Chicago Tri-
bune, then all 50 units of the New York Times and
50 units of the Chicago Tribune are received, and
they are put on the newsstand as long as the space
constraint is satisfied. In our model, if the rice mill
purchases 50 tons of paddy from a high-quality sup-
plier and 50 tons of paddy from a low-quality sup-
plier, then after the milling process, the total volume
of head rice would be less than 100 tons, and a large
fraction of the total head rice comes from the high-
quality paddy. The multi-product multi-constraint
newsvendor model is a convex optimization problem.

Heuristic solutions based on a quadratic programming
approach are presented in, e.g., (Abdel-Malek and
Areeratchakul, 2007) and (Chernonog and Goldberg,
2018). Various extensions of the multi-production
multi-constraint newsvendor model include an out-
sourcing strategy of shortages (Zhang and Du, 2010),
an allocation decision on the raw material (Xie et al.,
2018), a reservation policy to meet marketing needs
(Chen and Chen, 2010), and carbon cap and trade
mechanism (Zhang and Xu, 2013). The multi-product
newsvendor problem is reviewed in (Turken et al.,
2012) and (Choi, 2012a). In Section 1.5.2 in (Turken
et al., 2012), “nearly all the models in this chap-
ter assume single supplier.... It would be interesting
to incorporate multiple suppliers into MPNP [multi-
product newsvendor problem].” Different input types
can be interpreted as different suppliers, who pro-
vide crops with different quality levels. To the best
of our knowledge, our article is the first study of the
newsvendor model with multiple inputs and outputs
whose yields are random.

Operations research (OR) models applied to the
agriculture supply chain are reviewed in (Kusumastuti
et al., 2016), (Soto-Silva et al., 2016) and (Ahumada
and Villalobos, 2009). The quality issue of the agri-
cultural product is one of the most distinctive char-
acteristics of the agriculture supply chain. This fea-
ture is explicitly incorporated in our multi-input and
-output newsvendor model. The demand uncertainty
and the random yield are other important character-
istics of the agriculture OR models, and they are pre-
sented in (Tan and Comden, 2012) and (Kazaz, 2004).
(Tan and Comden, 2012) studies a planning problem,
in which the production quantity at each farm is ran-
dom, depending on the planted area and the crop yield
in that farm. In our model, different input types can
be interpreted as different suppliers or farmers who
provide different crop qualities. (Kazaz, 2004) for-
mulates a two-stage stochastic programming problem
for the production planning in the olive oil industry;
the oil producer can buy olives from farmers at a unit
cost varying with the yield. In our model, the unit cost
also depends on the input type. The high-quality input
type has a high purchasing cost, and the low-quality
input type incurs a high pre-processing cost. This fea-
ture is also presented in these two papers. Neverthe-
less, they consider multiple farms (inputs) but a single
product (output), whereas in ours there are both mul-
tiple inputs and outputs.

In this article, we assume that there are multiple
types of perishable inputs and outputs. In contrast
to the standard multi-item newsvendor, the number
of inputs need not be equal to the number of outputs
in our model. In the standard multi-item newsvendor
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model, there is a one-to-one correspondence between
each input type and each output type. In the agricul-
tural supply chain, the type of input usually represents
the quality of the crop. The better type of input results
in the larger yields of the high-value outputs. Further-
more, we allows the yield to be random. In most agri-
cultural products, the yield tends to fluctuate. We de-
velop the newsvendor for multiple inputs and outputs
with random yields, and derive an optimal purchase
quantity of each type of input in order to maximize
the expected total profit from all outputs.

The rest of the paper is organized as follows: Sec-
tion 2 presents the newsvendor model for multiple in-
puts and outputs with random yields, and the problem
is analyzed in Section 3. We illustrate the application
of our model to the rice processing industry and pro-
vide some managerial insights in Section 4. Finally,
the conclusion is provided in Section 5.

2 FORMULATION

Consider a newsvendor model that produces n differ-
ent outputs from m inputs. Let D j be the random de-
mand of output j. Let xi be the purchase quantity of a
type-i input. We need to decide x = (x1,x2, . . . ,xm)
before knowing the demands (D1,D2, . . . ,Dn). For
each i = 1,2, . . . ,n and j = 1,2, . . . ,m, let Ui j(xi) be
the random volume of a type- j output after process-
ing xi units of a type-i input. The volume of the type- j
output depends not only the volume of the input but
also the input type. For a concrete example, in the
rice processing industry, the different moisture con-
tent paddies are categorized into different input types.
The moist paddies with the high percentage of mois-
ture content (%MC) would take longer to dry and re-
sult in a higher weight loss. For instance, a ton of
paddy with 21% MC would incur a weight loss of
100 kilograms, whereas a ton of paddy with 30%MC
would incur a weight loss of 200 kilograms (Thailand
Deparment of Internal Trade, 2018).

Note that the decision x is taken before knowing
output volume Ui j(xi) and consequently demand Di.
The probability distributions of volume outputs and
demands are described as follows. After processing,
the realization of output volume Ui j(xi,ω) becomes
known. Let Ω be the set of all scenarios associated
with output volume. The triplet (Ω,A ,P) is a prob-
ability space, where A is an event and P is a proba-
bility. The expected volume of the type- j output after
processing xi units of a type-i input is given as

E[Ui j(xi)] =
∫

Ω

Ui j(xi,ω)P(dω)

where the above integral is a Lebesque integral. We

assume that Ω is a finite set. Then, the random vari-
able Ui j(xi) is discrete, and its expectation can be
written as
E[Ui j(xi)] = ∑

ω`∈Ω

Ui j(xi,ω`)P(Ui j(xi) =Ui j(xi,ω`)).

Finally, the demand D j becomes known. Assume
that the demand D j is a real-valued random variable
and independent of the output vector (U1 j, . . . ,Um j)
for each j. Let Fj denote the distribution of de-
mand D j and F−1

j be the corresponding quantile func-
tion. Note that the quantile function is strictly increas-
ing on [0,1]. These assumptions are made to avoid
technical difficulties, and they are not restrictive in
practice. In strategic models like ours, the different
scenarios Ω of the volume output might be obtained
through experts’ judgments, and in many situations
there are only finitely possible outcomes (Birge and
Louveaux, 1997).

Let (y)+ = max{y,0} denote the positive part of
a real number y. Assume that the volume of a type- j
output given the input x is defined as

Yj(x) =
m

∑
i=1

Ui j(xi). (1)

The type- j sales are S j(x) = min(Yj(x),D j), the left-
overs are Wj(x) = (Yj(x)−D j)

+, and the shortages
are Tj(x) = (D j −Yj(x))+. The cost parameters are
denoted by:

ci = per-unit cost of a type-i input
p j = per-unit selling price of a type- j output
h j = per-unit salvage value of a type- j output
g j = per-unit penalty cost for a type- j shortage.

The unit cost ci includes both the purchasing cost and
the pre-processing cost associated with the type-i in-
put. The high-quality input typically has a large pur-
chasing cost but a small pre-processing cost. Among
all types of outputs, the primary output usually has the
largest selling price. The penalty cost includes both a
direct cost of the shortages and a loss of goodwill.
The expected total profit is defined as follows:

π(x) =
n

∑
j=1

E
[

p jS j(x)+h jWj(x)−g jTj(x)
]

−
m

∑
i=1

cixi (2)

=
n

∑
j=1

E[(p j−h j +g j)min(D j,
m

∑
i=1

Ui j(xi))]

+
n

∑
j=1

h j

m

∑
i=1

E[Ui j(xi)]−
n

∑
j=1

g jE[D j]

−
m

∑
i=1

cixi. (3)
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In the first summation in (2), the first term is the ex-
pected revenue, and the second term is the expected
salvage value from the leftovers from n output types.
The last term is the total cost of all m input types.
Equation (3) follows from the identity

min(a,b) = a− (a−b)+ (4)
for any real numbers a and b. The first expectation
in (3) is with respect to distributions of D j and Ui j.
Assume that we are risk neutral, and our objective is
to maximize the expected total profit:

max{π(x) : x≥ 0}. (5)
Note that we allow the demand vector (D1, . . . ,Dn) to
be dependent. Specifically, the expression (3) for the
total expected profit remains valid, since the expec-
tation of the sum of random variations is the sum of
their expected values.

Our formulation subsumes the standard multi-
product newsvendor model (Turken et al., 2012).
Suppose that the number of inputs is equal to the num-
ber of outputs (i.e., m = n). There is a one-to-one cor-
respondence between each input type and output type,
and the yield rate is 100% for i = j (i.e., Uii(xi) = xi
and Ui j(xi) = 0 for i 6= j). In other words, the type-i
input is processed into only the type-i output. Then,
the expected total profit becomes

m

∑
i=1

E[(pi−hi +gi)min(Di,xi)− (ci−hi)xi−giDi].

(6)
Let co

i = ci−hi be the overage cost, i.e., the expected
per-unit cost of positive inventory remaining at the
end of the period. Let cu

i = pi− ci +gi be the under-
age cost, i.e., the per-unit cost of unsatisfied demand.
Define the expected total cost as the sum of the ex-
pected overage and underage costs:

m

∑
i=1

E[co
i (xi−Di)

++ cu
i (Di− xi)

+]. (7)

Using the identity (4) again, (7) becomes
m

∑
i=1

E[co
i xi− (co

i + cu
i )min(Di,xi)+ cu

i Di]. (8)

Comparing (6) and (8), we see that minimizing the to-
tal expected cost is equivalent to maximizing the to-
tal expected profit. Our model reduces to the multi-
product newsvendor model. The (unconstrained) op-
timal purchase quantity is given as

x∗i = F−1
i (cu

i /(c
u
i + co

i )) (9)

= F−1
i

(
pi− ci +gi

pi−hi +gi

)
.

The term cu
i /(c

u
i + co

i ) is often referred to as the criti-
cal ratio. The optimal purchase quantity is the quan-
tile, evaluated at the critical ratio.

3 ANALYSIS

Assume that p j−h j +g j ≥ 0 for each j = 1,2, . . . ,n.
This assumption is not restrictive; in most practical
cases, the per-unit selling price p j exceeds the per-
unit salvage value h j, and the assumption holds. Fur-
ther assume that

Ui j(xi) = Ai jxi (10)

where a one-unit type-i input yields a random Ai j-unit
type- j output. The assumption (10) states that the
volume of a type- j output is linear in the volume of
an input. The multiplicative form is extensively used
in many applied operations research model (e.g., the
linear programming model). For each input type i,
each realization (Ai1(ω),Ai2(ω), . . . ,Ain(ω)) satisfies
∑

n
j=1 Ai j(ω) = 1 and Ai j(ω)≥ 0. An example of such

distribution is a Dirichlet distribution, which is a mul-
tivariate generalization of the beta distribution. Note
that a one-unit type-i input on average yields E[Ai j]
units of a type- j output:

E[Ai j] =
∫

Ω

Ai j(ω)P(dω), (11)

where the integral in (11) is a Lebesque integral. For
a discrete distribution on a sample space Ω, the ex-
pected yield (11) becomes

E[Ai j] = ∑
ω`∈Ω

Ai j(ω`)P
(
Ai j = Ai j(ω`)

)
.

In Theorem 1, we show that the multi-input and
-output newsvendor problem {π(x) : xi ≥ 0} is a con-
vex programming problem.

Theorem 1. The expected total profit π(x) is jointly
concave in x.

Proof. We will use the following result on convex-
ity (page 529 in (Heyman and Sobel, 1984)). Let
g : Rn → R be a concave function, and let f : R→
R be a nondecreasing concave function. Then, the
composite function h : Rn → R defined as h(x) =
f (g(x)) is a concave function. For each realiza-
tion ω, f (y;ω) = min(D(ω),y) is concave and non-
decreasing, and g(x;ω) = ∑

n
i=1 Ai j(ω)xi is linear (i.e.,

both concave and convex). From the assumption that
p j−h j +g j ≥ 0, we have that

(p j−h j +g j)min(D j(ω),
m

∑
i=1

Ai j(ω)xi)

is concave in x for each realization ω. The first term
in (3) is concave, since the expectation of the concave
function is also concave. The second term is linear
under the multiplicative form (10). Thus, the expected
total profit π(x) is concave.
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Theorem 1 shows that the objective function, the
expected total profit, is concave. The constraint
functions are linear. Thus, the multi-input and -
output newsvendor problem (5) is convex program-
ming. Algorithms to solve a convex programming
problem are active research, and they can be classi-
fied into three groups, namely gradient algorithms,
sequential unconstrained algorithms, and sequential-
approximation algorithms (Hillier and Lieberman,
2005).

Concavity of the expected profit function is desir-
able, since we can guarantee that the first-order con-
ditions provide the globally optimal solution. The op-
timality conditions are derived in Theorem 2.

Define the expected per-unit salvage of the type-i
input as:

h′i =
∫

Ω

[ n

∑
j=1

h jAi j(ω)
]
P(dω)

=
n

∑
j=1

h jE[Ai j].

The expected per-unit price p′i and penalty cost g′i are
defined similarly. Define the expected overage cost
as co

i = ci−h′i. Define the expected underage cost as
cu

i = p′i− ci + g′i. The expected critical ratio associ-
ated with the type-i input is

ξi =
cu

i
cu

i + co
i
.

Let i∗ = argmax{ξi} be the input type with the largest
critical ratio.

For short-hand, denote cs
j = p j−h j +g j.

Theorem 2. An optimal purchase quantity that max-
imizes π(x) is x∗k = 0 for k 6= i∗ and x∗i∗ > 0 which
satisfies∫

Ω

[ n

∑
j=1

cs
jAi∗ j(ω)F̄j(Ai∗ j(ω)xi∗)

]
P(dω) = co

i∗ . (12)

Proof. We want to maximize {π(x) : x ≥ 0}. Re-
call the Kuhn-Tucker optimality conditions, there ex-
ist µk ≥ 0 and

∂π(x)
∂xk

+µk = 0 for each k = 1,2, . . . ,n.

Then,

∂π

∂xi
= 0 for xi > 0

∂π

∂xi
≤ 0 for xi = 0.

The condition is also sufficient since π(x) is concave
(see Theorem 1).

Let A j = (A1 j,A2 j, . . . ,Am j). Note that

E[S j(x)|A j = A j(ω)] = E[min(D j,
m

∑
i=1

Ai j(ω)xi)]

=
∫

∑
m
i=1 Ai j(ω)xi

0
F̄j(t)dt

where the last equation follows from the tail-sum for-
mula for expectation. Recall that

E[S j(x)] = E[E[S j(x)|A j]].

Then,

E[S j(x)] =
∫

Ω

E[min(D j,
m

∑
i=1

Ai j(ω)xi)]P(dω).

Taking the partial derivative with respect to xi and us-
ing the Leibniz’s rule, we have

∂E[S j(x)]
∂xi

=
∂

∂xi

∫
Ω

E[min(D j,
m

∑
k=1

Ak j(ω)xk)]P(dω)

=
∫

Ω

∂

∂xi
E[min(D j,

m

∑
k=1

Ak j(ω)xk)]P(dω)

=
∫

Ω

∂

∂xi

∫
∑

m
k=1 Ak j(ω)xk

0
F̄j(t)dtP(dω)

=
∫

Ω

Ai j(ω)F̄j(
m

∑
k=1

Ak j(ω)xk)P(dω)

where the last equation follows from the fundamental
theorem of calculus. From (3), the partial derivative
of the expected profit ∂π(x)/∂xk becomes

∂π(x)
∂xk

=
n

∑
j=1

cs
j

∫
Ω

Ak j(ω)F̄j(
m

∑
`=1

A` j(ω)x`)P(dω)− co
k

=
n

∑
j=1

cs
j

∫
Ω

Ak j(ω)F̄j(Ai∗ j(ω)xi∗)P(dω)− co
k

by construction of x∗. Substituting the expression for
∂π(x)/∂xk, the optimality equations become

n

∑
j=1

cs
j

∫
Ω

Ak j(ω)F̄j(Ai∗ j(ω)xi∗)P(dω)− co
k +µk = 0

(13)

For k = i∗, we have x∗k > 0, µk = 0, and (13) be-
comes (12). For k 6= i∗, (13) becomes

µk = co
k−

n

∑
j=1

cs
j

∫
Ω

Ak j(ω)F̄j(Ai∗ j(ω)xi∗)P(dω).

It follows from the definition of i∗ = argmax{ξi} that
µk ≥ 0 for k 6= i∗. The Kuhn-Tucker conditions hold.
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Theorem 2 allows us to reduce the problem size from
m decision variables to a single decision variable, xi∗ .
Several efficient one-dimensional search algorithms
are available. We should purchase the “best” input
type i∗, and the purchase quantity is given by (12).

Suppose that the number of inputs is identical to
the number of outputs and the yield is 100%. Then,
the optimality condition (12) reduces to

(pi−hi +gi)F̄i(xi) = ci−hi,

which is equivalent to the optimality condition in the
multi-product newsvendor (9). Again, we see that our
multi-input and -ouput newsvendor model becomes
the standard multi-product newsvendor model.

Theorem 3 provides a sensitivity analysis: How
would the optimal order quantity change, when some
of the parameters change?

Theorem 3. Assume that the “best” input type re-
mains the same. The optimal order quantity x∗i∗ is
larger if one of the following conditions holds (ceteris
paribus):

1. The per-unit selling price p j increases.
2. The per-unit salvage value h j decreases.
3. The per-unit penalty g j increases.
4. The demand D j is stochastically larger (in the

usual stochastic order sense).
5. The per-unit cost ci decreases.

Proof. Note that the right-hand side (RHS) of the op-
timality equation (12)∫

Ω

[ n

∑
j=1

(p j−h j +g j)Ai∗ j(ω)F̄j(Ai∗ j(ω)xi∗)
]
P(dω)

is decreasing in x∗i∗ . Furthermore, for a fixed x∗i∗ , the
RHS increases, when the per-unit selling price p j in-
creases. Thus, the optimal order quantity becomes
larger. The proof for the other cases is similar.

The directional change in Theorem 3 makes economic
sense. To determine which factors significantly affect
the optimal order quantity and the optimal expected
profit, we can create various sensitivity graphs, e.g.,
a tornado diagram and a spider graph (Hillier et al.,
2000). The method to calculate the expected profit is
illustrated in the next section.

4 NUMERICAL ILLUSTRATION

We apply our model to the rice processing industry
in Thailand. Consider a rice mill which purchases
paddy from middleman and farmers. The purchase

price for paddy depends on the percent moisture con-
tent (%MC) and the head yield (HY). The paddy is
classified into four groups of moisture content:

1. Group 15.0: %MC ≤ 15.0%

2. Group 19.9: %MC between 15.1–19.9%

3. Group 24.9: %MC between 20.0–24.9%

4. Group 29.9: %MC greater than 25.0%

Paddy with the %MC greater than 15% needs to
be dried. The head yield can be divided into three
groups, namely 40%, 45% and 50%. Table 1 shows
the drying cost and the purchase price in Thai Baht
(THB) per ton. For the same head yield, the purchase
cost is higher for the paddy with the lower %MC. For
the same %MC, the purchase cost is higher for the
paddy with the larger head yield. In addition to the
%MC and the head yield, the purchasing price de-
pends on the rice varieties. The purchase prices in
Table 1 are similar to the purchase prices of Thai aro-
matic rice paddy (KDML105); see (Thailand Depar-
ment of Internal Trade, 2018).

Table 1: Purchase prices for paddy.

HY Drying %
%MC 40 45 50 Cost Loss
15.0 19600 20600 21600 0.00 0.0
19.9 18277 19210 20142 59.00 6.9
24.9 16807 17665 18522 62.10 14.4
29.9 15337 16120 16902 65.21 21.9

A type-i input is specified by the %MC and the
HY. Table 2 shows m = (4)(3) = 12 input types. The
per-unit cost of the type-i input, ci, includes both the
purchasing and drying costs. For instance, the type-
2 input with %MC=19.9 and HY=40, and the drying
cost is 59 THB/ton, so the per-unit cost c2 = 18277+
59= 18336 THB/ton. In our example, we assume that
a farmer brings paddies to the rice mill. In some other
cases, the rice mill may travel to buy from the farmers
whose produce paddies with high quality. Then, the
input type would specify the %MC and the head yield
as well as the location of the paddy field; the cost ci
may include the (round-trip) transportation from the
rice mill to the field.

After the paddy is dried, a weight loss occurs,
and the percent weight loss depends on the percent
moisture content (see Table 1). The dried paddy is
stored in a silo and waits for milling. The milling pro-
cess consists of husk removing from paddy, whitening
and polishing for bran removal, and finally separat-
ing head rice (the primary product) and broken rice
into different grades. The milled rice is distributed to
domestic and export markets. The rice bran can be
sold to the rice bran oil industry. The husk is used
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Table 2: Description of 12 input types.

i %MC HY ci
1 15.0 40 19600
2 19.9 40 18336
3 24.9 40 16869
4 29.9 40 15402
5 15.0 45 20600
6 19.9 45 19268
7 24.9 45 17727
8 29.9 45 16185
9 15.0 50 21600
10 19.9 50 20201
11 24.9 50 18584
12 29.9 50 16967

in paper production and biomass power generation.
The average selling prices p j, salvage values h j and
the penalty costs g j (in THB/ton) for these n = 4 out-
puts (head rice ( j = 1), broken rice ( j = 2), rice bran
( j = 3) and husk ( j = 4)) are shown in Table 3. In
Thailand, the selling price of head rice and broken
rice are published online by the government (Thailand
Deparment of Internal Trade, 2018). If the shortages
of the head rice occur, then the rice mill tries to pur-
chase the rice from other rice mills. The penalty cost
g1 includes the average purchasing cost, the trans-
portation cost, and the loss of goodwill if the customer
does not receive the entire rice volume in time. In our
example, we assume that there are no penalty costs
for the other byproducts, i.e., g j = 0 for j > 1.

Assume that the demand for the type- j output, D j,
is independent and normally distributed with mean µ j
and standard deviation σ j (in ton), as shown in Ta-
ble 3. The coefficient of variation of demand is suf-
ficiently small so that the probability of negative de-
mand is negligible. (Our formulation in Section 2 and
the analytical results in Section 3 hold without nor-
mality assumption.) Let φ denote the density function
of the standard normal distribution and Φ denote the
corresponding cumulative distribution function. The
expected sales can be calculated easily:

E[min(D j,y j)] = µ j−σ jL
(

y j−µ j

σ j

)
where the standard loss function is

L(z) = φ(z)− z(1−Φ(z)).

Table 3: Selling prices, salvage values and penalty costs.

Output type Head Broken Bran Husk
( j) 1 2 3 4
p j 36800 12340 8999 1500
h j 29872 5000 1000 500
g j 1000 0 0 0
µ j 94.00 64.00 53.00 24.00
σ j 14.10 9.60 7.95 3.60

If the demand does not follow the normal distribution
but other well-known distribution, then the expected
sales can be calculated using the closed-form formula
for the limited expected value (see, e.g., Table 12.2
in (Cunningham et al., 2008)). The demands for these
four outputs are likely to be independent, since they
are different products used in different industries, and
they cannot be substituted for one another. In practice,
we may have more output types. For instance, after
being milled, the broken rice can be further graded
into five levels, and their demands may be dependent.
Our model can still be applied to the dependent out-
puts. The rice mill needs to determine the purchase
quantities of different types of paddies, before the de-
mands of all outputs are known.

Example 1. In our model, two sources of uncertainty
are the demand and the random yield. For an illustra-
tive purpose, we assume that there are 3 scenarios for
the random yield, Ω= {ω1,ω2,ω3}. The actual yields
depend on the rice variety, the operations designed for
rice kernel cracking and breakage, and the mechani-
cal and physical properties (Correa et al., 2007). In
stochastic programming approximations, we can find
some relatively low cardinality discrete set of real-
izations that represents a good approximation of the
true underlying distribution of the yield; details can be
found in Chapter 9, (Birge and Louveaux, 1997). In
scenario ω`, one unit (ton) of the type-i paddy results
in Ai1(ω`) units of head rice, Ai2(ω`) units of broken
rice, Ai3(ω`) units of rice bran and Ai4(ω`) units of
rice husk (see Table 4). Assume that each scenario is
equally likely to occur; i.e.,

P(Ai j = Ai j(ω`)) = 1/3

for each ` = 1,2,3. For each input type and for the
type-1 output (head rice), the yield in scenario ω2
(resp., ω3) is approximately 10–20% higher (resp.,
lower) than the yield in scenario ω1. The higher the
head yield, the higher yield for head rice. The paddy
with the higher moisture content incurs the larger per-
cent weight loss.

Note that for the paddy with the %MC less than
15% (i.e., i ∈ {1,5,9}), there is no weight loss, and
∑

4
j=1 Ai j(ω`) = 1. For the other types, ∑

4
j=1 Ai j(ω`)<

1. Suppose that we define the type-5 output to be the
processing loss. Let Ai5 = 1−∑

4
j=1 Ai j. Then, the out-

put vector Ui j(xi) = Ai jxi now has a valid probability
distribution, i.e., ∑

5
j=1 Ai j = 1 and Ai j ≥ 0.

To use the optimality condition (12), we first find
the “best” type of input by ranking the expected crit-
ical ratio. From Table 5, we find that the most prof-
itable input type is i∗ = 10 (%MC=19.9 and HY=50).
The ranking in Table 5 also helps the rice mill select
a paddy supplier. Note that the paddy types with the
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low head yield (i.e., i ∈ {1,2,3,4}) are ranked among
the lowest. It is more important to focus on the head
yield, compared to the moisture content, since it is rel-
atively cheap to dry the paddy. This finding is consis-
tent with the result found in the agricultural academic
journal (Wilasinee et al., 2010).

Upon solving the optimality equation (12), we
find that the optimal purchase quantity is x∗10 = 187
ton. The total purchasing and drying costs is 3781345
THB. The expected revenue is 3820335 THB, and the
expected profit is 125331 THB. The expected rev-
enues and profits for all scenarios are shown in Ta-
ble 6.

We see that the profit is very sensitive to the out-
put yield of the milling process. In scenario 2, the
head rice yield is 10–20% higher than the yield in sce-
nario 1, but the expected profit in scenario 2 is double.
Our model can also be used to quantify the benefit
from milling process improvement.

Example 2. We want to highlight the benefit of our

Table 4: Yields of the four outputs Ai j(ω`).

` i Ai1(ω`) Ai2(ω`) Ai3(ω`) Ai4(ω`)
1 1 0.4000 0.1976 0.2541 0.1483
1 2 0.3724 0.1840 0.2366 0.1380
1 3 0.3424 0.1692 0.2175 0.1269
1 4 0.3124 0.1544 0.1985 0.1158
1 5 0.4500 0.1812 0.2329 0.1359
1 6 0.4190 0.1687 0.2169 0.1265
1 7 0.3852 0.1551 0.1994 0.1163
1 8 0.3515 0.1415 0.1819 0.1061
1 9 0.5000 0.1647 0.2118 0.1235
1 10 0.4655 0.1533 0.1972 0.1150
1 11 0.4280 0.1410 0.1813 0.1057
1 12 0.3905 0.1286 0.1654 0.0965
2 2 0.4096 0.1468 0.2366 0.1380
2 3 0.3664 0.1452 0.2175 0.1269
2 4 0.3218 0.1450 0.1985 0.1158
2 5 0.4590 0.1722 0.2329 0.1359
2 6 0.4358 0.1519 0.2169 0.1265
2 7 0.3929 0.1474 0.1994 0.1163
2 8 0.3796 0.1134 0.1819 0.1061
2 9 0.5100 0.1547 0.2118 0.1235
2 10 0.4934 0.1254 0.1972 0.1150
2 11 0.4323 0.1367 0.1813 0.1057
2 12 0.4022 0.1169 0.1654 0.0965
3 1 0.3920 0.2056 0.2541 0.1483
3 2 0.3650 0.1914 0.2366 0.1380
3 3 0.3424 0.1692 0.2175 0.1269
3 4 0.2968 0.1700 0.1985 0.1158
3 5 0.4230 0.2082 0.2329 0.1359
3 6 0.3813 0.2064 0.2169 0.1265
3 7 0.3852 0.1551 0.1994 0.1163
3 8 0.3515 0.1415 0.1819 0.1061
3 9 0.4600 0.2047 0.2118 0.1235
3 10 0.4469 0.1719 0.1972 0.1150
3 11 0.4237 0.1453 0.1813 0.1057
3 12 0.3749 0.1442 0.1654 0.0965

Table 5: Expected overage and underage costs and the rank-
ing based on the expected critical raio.

i %MC HY co
i cu

i ξi Rank
1 15.0 40 6269 535 0.079 11
2 19.9 40 5739 600 0.095 9
3 24.9 40 5315 513 0.088 10
4 29.9 40 5093 219 0.041 12
5 15.0 45 6100 793 0.115 7
6 19.9 45 5802 616 0.096 8
7 24.9 45 5123 782 0.132 6
8 29.9 45 4509 883 0.164 5
9 15.0 50 5816 1169 0.167 4

10 19.9 50 5197 1313 0.202 1
11 24.9 50 4860 1124 0.188 2
12 29.9 50 4478 981 0.180 3

Table 6: Expected profit.

Scenario 1 2 3
Head rice sales 84.29 87.52 81.75
Revenue 3819035 3873344 3768627
Profit 113336 230482 32176

model which includes multiple outputs (i.e., the head
rice as the primary product and all byproducts). In
particular, we will identify the set of parameters such
that our model significantly outperforms the standard
newsvendor model. For simplicity, assume that Ω =
{ω1} and that there are no penalty costs g j = 0 for
all j.

Suppose that the decision maker does not consider
multiple outputs and focuses only on the single pri-
mary output, which is the head rice (i.e., n = 1 and
j = 1). Then,

p′i = piE[Ai1] = piAi1(ω1)

h′i = piE[Ai1] = hiAi1(ω1).

When the decision maker considers only one input
(n= 1), let i∗(n= 1) be the best input type and ξi∗(n=1)
the corresponding critical ratio. The optimality con-
dition (9) reduces to

xi∗(n=1) = Ai1(ω1)F−1
1 (ξi∗(n=1)) (14)

= Ai1(ω1)[µ1 +σ1Φ
−1(ξi∗(n=1))]

if the critical ratio ξi∗(n=1)> 0; otherwise the purchase
quantity is zero.

We will vary the selling price of the primary input
from 400000 to 70000 THB. Suppose that the sell-
ing price of the head rice is large, say p1 = 65000.
Then, the type-9 input has the largest critical ratio.
Based on (14), the decision maker purchases 197 tons
of the type-9 paddy and obtains the expected profit of
2667857. When we consider all output types (i.e., n=
4), an optimal purchase quantity is 215 tons, and the
optimal expected profit is 2702104; the percent profit
loss is (2702104−2667857)/2702104 = 1.27%. On
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Table 7: Profit loss from ignoring byproducts.

Purchase quantity
p1 n = 1 n = 4 Opt. profit %∆ profit

40000 0 186 415232 100.00
45000 155 198 862410 11.35
50000 176 205 1317887 4.32
55000 186 209 1777279 2.52
60000 192 213 2238948 1.71
65000 197 215 2702104 1.27
70000 200 218 3166306 0.99

the other hand, suppose that the selling price of head
rice is small as in the previous example, p1 = 36800.
Then,

p′9 = p1A9,1(ω1) = 18400 < 21600 = c9,

and consequently ξ9 < 0, the decision maker that ig-
nores all byproducts would not buy any paddies. Ta-
ble 7 shows the purchase quantity when the decision
maker focuses only on the head rice (n = 1), the op-
timal purchase quantity when all output types (n = 4)
are considered, the corresponding optimal expected
profits, and the percent profit loss, as the selling price
of the head rice varies. The purchase quantity when
the decision maker ignores all byproducts is less than
the optimal quantity. The difference between the two
quantities becomes smaller when the selling price of
the head rice becomes larger. In other words, our
model outperforms the standard newsvendor model
when the processing firm has a significant revenue
potential from the other products (other than the pri-
mary product). We can perform an ABC classification
on all outputs to determine their importance. If the
volumes of some byproducts are significant or their
selling prices are not negligible, the processing firm
could benefit from using our model with multiple out-
puts.

5 CONCLUSION

In summary, we formulate the multi-input and -output
newsvendor model with the random yield. The opti-
mization problem of determining the purchase quan-
tity of each input type is shown to be a convex pro-
gramming problem. In the numerical example, we use
the optimality condition to find the optimal purchase
quantities of different types of paddy for the rice mill,
who wants to maximize the total expected profit from
the head rice and its byproducts, namely the broken
rice, bran and husk.

Some future research directions are identified
below. In the standard multi-product newsvendor
model, the resource constraints are considered. We

could extend our model to include the resource con-
straints. Obtaining some structural results and de-
riving the optimality condition for the multi-input
and -output newsvendor model with resource con-
straints are interesting from a theoretical viewpoint.
From a practical viewpoint, we could consider price-
dependent demands. In many agricultural products,
the selling price itself is random, depending on var-
ious factors such as the world economic output, the
global production and consumption. In our current
model, the selling price is deterministic, and the de-
mand distribution is given exogenously. A stochas-
tic programming framework can be used to capture
the price-dependent demand. Another extension is to
consider contract farming, one of the most common
arrangements between a farmer and a private agricul-
tural processing company, wherein the farmer agrees
to produce at a pre-agreed market price for procure-
ment by the other party. A mechanism design frame-
work can be applied in order to improve efficiency of
the agriculture supply chain through an optimal con-
tract. Finally, when the variability of yield is signifi-
cant, and the decision maker is no longer risk neutral,
the objective of maximizing the expected profit would
not be suitable. Instead, one could maximize the ex-
pected utility, in which risk is explicitly taken into ac-
count. We hope to pursue these or related issues in
the future.
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