
Using Proof Failures to Help Debugging MAS

Bruno Mermet and Gaële Simon
Normandie Univ., Université Le Havre Normandie, CNRS, Greyc, 1400 Caen, France

Keywords: Multi-Agent Systems, Proof Failure, Debugging.

Abstract: For several years, we have worked on the usage of theorem proving techniques to validate Multi-Agent Sys-
tems. In this article, we present a preliminary case study, that is part of larger work whose long-term goal
is to determine how proof tools can be used to help to develop error-free Multi-Agent Systems. This article
describes how an error caused by a synchronisation problem between several agents can be identified by a
proof failure. We also show that analysing proof failures can help to find bugs that may occur only in a very
particular context, which makes it difficult to analyse by standard debugging techniques.

1 INTRODUCTION

This article takes place in the general context of the
validation of Multi-Agents Systems, and more specif-
ically in the tuning stage. Indeed, for several years
now, we have worked on the validation of MAS
thanks to proof techniques. This is why the designed
the GDT4MAS model (Mermet and Simon, 2009) has
been designed, which provides both formal tools to
specifiy Multi-Agent Systems and a proof system that
generates automatically, from a formal specification,
a set of Proof Obligations that must be proven to guar-
antee the correctness of the system.

In the same time, we have begun to study how
to answer to the following question: “What happens
if the theorem prover does not manage to carry out
the proof ?”. More precisely, is it possible to learn
anything from this failures (that we call in the sequel
proof failures), in order to debug the MAS ? Answer-
ing to this question in a general context is tricky. In-
deed, a first remark is that a proof failure may occur
in three different cases:

• first case: a true theorem is not provable (Gödel
Incompleteness Theorem);

• second case: a true theorem can not be automat-
ically proven by the prover because first-ordre logic
is semidecidable;

• third case: an error in the MAS specification has
led to generate a false theorem that, hence, cannot
be proven.

So, when a proof failure is considered, the first
problem is to determine the case it corresponds to. It

would be rather long and off-topic to give complete
explanations here. However, it is important to kn-
wow that the proof system has been designed to gen-
erate theorems that have good chances to be proven
by standard strategies of provers, without requiring
the expertise of a human. Moreover, unprovable true
theorems generally do not correspond to real cases.
Thus, in most cases, a proof failure will correspond to
a mistake in the specification, and this is the context
that is considered in the sequel.

The subject of our study is then the following: if
some generated proof obligations are note proven au-
tomatically, can we learn from that in order to help to
correct the specification of the MAS ? So, the main
idea is to check wether proof failures can be used to
detect, even correct bugs in the specification of the
MAS.

Indeed, contrary to what is presented in (Dastani
and Meyer, 2010), where authors consider that proof-
based approaches are dedicated to MAS validation
and that other approaches must be considered for de-
bugging and tuning, we aim at using proof failures to
capture mistakes very early in the design of a MAS
and to help to correct them.

In this article, we begin by a brief presentation of
existing works dealing with the debugging of MAS.
In part 3, we present the GDT4MAS model, the
proof mechanism, and the associated tools. Section 4
presents the core of our work. In the last part, we con-
clude on the work presented here and we present the
future or our research in this domain.

Mermet, B. and Simon, G.
Using Proof Failures to Help Debugging MAS.
DOI: 10.5220/0007343205230530
In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), pages 523-530
ISBN: 978-989-758-350-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

523



2 STATE OF THE ART

Ensuring the correctness of a MAS is a crucial is-
sue, but this is a very hard problem, as it has been
established several times (Drogoul et al., 2004). As
for classical software, there are mainly two kinds of
methods to check the correctness of a MAS: proof and
test. If interested, the reader is encouraged to refer to
previous articles (Mermet and Simon, 2009; Mermet
and Simon, 2013) for a more comprehensive state of
the art on the subject. In this section, we focus on
works dealing with the tuning of erroneous systems.

2.1 Test

Most works about the debugging of MAS deal with
test used to discover a potential problem, and they
also deal with how to provide one or more test cases
allowing to reproduce the problem. Tests can be situ-
ated at different levels, as exposed in (Nguyen et al.,
2009):

• at the unit level: this is for instance the goal of
the work presented in (Zhang et al., 2009).

• at the agent level: there are numerous works at
this level. Some propose “xUnit” tools to spec-
ify unit tests (Tiryaki et al., 2006), whereas others
propose to add to the system agents dedicated to
test (Nguyen et al., 2008)

• at the MAS level: principles of test at the MAS
level are not yet many. One of the reasons is cer-
tainly the difficulty of the problem, well detailed
in (Miles et al., ). But there are however a few works
in this domain (Tiryaki et al., 2006; Nguyen et al.,
2010).

2.2 Trace Analysis

Another kind of works dealing with the debugging
of MAS relies on the trace analysis. These works
mainly focus on three of the tasks associated to de-
bugging: discovering the problem, identifying the po-
tential causes and finding the true one. (Lam and Bar-
ber, 2005; Vigueras and Botía, 2007; Serrano et al.,
2009).

Traces are analysed using two different methods:
either they study the ordering of messages exchanged
between agents, or they use knowledge provided by
the designer of the system using data mining tech-
niques to check if this knowledge can be found in the
MAS trace, in order to discover bugs and to explain
them. The combination of these two techniques is for
example studied in (Dung N. Lam, 2005).

2.3 Visualization

A few work deal with visualization tools for MAS,
although this kind of tools may be interesting. But
designing relevant views is a very hard problem be-
cause of the potential huge number of entities inter-
acting. Some works propose to generate views from
traces (Vigueras and Botía, 2007).

2.4 Proof Failures

Using proof failure is a prospective domain, that has
not yet been examined in depth. Some works pro-
pose to provide the prover with tools that might use
proof failures (Kaufmann and Moore, 2008). About
the usage of these proof failures, a few ideas are pro-
posed in (Dennis and Nogueira, 2005), but they have
not been implemented.

3 THE GDT4MAS MODEL

This approach, that integrates a model and an asso-
ciated proof system, offers several interesting char-
acteristics for the design of MAS: a formal language
to describe the behaviour of agents and the expected
properties of the system, the usage of the well-known
and expressive first-order logic, and an automatisable
proof process.

We briefly present here the GDTM4MAS method,
more detailed in (Mermet and Simon, 2009; Mermet
and Simon, 2013).

3.1 Main Concepts

The GDT4MAS model requires to specify several
concepts described here.

Environment. The environment of the MAS is
specified by a set of typed variables and an invariant
property iE .

Agent Types. Each agent type is specified by a set
of internal typed variables, an invariant and a be-
haviour. The behaviour of an agent is mainly defined
by a Goal Decomposition Tree (GDT). A GDT is a
tree of goals, whose root correspond to the main goal
of the agent. A plan is associated to each goal: when
this plan is executed with success, the goal it is as-
sociated to (called parent goal) is achieved. A plan
can be made either of a single action, or a set of goals
(called subgoals) linked by a decomposition operator.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

524



A goal G is mainly described by its name nG, a sat-
isfaction condition scG and a guaranted property in
case of failure gpf G.

The satisfaction condition (SC) of a goal is for-
mally specified by a formula that must be true when
the execution of the plan associated to the goal suc-
ceeds. Otherwise, the guaranted property in case of
failure (GPF) of the goal specifies what is however
guaranted to be true when the execution of the plan
associated to the goal fails (It is of course not consid-
ered when the goal is said to be a NS goal, that is to
say a goal whose plan always succeeds).

SC and GPF are called state transition formu-
lae (STF), because they establish a link between two
states, called the initial state and the final state, cor-
responding to the state of the system just before the
agent tries to solve the goal and the state of the sys-
tem when the agent has just ended the execution of the
plan associated to the goal. In an STF, a given vari-
able v can be primed or not. The primed notation (v′)
represents the value of the variable in the final state
whereas a non-prime notation (v) represents the value
of the variable in the initial state. A STF can be non
deterministic when, considering a given initial state,
several final states can satisfy it. This is for instance
the case of the following STF : x′ > x. This means
that the value of variable x must be greater after the
execution of the plan associated to the goal than be-
fore. For instance, if the value of x is 0 in the initial
state, final states with a value of 2 or 10 for x would
satisfy this STF.

Decomposition Operators. GDT4MAS proposes
several decomposition operators, in order to specify
several types of behaviours. In this article, we only
use two of them:

• the SeqAnd operator specifies that subgoals must
be executed in the given order (from the left to the
right on the graphical representation of the GDT). If
the behaviour of the agent is sound, achieving all of
the subgoals achieves the parent goal. If the execu-
tion of the first subgoal fails, the second subgoal is
not executed;

• the SyncSeqAnd operator works similarly to the
SeqAnd operator, but it offers the possibily to lock
a set of variables in the environment during the exe-
cution of the plan. Thus, other agents won’t be able
to modify these variables as long as the execution of
the plan is not finished.

Actions. Actions are specified by a precondition,
specifying in which states it can be executed, and a

postcondition, specifying by an STF the effect of the
action.

Agents. Agents are defined as instances of agent
types, with specific initialisation values for the vari-
ables of the type.

3.2 GDT Example

Figure 1 shows the GDT of an agent made of three
goals (represented by ellipses with their name and
their SC): goal A is the root goal. Thanks to the
SeqAnd operator, it is decomposed into 2 subgoals
B and C. These goals are leaf goals and so, an ac-
tion (represented by an arrow) is associated to each of
them.

3.3 Proof Principles

3.3.1 General Presentation

The proof mechanism aims at proving the following
properties:

• Agents preserve their invariant properties (Mer-
met and Simon, 2013);

• Agents preserve the invariant properties of the en-
vironment;

• Agents behaviours are consistent; (plans associ-
ated to goals are correct);

• Agents respect their liveness properties. These
properties formalize expected dynamic characteris-
tics.

Moreover, the proof mechanism relies on proof
obligations (PO). POs are properties that must be
proven to guarantee the correctness of the sys-
tem. They can be automatically generated from a
GDT4MAS specification. They are expressed in first-
order logic and can be verified by any first-order logic
prover. Finally, the proof system is compositional:
The proof of the correctness of a given agent type
is decomposed into several small independant proof
obligations, and most of the time, the proof of a given
agent type can be performed independently of the oth-
ers.

3.3.2 Proof Schema

The GDT4MAS method defines several proof
schemas. These proof schemas are formulae that are
used to generate proof obligations.

Using Proof Failures to Help Debugging MAS

525



3.3.3 PVS

PVS (Prototype Verification System) (Owre et al.,
1992) is a proof environment relying mainly on a the-
orem prover that can manage specifications expressed
in a typed higher order logic. The prover uses a set
of predefined theories dealing, among others, with set
theory and arithmetic. The prover can work in an
interactive way: indeed, the user can interfer in the
proof process.

For our part, we want to minimize the user inter-
vention. It is the reason why Proof Obligations are
generated so as to maximize the success rate of auto-
matic proof strategies. The strategy of PVS we use
is a very general one called grind that uses, among
others, propositional simplification, arithmetic sim-
plification, skolemisation ad the disjunctive simplifi-
cation.

3.4 Execution Platform

In order to carry out many experiments on the
GDT4MAS model, we are developing a platform with
the following features:

• execution of a GDT4MAS specification;

• generation of proof obligations in the PVS lan-
guage;

• proof of a GDT4MAS specification using PVS.

This platform is developed mainly in Java. Specifi-
cations are written in XML and can be executed in
several modes. Among them, there is a random mode
(agents are activated at random) and a trace mode
(agents are activated in a predefined order). During
the execution, dynamic charts show in real time the
values of selected agent variables. Moreover, a log
console gives information on the system activity (ac-
tivated agent, goal being executed, action executed,
etc.).

4 USING PROOF FAILURES

The problem this article deals about is the following.
Let suppose we have a GDT4MAS specification of
a Multi-Agent System. Using the proof system as-
sociated to the model, we can generate a set of Poof
Obligations that must be proven to guarantee that the
specification is correct. But if at least one of these
proof obligations cannot be proven, it may indicate a
bug in the specification, than might be detected during
a particular execution of the MAS. So, can the infor-
mation provided by the proof failure (in particular by

the prover) be used, at least by hand, to identify the
error in the specification ?

There are several kinds of such errors. Here are a
few examples:

• the decomposition operator used to define the
plan associated to a goal is not the good one, so
achieving subgoals does not achieve the parent goal;

• the Satisfaction Condition associated to a goal is
too weak, and so does not provide properties re-
quired later;

• The triggering context of the agent is wrong, so
the agent can be activated when it must not, or can
not be activated when it would be necessary;

• the invariant associated to an agent time is wrong
or too weak.

In the long term, our goal is to identify several er-
ror categories for which proof failures are similar and
can be used to help to identify the error in the speci-
fication that has generated the proof failure. In order
to adress this problem, we have specified a case-study
based on the producer/consumer system. In this ex-
ample, we have introduced two kinds of errors, and
we have studied the proof failures that they have gen-
erated, in order to determine if it was possible, to
identify the errors starting from the proof failures.
This study is presented in the sequel.

4.1 Case Study

4.1.1 Description of the MAS Used

As written before, our case study relies on a producer-
consumer system. In the basic version, the system is
made of 2 agents, with two dedicated agent types: the
Producer type and the Consumer type. For the proof
point of view, the analysis of the system is the same
whatever the number of agents of each type is, even
if from the point of view of the execution, we will
see that there are differences. The environment of the
MAS includes a variable named stockE (an integer).
This variable corresponds to the number of resources
(pounds of floor for instance) that the producer has
already put in the environment.

To produce these resources, the producer uses in-
ternal resources of an other type (wheat for instance),
represented by an internal variable stockPro whose
value represents the amount of wheat (in pounds) that
the producer owns. To produce one resource of the
environment (one pound of floor), the producer con-
sumes one of its own resources (one pound of wheat).
This process is represented by the GDT of the Pro-
ducer type (shown in figure 1) made of three goals:

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

526



goal B models the consumption of the internal re-
source and goal C models the production of the new
resource in the environment.

Figure 1: GDT of the Producer type.

For its part, the consumer produces resources of
a third type (bags of bread, for instance). The num-
ber of resources produced is represented by the value
of an internal variable of the Consumer type called
stockCons. To produce this kind of resources, the
producer needs to use 2 resources of the environment
(producing a bag of bread requires 2 pounds of floor).
This process is formalized by the GDT of the Con-
sumer type (see figure 2): goal B models the con-
sumption of 2 resources of the environment and goal
C models the production of a new resource of the third
type.

Figure 2: GDT of the Consumer type.

In addition to the process described above, there
is an additional constraint: only two resources can be
stocked in the environment (in our example, there is
a place for only two pounds of floor on the shelf).
It means that if there are already 2 resources in the
environment, one of them should be consumed be-
fore the producer can put a new one in the environ-
ment. This constraint for the producer is formalized
by its triggering context: stockPro > 0∧ stockE < 2.
With such a triggering context, the producer can be
activated only if it still has resources and if it can
store its production in the environment. Moreover
the following invariant is associated to the environ-
ment: stockE >−1∧stocke< 3. This invariant deter-
mines the set of legal values for the stockE variable,

according to the constraint presented above. The fol-
lowing invariant is associated to the Producer type:
stockPro > −1. Indeed, the number of internal re-
sources cannot be negative.

The triggering context of the Consumer type is
simpler: stockE > 1. In other words, the consumer
cannot act if there is not at least 2 resources available
in the environment. The invariant associated to this
agent type is similar to the invariant of the Producer:
it specifies that the number of its internal resources is
a natural number: stockCons >−1.

4.1.2 Proof Failure Analysis

When proof obligations are generated from the case
study presented above, a PVS theory made of 18 the-
orems is produced, where each theorem corresponds
to a proof obligation that must be proven to ensure
that the specifications of both agent types are correct.
These proof obligations cannot be listed here, but we
can recall that, if proven, they guarantee that:

• each goal decomposition is correct (achieving the
plan associated to a goal achieves this goal);

• for each leaf goal:

– The execution context of the goal implies the
precondition of the action associated to the goal;
– The postcondition of the action associated to the
goal implies the satisfaction condition of the goal;
– the environment invariant and the agent invari-
ant are preserved by the execution of the action as-
sociated to the goal.

When PVS tries to prove the theory generated
from the GDT4MAS specification, there are 2 proof
failures (for two theorems, PVS says that the proof
is “unfinished”). In interactive mode, PVS provides
to the user the last sequent of the proof branch that
it cannot verify. The two unproved theorems are the
following:

• SCproducerTypeA : this proof obligation is re-
quired to prove that the decomposition of goal A is
correct, that it is to say that the success of the execu-
tion of the plan associated to A achieves A.

• PostInvProducerTypeC : this proof obligation
is required to verify that the execution of the action
associated to goal C preserves the invariants of the
agent and of the environment.

We introduce now a few notations concerning the
variables that are used in the PVS specification. These
notations are used to represent the value of a variable
in several states of the agent.

• v−2 (v_2) : value of v just before B;

Using Proof Failures to Help Debugging MAS

527



• v−1 (v_1) : value of v just after B;

• v0 (v0) : value of v just before C;

• v1 (v1) : value of v just after C.

For instance, in theorem SCproducerTypeA,
stockE ′ is represented by stockE1 and stockE is
represented by stockE_2. Indeed, in our execution
model, the state just before A is considered to be the
same state as the state just before B.

First Proof Failure. The theorem
SCtproducerTypeA generated by the plateform
is the following:
SCproducerTypeA: THEOREM

((true)&(stockPro_2>0)&(stockE_2<2)&(stockPro_2>-1)&

(stockE_2>-1)&(stockE_2<3)&(stockPro_1 = stockPro_2-1)&

(stockE_1 = stockE_2)&(stockPro_1 = stockPro0)&

(stockPro_1>-1)&(stockE_1>-1)&(stockE_1<3)&(stockPro0>-1)&

(stockE0>-1)&(stockE0<3)&(stockE1 = stockE0+1)&

(stockPro1 = stockPro0)&(stockPro1>-1)&

(stockE1>-1)&(stockE1<3))

=>

(stockPro1 = stockPro_2 - 1)&(stockE1 = stockE_2 + 1)

We can notice that the right-hand side of the “im-
plies” corresponds to the satisfaction condition of
goal A with the states introduced above: stockE1
corresponds to à stockE’, stockE_2 corresponds to
stockE, stockPro1 corresponds to stockPro’ and
stockPro_2 corresponds to stockPro.

The sequent that PVS cannot prove when it tries
to prove this theorem is the following:

{-1} (stockPro_2 > 0)

{-2} (stockE_2 < 2)

{-3} (stockPro_2 > -1)

{-4} (stockE_2 < 3)

{-5} (stockPro_1 = stockPro0)

{-6} (stockE_1 = stockE_2)

{-7} (stockPro_2 - 1 = stockPro0)

{-8} (stockE_2 > -1)

{-9} (stockE0 > -1)

{-10} (stockE0 < 3)

{-11} (stockE1 = 1 + stockE0)

{-12} (stockPro1 = stockPro0)

{-13} (stockPro0 > -1)

{-14} (1 + stockE0 > -1)

{-15} (1 + stockE0 < 3)

|-------

{1} stockE0 = stockE_2

The first thing we can notice is that the predi-
cate with the stockPro variable that was part of the
right-hand side of the “implies” in the initial theo-
rem is missing in the consequent of the sequent. This
means that this part of the theorem has been proven
and that the problem only concerns the part of the
satifaction condition of goal A dealing with stockE.
Thus, we can conclude that the prover cannot prove

that stockE0 = stockE_2 with the hypotheses in the
left-hand side of the theorem.

Indeed, in the hypotheses of the theorems gen-
erated by our proof systems, relations between vari-
ables concern either variables in the same state (this is
for instance the case for invariant properties) or vari-
ables in two consecutive states. So, if the sequent
above cannot be proven, this ought to be because at
least one hypothesis among stockE_2 = stockE_1 or
stockE_1 = stockE0 is missing. But we can observe
that the second one is present in the hypotheses of the
sequent (number {−6}). So, the only missing pred-
icate is stockE_1 = stockE0, meaning that the value
of stockE is not modified between the end of the ex-
ecution of goal B and the beginning of the execution
of goal C. Indeed, between these two states, another
agent in the system might modify the value of variable
stockE. The only way to prevent this is to lock the
variable, using a synchronized operator (SyncSeqAnd
in our case). With such a lock, no other agent can
modify stockE during the execution of the decompo-
sition of goal A. As stockE is an environment vari-
able, at any time, any agent can modify it (this is not
the case for agent variables, that can only be modi-
fied by the owner agent). So, in the GDT of the Pro-
ducer type, the SeqAnd operator must be replaced by
a SyncSeqAnd operator locking variable stockE.

Second Proof Failure. The theorem
PostinvtypeProducteurC generated by our
plateform is the following:
((true)&(stockPro_2>0)&(stockE_2<2)&(stockPro_2>-1)&

(stockE_2>-1)&(stockE_2<3)&(stockPro_1 = stockPro_2-1)&

(stockE_1 = stockE_2)&(stockPro_1 = stockPro0)&

(stockPro_1>-1)&(stockE_1>-1)&(stockE_1<3)&(stockPro0>-1)&

(stockE0 -1)&(stockE0<3)&(stockE1 = stockE0+1)&

(stockPro1 = stockPro0))

=>

(stockPro1 > -1)&((stockE1 > -1)&(stockE1 < 3))

This theorem aims at demonstrating that the in-
variant of the agent is preserved by the execution of
the action associated to goal C: this explains the part
stockPro1 > −1 in the right-hand side of the “impli-
cation”. It also aims at demonstrating that the in-
variant predicate of the environment is preserved by
the execution of this action. This explains the part
stockE1 >−1∧ stockE1 < 3.

The sequent that PVS cannot prove is the follow-
ing:

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

528



{-1} (stockPro_2 > 0)

{-2} (stockE_2 < 2)

{-3} (stockPro_2 > -1)

{-4} (stockE_2 < 3)

{-5} (stockPro_1 = stockPro0)

{-6} (stockE_1 = stockE_2)

{-7} (stockPro_2 - 1 = stockPro0)

{-8} (stockPro0 > -1)

{-9} (stockE_2 > -1)

{-10} (stockE0 > -1)

{-11} (stockE0 < 3)

{-12} (stockE1 = 1 + stockE0)

{-13} (stockPro1 = stockPro0)

|-------

{1} (1 + stockE0 < 3)

When we compare it with the initial theorem, it
appears that the prover cannot prove a part of the en-
vironment invariant, more precisely the fact that the
value of stockE is always less than 3 because hypoth-
esis stockE_1 = stockE0 is missing. This is the same
problem that we encountered for the first proof fail-
ure. It means that this proof failure is also a conse-
quence of not having used a synchronized operator
locking variable stockE.

So, this proof failure has allowed us to detect the
same design error that the first proof failure. How-
ever, it does not correspond to the same bug. Indeed,
the fact that the prover cannot verify that stockE0 < 2
shows that it is not guaranted that the value of stockE
is less than 2 before the execution of C. As a conse-
quence, there are situations where, after the execution
of C, the value of stockE is greater than 2, which is
forbidden by the environment invariant. This corre-
sponds to a new bug that may occur during the sys-
tem execution. An interesting property with this proof
failure is that the bug cannot occur in a system with
a single producer in the system. But if we consider a
MAS with several producers, the problem will prob-
ably occur. For instance, consider a system with 2
producers p1 and p2, each having a stockPro vari-
able initialized to 5, an environment with the variable
stockE initialized to 0, and a single consumer whose
variable stockCons is initialized to 0. Now, supppose
that the execution of the MAS leads to the following
interleaving of agents p1 and p2:

...
p1 (stockPro of p1 takes the value of 4)
p1 (stockE takes the value of 1)
p1 (stockPro of p1 takes the value of 3)
p2 (stockPro of p2 takes the value of 4)
p2 (stockE takes the value of 2)
p1 (stockE takes the value of 3)
...

The execution trace above leads to the bug pointed
out by the proof failure. This trace has indeed been
executed by our plateform and, thanks to the visual-

isation of the variables of the system, we have ob-
served the bug: the value of stockE indeed reaches
the value of 3 during this execution.

Figure 3: Values of the variables in the MAS over the time.

Review of the Proof Failures Analysis. After the
anlysis of these 2 proof failures, we can, at first, notice
that the structure of the proof obligations generated by
our proof system provides a first way to rapidly iden-
tify which part of the system behaviour is involved
in the problem (the name of the generated theorem
helps in this task). We have also shown that the 2
studied proof failures help to identify a design error
in the specification of the Producer type. The first
proof failure has helped to find an hypothesis that was
lacking in the theorem, and that led us to find how
to fix the problem by using a synchronized operator
in order to lock variable stockE during the execution
of the decomposition of goal A. This problem is a
consequence of a synchronisation problem between
the agents (producer/consumer in the first case, pro-
ducer/producer in the second case), identified thanks
to the proof failures.

Moreover, each of these proof failures pointed out
2 different bugs (Satisfaction condition of goal A not
established in some cases, non compliance with the
bounds of stockE in other cases) generated by the
same error in the design. We can notice that that
they would have been difficult to identify without our
proof system. Namely, the bug associated to the sec-
ond proof failure cannot occur in a system with less
than two producers, and even in a system with 2 pro-
ducers or more, the bug can be observed only during
specific executions. So, using a proof system leads to
an important time saving in bug identification.

We can notice that, if we modify the specification
of the Producer agent type using a SyncSeqAnd oper-
ator instead of a SeqAnd operator to decompose goal
A, the proof of the system is now performed success-
fully by PVS.

This small case study shows that proof failures can

Using Proof Failures to Help Debugging MAS

529



be used to detect undesired behaviours during the ex-
ecution (bugs associated to each proof failure) and to
determine errors in the specification linked to these
bugs (here, the lack of lock on an environment vari-
able by the producer agent).

5 CONCLUSION AND
PERSPECTIVES

In this article, we have presented a promising way to
use proof failures in the tuning of MAS. In particular,
we have shown that such a technique highlights bugs
that appears in few executions, because they can de-
pend on the interleaving of the actions of the agents.
That makes these bugs hard to detect and to correct
with standard debugging techniques because they are
hard to reproduce. Of course, research must continue
with other kinds of proof failures to validate the tech-
nique in a more general way. We also aim at devel-
oping a semi-automatic usage of proof failures, be-
cause it seems that standard patterns of proof failure
emerge. In the longer term, we should be able to pro-
pose a taxonomy of proof failures, associating to each
kind of proof failure the potential causes and the po-
tential required patches.

REFERENCES

Dastani, M. and Meyer, J.-J. C. (2010). Specification and
Verification of Multi-agent Systems, chapter Correct-
ness of Multi-Agent Programs: A Hybrid Approach.
Springer.

Dennis, L. A. and Nogueira, P. (2005). What can be learned
from failed proofs of non-theorems. Technical report,
Oxford University Computer Laboratory.

Drogoul, A., Ferrand, N., and Müller, J.-P. (2004). Emer-
gence : l’articulation du local au global. ARAGO,
29:105–135.

Dung N. Lam, K. S. B. (2005). Automated Interpretation of
Agent Behaviour. In AOIS, pages 1–15.

Kaufmann, M. and Moore, J. (2008). Proof
Search Debugging Tools in ACL2.
http://www.cs.utexas.edu/users/moore/publications/-
acl2-papers.html.

Lam, D. N. and Barber, K. S. (2005). Comprehending agent
software. In AAMAS, pages 586–593.

Mermet, B. and Simon, G. (2009). GDT4MAS: an exten-
sion of the GDT model to specify and to verify Multi-
Agent Systems. In et al., D., editor, Proc. of AAMAS
2009, pages 505–512.

Mermet, B. and Simon, G. (2013). A new proof system to
verify gdt agents. In IDC, pages 181–187.

Miles, S., Winikoff, M., Cranefield, S., Nguyen, C., Perini,
A., Tonella, P., Harman, M., and Luck, M. Why test-
ing autonomous agents is hard and what can be done
about it. AOSE Technical Forum 2010 Working Paper.

Nguyen, C., Perini, A., Bernon, C., Pavón, J., and
Thangarajah, J. (2009). Testing in Multi-Agent Sys-
tems. In AOSE, pages 180–190.

Nguyen, C., Perini, A., and Tonella, P. (2008). Ontology-
based test generation for multiagent systems. In AA-
MAS, pages 1315–1320.

Nguyen, C. D., Perini, A., and Tonella, P. (2010). Goal-
oriented testing for MASs. IJAOSE, 4(1):79–109.

Owre, S., Shankar, N., and Rushby, J. (1992). Pvs: A pro-
totype verification system. In CADE 11.

Serrano, E., Gómez-Sanz, J., Botía, J., and Pavón, J. (2009).
ntelligent data analysis applied to debug complex soft-
ware systems. Neurocomputing, 72(13-15):2785–
2795.

Tiryaki, A., Öztuna, S., Dikenelli, O., and Erdur, R. (2006).
SUNIT: A Unit Testing Framework for Test Driven
Development of Multi-Agent Systems. In Agent Ori-
ented Software Engineering (AOSE), pages 156–173.

Vigueras, G. and Botía, J. (2007). Tracking Causality by Vi-
sualization of Multi-Agent Interactions Using Causal-
ity Graphs. In PROMAS, pages 190–204.

Zhang, Z., Thangarajah, J., and Padgham, L. (2009). Model
based testing for agent systems. In AAMAS’09, pages
1333–1334.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

530


