
Maia: A Language for Mandatory Integrity Controls of Structured Data

Wassnaa Al-Mawee1, Paul J. Bonamy2, Steve Carr1 and Jean Mayo3

1Department of Computer Science, Western Michigan University, 1903 W. Michigan Ave.,
Kalamazoo, MI 49008-5466, U.S.A.

2 Department of Computer Science, Washington State University, 14204 NE Salmon Creek Ave.,
Vancouver, WA 98686, U.S.A.

3 Department of Computer Science, Michigan Technological University, 1400 Townsend Dr.,
Hougton, MI 49931-1292, U.S.A.

Keywords: Security, Structured Data Integrity, Structural Operational Semantics.

Abstract: The integrity of systems files is necessary for the secure functioning of an operating system. Integrity is not
generally discussed in terms of complete computer systems. Instead, integrity issues tend to be either tightly
coupled to a particular domain (e.g. database constraints), or else so broad as to be useless except after the
fact (e.g. backups). Often, file integrity is determined by who modifies the file or by a checksum. This paper
focuses on a general model of the internal integrity of a file. Even if a file is modified by a subject with trust
or has a valid checksum, it may not meet the specification of a valid file. An example would be a password
file with no user assigned a user id of 0. In this paper, we describe a language called Maia that provides a
means to specify what the contents of a valid file should be. Maia can be used to specify the format and valid
properties of system configuration files, PNG files and others. We give a structural operational semantics of
Maia and discuss an initial implementation within a mandatory integrity system.

1 INTRODUCTION

Integrity of data within computer systems, along with
the ongoing confidentiality and availability of said
data, make up the three major components of com-
puter security. While both confidentiality and avail-
ability are subjects of frequent and ongoing study, in-
tegrity is not generally discussed in terms of complete
computer systems. Instead, integrity issues tend to
be either tightly coupled to a particular domain (e.g.
database constraints), or else are so broad as to be use-
less except after the fact (e.g. backups). There are
few, if any, approaches to integrity which are capable
of actively protecting arbitrary structured data.

Our work seeks to provide robust tools to enable
general-purpose integrity protection. As part of this,
we present Maia, a language to describe integrity
constraints for arbitrary files (Bonamy et al., 2016).
In Maia, file verification is accomplished over two
phases that correspond first, to checking the file syn-
tax, and second, to checking its semantics. The user
provides an Extended Backus Naur Form (EBNF)
grammar to specify the file structure and extract its
syntactic elements into sets for processing. Then, the
sets are checked against integrity constraints in the
form of predicate logic.

In this paper, we give a Structural Operational Se-
mantics (SOS) for Maia (Plotkin, 1981) and report on
a preliminary implementation of a Maia compiler in
the context of a mandatory integrity system (Bonamy,
2016). The semantics give precise rules for giving
meaning to a Maia specification. These rules show
there is no ambiguity in Maia, giving assurance that a
correct implementation of Maia file verifiers is possi-
ble. This allows one to implement a compiler or in-
terpreter and use Maia to specify integrity constraints
within an integrity system.

This paper is structured as follows. First, we give
an overview of related work on file integrity. Then, we
give an overview of Structural Operational Semantics.
Next, we define Maia and give its SOS. Finally, we
give a brief report on a preliminary implementation
and present our conclusions.

2 RELATED WORK

Efforts have been made in the past to implement in-
tegrity systems using existing access control mech-
anisms. This includes an approximation of Clark-
Wilson using Unix access controls (Polk, 1993), and

Al-Mawee, W., Bonamy, P., Carr, S. and Mayo, J.
Maia: A Language for Mandatory Integrity Controls of Structured Data.
DOI: 10.5220/0007344802570265
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 257-265
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

257

approaches relying on the fine-grained customizabil-
ity of DTE(Ji et al., 2006). Access control can readily
limit who may modify information, and may also be
able to enforce restrictions on which processes can
cause the changes. This provides excellent origin in-
tegrity, by restricting the source of changes. However,
pure access control systems cannot directly address
the problem of human error. Simply limiting who
may modify information does not prevent erroneous
edits. The only way to protect against such mod-
ifications would be to rely on purpose-built editors
which will always make changes correctly. Thus, ac-
cess control is not sufficient to address data integrity
without infallible users or special software.

Many tools exist to verify particular file formats.
XML, which is widely used online and for stor-
ing configuration data, has several different verifier
systems: DTD (W3C, 2008), XML Schema (W3C,
2012a) (W3C, 2012b), and RELAX NG (van der
Vlist, 2003). Tools also exist for verifying HTML,
and many reference implementations for image for-
mats include sanity checking of their input. While
these are powerful tools for protecting particular file
types, they cannot be generalized to protecting other
file formats. Instead, we need an approach that will
allow us to verify a variety of file types.

Parser generators are commonly used in devel-
oping new programming languages, and can be ap-
plied to the problem of creating verifiers. Lex (Lesk
and Schmidt, 1975) and Yacc (Johnson, 1975), and
their successors Flex and Bison generate robust, fast
parsers which can be embedded in C or C++ pro-
grams. ANTLR (Parr, 2015) serves a similar pur-
pose, with a focus on emitting Java rather than C code.
These tools are often sufficient to produce syntax
checkers on their own, but creating semantic checks
requires detailed knowledge of the underlying parsing
technology. The ties to programming language cre-
ation that makes these parser generators fast can also
impact the set of languages they parse correctly. It
is possible to design a programming language around
the restrictions of one’s chosen parser generator, but
this is harder when the format to be parsed already
exists. PNG images (ISO, 2004), for example, make
use of chunk length specifiers that introduce context
sensitivities which are difficult to handle in a normal
parser generator. Some tools, like YAKKER (Jim
et al., 2010), are able to cope with limited context
sensitivity, but still require programmer assistance to
perform semantic checks.

Data description languages (Fisher et al.,
2006) (Fisher et al., 2010) are designed to provide
automated parsing for ad hoc data formats. Tools like
PADS (Fisher and Walker, 2011) give programmers

the ability to describe semi-structured file formats
so that their programs can more readily access the
contents of the file. While this approach significantly
simplifies handling formats which were not designed
with parsing in mind, it still requires the intervention
of a programmer to describe the format in question
and then perform validity checks.

Maia improves on these tools in two important
ways: Maia can be used to describe any file with a
context free structure, and can handle certain types of
context sensitivity. Additionally, Maia specifications
describe valid files, not how to validate files, meaning
that no programming is required to generate a veri-
fier. As we will demonstrate, tools can convert Maia
specifications into fully functional verifier programs.

3 BACKGROUND

Structural Operational Semantics (SOS), introduced
by G. D. Plotkin (Plotkin, 1981), is used to specify a
framework for describing the operational behavior of
programming languages. The basic idea behind SOS
is to define the behavior of a program or a system in
mathematical terms, in a form that supports under-
standing and reasoning about the program under con-
sideration. SOS has been successfully applied as a
formal tool to give usable semantics description for
real-life programming languages including Java. SOS
is a direct approach that provides comprehensive def-
initions in a very simple formal mathematics. More-
over, SOS is the preferred choice over methods based
upon denotational semantics in the static analysis of
programs and in proving compiler correctness.

As described by Prasad and Arun-Kumar (Prasad
and Arun-Kumar, 2003), SOS defines the semantics
of a programming language from the syntax by ap-
plying the correct sequence of inference rules. Each
rule has the form

P1,
P2,
. . . ,
Pn

C
, (1)

where, Pi represents judgments (premises or assump-
tions), C is a single judgment or conclusion, and side
conditions express the constraints of the rule. The in-
ference rule states that if all of the premises are true,
then the conclusion is true.

We present the SOS of Maia using big-step struc-
tural semantics that justifies a complete execution se-
quence using a tree-structured proof. Any semantics

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

258

of a programming language involves auxiliary enti-
ties or bindings such as environments, stores, etc. We
present the SOS of Maia with respect to a finite do-
main function called an environment, γ, that maps a
set of variables, X , to their computed values V . The
big-step transition relation ⇒e is defined inductively
as the smallest relation closed under the inference
rules given a Maia rules specification. The SOS of
Maia rules specification has the form γ 7→ R ⇒e v
which is read “given an environment γ, the syntax rule
R evaluates to a value v”. This relation is understood
as a transition that leaves γ unchanged. The rules can
be expressed as a proof tree of why R can evaluate to
a value, where the goal judgment R⇒ v is at the root,
the internal nodes represent the rule instances with a
branch for each antecedent, and the leaves are axiom
instances.

4 MAIA

In order to ensure that data remains valid we must
first validate the original file. There are a variety of
special-purpose verifiers tied to particular use cases
and file formats, but no general-purpose systems for
verifying arbitrary file types. We solve this prob-
lem with Maia, a single-assignment specification lan-
guage which can describe the structure of any context
free language as well as semantic rules for the con-
tents of a file.

4.1 Design Objectives

We have two primary objectives for the design of
Maia. First, it must be able to protect a wide vari-
ety of existing files, which means we cannot restrict
ourselves to only supporting certain file structures.
Second, Maia specifications should be descriptions of
valid files, rather than procedures for verifying files.

There are a huge number of configuration files in
the average Linux system, to say nothing of all of the
user-side file formats that may be on a system. While
there are some repeated structures within these files,
any system which focused on only one file structure
would necessarily be unable to verify the remaining
formats. With that in mind, we have designed Maia
to be flexible with regard to the type of files it can
describe. We also provide a mechanism to explicitly
make use of external verifiers if necessary.

We have also designed Maia to provide
implementation-independent descriptions of valid
files, rather than procedures for verifying files. Any
programming language could be used to write a
verifier, but determining what constitutes a valid file

would require not only reasoning about the rules
themselves but also how they are implemented. By
using a description system we can separate the mean-
ing of rules from their implementation, which makes
it easier to reason about them. It also becomes much
easier to port specifications to different platforms, as
all that is required is to recreate the verifier generator,
not the specifications themselves.

4.2 Model Overview

Within Maia, we model the file verification process as
two phases, corresponding to checking the file’s syn-
tax, followed by verifying the semantics. During the
first phase, the file is parsed to check its structure and
extract syntactic elements for processing. The sec-
ond phase can then check the data in the syntactic ele-
ments without being unduly concerned about the file’s
structure. Using this (logically) two-phase system al-
lows us to both mirror the way a traditional verifier
would work and employ familiar constructs within the
language itself.

The syntax checking component of Maia is de-
signed to be familiar for anyone who has written a
parser or perused the specification for a file or data
format. The user provides an Extended Backus Naur
Form (Backus, 1959)(Wirth, 1977) grammar which
can then be used to break the file into pieces, veri-
fying its structure and extracting meaningful compo-
nents. We also provide some limited context sensi-
tivity to allow syntax specifications to deal with files
which contain length specifications.

The semantic portion of Maia makes use of set
theory and predicate calculus to express constraints.
The sets used in this phase are automatically con-
structed during syntax checking by grouping all oc-
currences of the same nonterminal (e.g. user names
in the passwd file) into a set. It is then possible to ex-
press constraints like “user names must be unique” or
“there must be a user named root” without needing to
explicitly iterate over the data. This approach bears
some resemblance to SETL (Dewar, 1979), though
that family of languages is procedural rather than de-
scriptive. In addition to normal set operations, we also
provide a notion of ordering within sets to make it
possible to express rules “root must be the first entry”
or “users should be ordered by UID”.

The next sections comprise a formal specification
of the semantics of Maia. We have intentionally de-
signed the syntax and semantic specification compo-
nents of the language to be different from one another.
This is reflective of the different underlying models
for syntax and semantics, and has the advantage of
making the type of a rule (syntax or semantic) obvious

Maia: A Language for Mandatory Integrity Controls of Structured Data

259

with cursory inspection. The specification systems do
occasionally share constructs or features, and we note
those specifically. All other features are specific to ei-
ther syntax or semantic specification and are not valid
in the other context.

4.3 SOS for Maia

A Maia specification has the following basic struc-
ture:

M→ I∗ (X |C | SR | T)∗ (2)

where I represents a file inclusion directive, X is an
EBNF specification of the input file syntax, C repre-
sents a set construction operation, SR represents a se-
mantic rule and T represents a template. In the rest of
this section, we focus on the semantics for X , C and
SR since they are the critical elements of Maia. Maia
specifications involve rules that have no meaning to
present such as file inclusion and template definition.
For file inclusion, we define its functionality. For tem-
plates, we refer the reader to (Bonamy, 2016). .

4.3.1 File Inclusion

Inclusion brings an existing specification into the cur-
rent specification via the using keyword. It provides
both reusable definitions and the refinement of the ex-
isting specifications. Therefore, when a path is spec-
ified, and a file is included, all its syntactic specifica-
tions will be available, and all of its semantic rules are
enforced. In Maia, inclusion has the form:

I → using "sysPath" ;
| using "sysPath" on "sysPath" ; (3)

where sysPath is the path to the specification to be
imported. The path can be relative or absolute. Nor-
mal Maia specifications produce verifiers which pro-
cess whatever input they are given, but this is insuf-
ficient in the event that multiple files must be parsed
together. Maia supports multi-file verifiers by adding
extensions via the on keyword as follows:

using "sysPath" on "filePath" ;

In the example below, the Maia specification
groupfile.maia is linked to the file /etc/group:

using "groupfile.maia" on "/etc/group" ;

Thus, as part of the current verification process,
the file /etc/group must also be verified using the
groupfile.maia specification.

4.3.2 Syntax Rules

Maia syntax rules are an EBNF specification of input
file syntax. A Maia translator can emit a specifica-
tion in any parser generator system to read a file. The
names that appear on the left hand side of a syntax
rule represent sets that contain the strings that match
that rule in the input file. Thus, syntax rules define
variables that are used later in constructing sets and
in verifying the properties of the constructed sets. In
Maia, items in a set are considered to be ordered based
on their original order in the file being verified.

Let G = (V,Σ,P,S) be a context-free grammar
where V is a set of variables or non-terminals, Σ is
the alphabet or set of terminals, P is a set of rules and
S is a distinguished element of V called the start sym-
bol (Sudkamp, 2006). Let ni be a node in the deriva-
tion tree, T , for the derivation S ∗⇒ w, where w ∈ Σ∗,
and n j, . . . ,nk be the children of ni. We denote the
string derived from ni as δ(ni). δ(ni) is defined recur-
sively as

1. If ni is a leaf node, then δ(ni) = label(ni)

2. If ni is an interior node, then δ(ni) = δ(n j) · . . . ·
δ(nk)

Let A,B ∈ V . We denote the set of strings derived
from A as ∆(A). ∆(A) = {δ(n) | n ∈ T ∧ label(n) =
A}. In addition, we define ∆(A.B) as

∆(A.B) =
{

δ(n)
∣∣∣∣ n ∈ T ∧ label(n) = B ∧

label(parent(B)) = A

}
(4)

This second form is used when referring to strings de-
rived in the context of a specific rule.

A syntax rule, X , has the form: N = xEy where
N,E ∈ V and x,y ∈ Σ∗ ∪V . The SOS of a syntax
rule expressed in the context of a semantic rule, SR,
in Maia is

γ ` N= xEy⇒e (∆(N),∆(N.E))
γ[N 7→ ∆(N),N.E 7→ ∆(N.E)] ` SR⇒e v

γ ` N= xEy SR⇒e v
(5)

where v ∈ B and B is a boolean value indicating a file
is valid (true) or invalid (false). Essentially, syntax
rules create a new mapping from the name appearing
on the left hand side of an EBNF rule to the set of
strings that are matched in an input file.

For example, we can state the rule passwdRecord
to specify a record in /etc/passwd as:
passwdRecord = name ":" password ":" uid ":"

gid ":"

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

260

If this rule is applied to the input:
alice: 19fd01b2307d497fb174decd8bc9c121:1000:1
bob: 0f68eb4c87c99c563e168cdc2cd92336:200:2

the constructed sets from this input are:
passwdRecord = {{alice,19fd..., 1000, 1 },

{bob,0f68..., 200, 2 }}
passwdRecord.name = {alice, bob}
passwdRecord.password = {19fd..., 0f68...}
passwdRecord.uid = {1000,200}
passwdRecord.gid= {1,2}

Sets in Maia syntax rules are constructed automat-
ically. Each set is converted into a simple or a com-
pound set containing the input chunks that matched
the parser rule. Maia syntax phase constructs simple
sets by grouping all the occurrence of the same non-
terminal together. The scope of the definition of S is
limited to the occurrences of the same variables in the
expression as follow: Lets suppose that S occurs n
times, {S1,S2,,Sn}. Then, we can define simple set S
as follows:

let S =de f {S1,S2, ..,Sn} (6)
The SOS of a simple set definition S is:

(γ ` S1,γ ` S2, . . . ,γ ` Sn)⇒e {v1,v2, . . . ,vn}=v
γ ` let S =de f {S1,S2, . . . ,Sn}⇒d γ[S 7→ v]

(7)

The scoping definition of simple set S,⇒d returns a
new environment with the additional mapping.

Alternatively, Maia constructs compound sets
when nonterminals contain at least two other non-
terminals. The scope of the definition of S is
limited to the occurrences of the different vari-
ables in the expression as follows: Lets suppose
that S is a compound set that has n simple sets
{S1,S2,. . . ,Sn}. Each simple set S occurs n times such
that {S1,1, . . . ,S1,n,S2,1, . . . ,S2,n,Sn,1, . . . ,Sn,n} . Then,
we can define the compound set S as follows:

let S =de f {{S1,1,S2,1, . . . ,Sn,1},

{S1,2,S2,2, . . . ,Sn,2},

. . . ,{S1,n,S2,n, . . . ,Sn,n}}

(8)

The SOS of compound set S is: {γ ` S1,1,γ ` S2,1, . . . ,γ ` Sn,1},
{γ ` S1,2,γ ` S2,2, . . . ,γ ` Sn,2}, . . . ,
{γ ` S1,n,γ ` S2,n, . . . ,γ ` Sn,n}

⇒e {v1,1,v2,1, . . . ,vn,1},
{v1,2,v2,2, . . . ,vn,2}, . . . ,
{v1,n,v2,n, . . . ,vn,n}

=v

γ ` let S =de f

 {{S1,1,S2,1, . . . ,Sn,1},
{S1,2,S2,2, . . . ,Sn,2},

. . . ,{S1,n,S2,n, . . . ,Sn,n}}

⇒d γ[S 7→ v]

(9)

4.3.3 Set Construction

Set construction in Maia may be done explicitly. El-
ements are specified as a comma-separated list of ei-
ther strings or numbers. Constructed sets are available
to semantics rules. As in the case of syntax rules, set
construction rules create a mapping from the set name
to the elements of the set. In Maia syntax explicitly
constructed sets have the form:

C → Var = < Str1, . . . , Strn > ;
| Var = < Nval1, . . . , Nvaln >; (10)

where Var is a variable name, Str is a string literal and
Nval is a numeric value. An example of explicit set
construction is

classification = < "TS", "S", "C", "UC" > ;
version = < 1, 2, 3.0, 3.1, 3.2> ;

The SOS of the explicit construction of a set of strings
is:

γ `Var = < Str1, . . . ,Strn >⇒e {Str1, . . . ,Strn},
γ[Var 7→ {Str1, . . . ,Strn}] ` SR⇒e v
γ `Var = < Str1, . . . ,Strn > SR⇒e v

(11)

This rule indicates that the set name Var maps to the
literal set elements specified when evaluating a set of
semantic rules SR. The SOS for sets of numeric values
is similar.

Maia also provides a facility to create a new set
by performing a per-element join operation on two
or more existing sets. The sets to be joined are re-
quired to contain the same number of elements of the
same type (string or numeric value). Attempting to
join mismatched sets is considered an error.

To join sets, we reuse the angle brackets to indi-
cate set construction, though in this case we specify
how to construct an element rather than all elements
in the set. For string-based fields, the connector is a
period to indicate concatenation, in the style of Perl’s
dot operator. For example,

user = <’a’, ’b’, ’c’ >
domain = <’D1’, ’D2’, ’D3’>
userDomain = < user . domain >

results in the set userDomain mapping to the value
{’aD1’, ’aD2’, ’aD3’}.

The SOS of set join for strings is

γ `Var = < A1 . A2. An>⇒e
{a1,1 · . . . ·an,1, . . . ,a1,m · . . . ·an,m},

γ[Var 7→ {a1,1 · . . . ·an,1, . . . ,a1,n · . . . ·an,m}] ` SR⇒e v
γ `Var = < A1. A2. An> SR⇒e v

(12)

Maia: A Language for Mandatory Integrity Controls of Structured Data

261

where Ai = {ai,1,ai,2, . . . ,ai,m}. The SOS of set join
for numeric sets is similar.

A Maia specification is executed in two passes.
The first pass consists of the rules in Sections 4.3.2
and 4.3.3 to create the environment in which the se-
mantic rules given in the next section are evaluated.
The second pass verifies the constraints placed on the
file contents expressed by semantic rules.

4.3.4 Semantic Rules

Structurally, Maia semantic rules are a straightfor-
ward adaptation of predicate calculus. For example,
consider the rule “there must be at least one user with
a UID of 0” that may be placed on /etc/passwd.
Given the set uid, which contains the UIDs of all users
in /etc/passwd, we may express this formally as:
∃u ∈ uid : u == 0. The equivalent Maia is quite sim-
ilar:

exists u in uid : u == 0;

A Maia semantic rule has the following syntax:

SR → E? forevery? Var1 in Var2 : Cn ;
| E? exists Var1 in Var2 : Cn ;

E → (require) | (warn) | (info)
(13)

where E is an enforcement level Var is a set name
and Cn is a constraint on the set. The possible en-
forcement levels are (require) which means the con-
straint is always checked and input file is invalid if
the constraint does not hold, (warn) which means the
constraint is always checked and a warning is issued
if the constraint does not hold and (info) which means
the constraint is only checked if requested and a warn-
ing message is given if the constraint does not hold.
Below, we give the SOS for the (require) enforcement
level, without loss of generality.

γ `Var2⇒e A,
∀a ∈ A γ[Var1 7→ a] `Cn⇒e true

γ ` forevery? Var1 in Var2 : Cn ;⇒ true
(14)

where A is a set defined by a syntax rule or via set
construction and v ∈ B, and

γ `Var2⇒e A,
∃a ∈ A γ[Var1 7→ a] `Cn⇒e false

γ ` forevery? Var1 in Var2 : Cn ;⇒ false
(15)

These rules indicate that the constraint must hold on
every element of the set A in order for the file to be
valid. Similarly, the SOS for an exists rule is

γ `Var2⇒e A,
∃a ∈ A γ[Var1 7→ a] `Cn⇒e true

γ ` exists Var1 in Var2 : Cn ;⇒ true
(16)

and
γ `Var2⇒e A,

∀a ∈ A γ[Var1 7→ a] `Cn⇒e false

γ ` exists Var1 in Var2 : Cn ;⇒ false
(17)

These rules indicates that the constraint must hold for
at least one member of the set A in order for the file to
be valid.

A constraint, Cn, in Maia may be a logical com-
parison, an expression in predicate logic, a logic con-
straint, a membership test Inclusion or a blackbox.
Syntactically, constraints are of the form

Cn → Cn logic Cn
| not Cn
| (Cn)
| Inc
| Blb
| Cmpr

(18)

Cn provides one or more Boolean constraints that
will be evaluated for each element in the specifying
set until the rule is satisfied. For example, a rule that
applies the constraint on all elements of the set, UIDs
must be in the range 0 to 32767. Maia semantic rule
translates the given rule to:

forEvery u in uid : u >=0 and u <= 32767 ;

Maia includes the standard logical operators and,
or , and xor. It also provides implies and iff . Logical
operators allow rules like:

forEvery p in passwdRecord:
p.name == root" implies p.uid==0 ;

This rule is applied to the set passwdRecord to ex-
press the constraint that the root user must have uid
equal to 0. The syntax p.name refers to the name field
in every member of the set passwdRecord.

Set membership in Maia is specified with an in
constraint. This constraint is true if and only if there
is at least one element in a set being tested. The syntax
of set membership semantic rules is :

Inc → indexedName in setName
| indexedName in < string (, string)∗ >
| indexedName in < nVal (, nVal)∗ >

(19)

where nVal in Maia defines numeric values and has
the form:

nVal → iVal | fVal (20)

where iVal is a decimal or hexadecimal integer value,
and fVal is a floating point value. The SOS of nVal
is:

γ ` iVal⇒e iVal γ ` fVal⇒e fVal
γ ` nVal⇒e v

(21)

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

262

where v ∈ {iVal, fVal}
In indexedName, if an element has a numeric

type, it can be compared it to a numeric literal, by
applying a numeric operator, or concatenating it to a
numeric value. In Maia , indexedName has the form:

indexedName → setName ([exp])? (. setName)?
| setName

(22)

For example, indexedName can access an element
in a set name as userDomain[i]. The SOS of
indexedName is defined as

γ ` setName⇒e γ(setName)
(23)

γ ` setName.setName⇒e γ(setName.setName)
(24)

γ ` exp⇒e v
γ ` setName ⇒e γ(setName)[v]

(25)

where v ∈ nVal, and setName,setName.setName ∈
dom(γ).

An example of a set membership in Maia, con-
sider the set disallowedCyphers which contains
cyphers that are not permitted under local policy.
This rule can be stated as follows:

forEvery c in cypher:
not (c in disallowedCyphers) ;

The SOS of set membership is:

γ `

 e j ∈ (indexedName) in (setName)
| e j ∈ (indexedName) in < string >
| e j ∈ (indexedName) in < nVal >

⇒e v

γ ` i f []ni=1

 ei ∈ (indexedName) in (setName)
| ei ∈ (indexedName) in < string >
| ei ∈ (indexedName) in < nVal >

⇒e v

(26)

where i, j ∈ {1, . . . , n}, and v ∈ {true,false}.
Black-box verifiers Blb are external procedures or

processes that can perform tasks not expressible in
Maia.

Blb(verifier, setName, ...)

In this rule, verifier is the name of a black-box ver-
ifier known to the system, and the setName is one or
more elements in the current context to pass to veri-
fier. A black-box verifier receives one or more values
and returns a single value.

A constraint Cn may also include comparisons and
arithmetic operators. These operations have straight-
forward semantics which we omit for brevity. For
a more thorough discussion of black boxes, compar-
isons and arithmetic see (Bonamy, 2016).

5 EXAMPLE MAIA
SECIFICATION

Below is an example Maia specification for protecting
the integrity of /etc/passwd.
PasswdFile = (passwdRecord Newline)+ ;
passwdRecord = name ":" password ":" uid ":"

gid ":"
gecos ":" directory ":" shell ;
name = [a-zA-Z_][-a-zA-Z0-9_]{0,31} ;
password = "*" | "x" | CryptPassword ;
uid = StringPosDec+ ;
gid = StringPosDec+ ;
gecos = [ˆ:\n]* ;
directory = [ˆ:\n]+ ;
shell = [ˆ:\n]* ;
Newline = "\n" ;
name isUnique() ;
exists name : name == "root" ;
(warn) name : name ˜ /[A-Z]/ ;
uid: uid <= 65535;
gid: gid <= 65535;
directory : directory isAbsPath() and

directory isDirectory() ;
passwdRecord : name == "root" implies uid == 0;
passwdRecord : directory isAccessibleTo(name);
passwdRecord : shell != "" implies

(shell is AbsPath() and
shell isExecutableBy(user)) ;

6 MAIA IMPLEMENTATION

Our early approach to creating verifiers from Maia
specifications involves converting the specification
into input for Flex and Bison, which then generates
a parser based on the spec. Flex and Bison are widely
used, but require a clear separation between scanning
and parsing phases (with each program handling one
phase), while Maia does not make a distinction be-
tween these cases. To overcome this obstacle, the
converter recognized string literals, character classes,
and regular expressions in Maia syntax rules and cre-
ated corresponding tokens for Flex. This approach
occasionally required hand-adjustment to the Flex in-
put, or small changes to the syntax rules themselves,
but was generally successful.

While Maia’s syntax rules are no more expres-
sive than Bison’s, they include a number of conve-
nience features which Bison lacks, such as short-
hand for repetition. As a result, the converter some-
times had to transform Maia syntax into Bison syn-
tax. This was accomplished by creating Bison non-
terminals which encapsulated the Maia behavior, like
replacing an explicit repetition (A = B{3} ;) with a
nonterminal containing the desired number of entries
(A : C ; C : B B B ;). Bison’s action system was

Maia: A Language for Mandatory Integrity Controls of Structured Data

263

used to check semantic rules. Universal rules were
checked in the action for the appropriate nonterminal,
with failures causing the parser to immediately exit.
Existential rules were also checked in actions, but set
a flag if a rule passed. The flags can then be checked
at the end of parsing to ensure compliance.

By converting Maia specifications into Flex and
Bison parsers in this way, we were able to create ver-
ifier programs for the password, shadow, and groups
files, which are part of the Linux login system. With
light modification, we were also able to produce a sin-
gle verifier that checked rules which apply across all
three files to enforce constraints like “users with an
entry in the password field must appear in the shadow
file”. The password file verifier was also used to
test integrity protection with the Linux kernel mod-
ule (Bonamy, 2016).

More examples, experimental result, and com-
parative evaluation are available in (Bonamy et al.,
2016) and (Bonamy, 2016). Specifically, we have
developed Maia spcecification for valid hashes by
crypt(), linux password, shadow and group files,
PNG images and ssh configurations.

7 CONCLUSIONS

Most integrity models deal with the trustworthiness
of who accesses the data, or provide a general pro-
tection for a specific data format. We know of no
general-purpose integrity systems capable of protect-
ing the integrity of the data itself. Research on pro-
tecting arbitrary data integrity is limited. In this paper,
we present Maia, a language for general-purpose in-
tegrity protection. We give a formal description of the
structural operational semantics for Maia using rules
with simple mathematical foundations. The seman-
tics leads to a natural interpretation of the meaning of
a Maia specification.

We are currently implementing the full Maia in-
terpreter. Our preliminary implementation has shown
that a Maia specification can be used to protect the in-
tegrity of Linux system configuration files with mini-
mal overhead. In the future, we will build a full imple-
mentation of Maia that requires no hand modification.

REFERENCES

Backus, J. W. (1959). The Syntax and Semantics of the Pro-
posed International Algebraic Language of the Zurich
ACM-GAMM Conference. Proceedings of the In-
ternational Comference on Information Processing,
1959, pages 125–132.

Bonamy, P., Carr, S., and Mayo, J. (2016). Toward a manda-
tory integrity protection system. In Proceedings of
the Thirty-first International Conference on Comput-
ers and Their Applications.

Bonamy, P. J. (2016). Maia and Mandos: Tools for Integrity
Protectionon Arbitrary Files. PhD thesis, Michigan
Technological Univeristy.

Dewar, R. B. K. (1979). The SETL Programming Lan-
gauge. Courant Institute of Mathematical Sciences,
New York University.

Fisher, K., Mandelbaum, Y., and Walker, D. (2010). The
next 700 data description languages. Journal of the
ACM, 57(2):1–51.

Fisher, K., Mandelbaum, Y., Walker, D., Fisher, K., Man-
delbaum, Y., and Walker, D. (2006). The next 700
data description languages, volume 41. ACM.

Fisher, K. and Walker, D. (2011). The PADS project. In the
14th International Conference, page 11, New York,
New York, USA. ACM Press.

ISO (2004). Information technology - Computer graph-
ics and image processing - Portable Network Graph-
ics (PNG): Functional specification. Technical Report
ISO/IEC 15948:2003 (E), Geneva, Switzerland.

Ji, Q., Qing, S., and He, Y. (2006). A formal model for
integrity protection based on dte technique. Science in
China Series F: Information Sciences, (5):545 – 565.

Jim, T., Mandelbaum, Y., and Walker, D. (2010). Semantics
and algorithms for data-dependent grammars. Pro-
ceedings of the 37th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
45(1):417–430.

Johnson, S. C. (1975). Yacc: Yet Another Compiler-
Compiler. Technical Report Computing Science Tech-
nical Report No. 32, Murray Hill, New Jersey.

Lesk, M. E. and Schmidt, E. (1975). Lex - A Lexical Ana-
lyzer Generator. Technical Report Computer Science
Technical Report No. 39, Murray Hill, New Jersey.

Parr, T. (2015). The Definitive ANTLR 4 Reference. Prag-
matic Bookshelf.

Plotkin, G. D. (1981). A structural approach to operational
semantics.

Polk, W. T. (1993). Approximating Clark-Wilson“Access
Triples” with Basic UNIX Controls. In Proceedings
of the UNIX Security Symposium IV, pages 145–154.

Prasad, S. and Arun-Kumar, S. (2003). An
introduction to operational semantics.
http://www.cse.iitd.ernet.in/ sanjiva/opsem.ps.

Sudkamp, T. A. (2006). Languages and Machines: An In-
troduction to the Theory of Computer Science. Pear-
son Education.

van der Vlist, E. (2003). RELAX NG. O’Reilly Media.
W3C (2008). Extensible Markup Language (XML) 1.0

(Fifth Edition). Technical report.
W3C (2012a). W3C XML Schema Definition Language

(XSD) 1.1 Part 1: Structures. Technical report.
W3C (2012b). W3C XML Schema Definition Language

(XSD) 1.1 Part 2: Datatypes. Technical report.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

264

Wirth, N. (1977). What can we do about the unnecessary
diversity of notation for syntactic definitions? Com-
munications of the ACM, 20(11):822–823.

Maia: A Language for Mandatory Integrity Controls of Structured Data

265

