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Abstract: We introduce a new set of mechanisms for tracking entities through videos, at substantially less expense than 
required by standard methods. The approach combines inexpensive initial processing of individual frames 
together with integration of information across long time spans (multiple frames), resulting in the recognition 
and tracking of spatially and temporally contiguous entities, rather than focusing on the individual pixels that 
comprise those entities.  

1 INTRODUCTION 

A human watching a video can recognize and 
distinguish actions taken by entities, and can track 
them across time. Much current research uses optic 
flow to capture relatively dense motion information, 
typically frame by frame (Grundmann et al., 2010; 
Lee, Kim and Grauman, 2011; Jain et al., 2014; 
Caelles et al., 2016); yet to a human, the video is 
readily recognizable even if frames are dropped, or 
the time resolution is altered (changing the content of 
all the frames), or if motion is temporarily occluded.  

We hypothesize that humans are integrating 
contiguous information across longer time spans than 
individual frames, and are using a specific set of 
identified regularities, that can be extracted from 
these longer time spans to generate expectation-based 
assumptions and simplifications of the actions, 
rendering activities independent of the information in 
any specific frame.  

The many challenges to video processing include 
changing backgrounds, lighting, camera motion, 
occlusion, and multiple moving entities. We proffer a 
multi-step approach that incorporates inexpensive 
processing of individual frames together with further 
processing of frames in the context of other nearby 
frames. We demonstrate that this straightforward 
approach enables recognition and tracking across 
time with substantially less expense than current 
standard methods. The methods described here 
constitute a novel localization scheme that encodes 

motion information using less data than current state 
of the art systems.  

To reduce the amount of data necessary to 
recognize motion, we consider object-level instead of 
pixel-level motion information. Rather than 
considering an optical flow vector per pixel per 
frame, we consider a bounding region around an 
object and a single vector associated with the object, 
not its constituent pixels. This approach drastically 
reduces the amount of data necessary to describe the 
motion in the video. Our approach has a few notable 
advantages as listed below: 

 
1. Our framework is derived from both brain circuit 

analyses and behavioural psychophysics findings, 
and yet does not include artificial neural networks 
(ANNs), so we avoid the large associated 
computational costs, and the need to train on large 
datasets; 

2. Our approach allows for the concurrent tracking 
and localization of multiple entities/actions; 

3. Our approach uses low-data representations of 
individual frames, along with enhanced 
representations of multi-frame sequences, lending 
itself to rapid and inexpensive top-down 
recognition and localization processes.    
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2 RELATED WORK 

2.1 Motion for Visual Understanding 

It is understood that motion perception is pivotal to 
early stage pattern recognition and ultimately the 
human visual system (Lu and Sperling, 1995). It has 
been demonstrated that walking or any repetitive 
human movement may be recognized via bottom-up 
processing techniques (Polana and Nelson, 1994). 
Support of bottom-up techniques came from (Giese 
and Poggio, 2003), who demonstrated the 
neurophysiological plausibility of a feedforward 
model for visual recognition of complex movements. 
Furthermore, evidence suggests primates consider the 
form and motion of a scene separately before 
combining the cortical pathways (Oram and Perrett, 
1996). These insights have encouraged much of the 
work in visual learning and action recognition 
(Gavrila, 1999; Poppe, 2010). 

Since its introduction via the seminal paper (Horn 
and Schunck, 1981), optical flow remains the state-
of-the-art in motion representation. Work has been 
done in the field to build on the optical flow approach 
including: optimizing the accuracy of an optical flow 
estimate (Roth, Lempitsky and Rother, 2009),  
estimating large motion in smaller structures (Brox 
and Malik, 2010a), and extending optical flow for 
long-term motion analysis (Brox and Malik, 2010b). 
Inspired by the success of image segmentation, (Tsai 
et al., 2012; Galasso et al., 2014; Jain and Grauman, 
2014) propose performing image segmentation on 
each video still and linking them through time via 
optical flow. Others, citing its inaccuracy and/or high 
computational costs, opt to replace optical flow front 
ends with relatively cheap, hand-crafted motion 
vectors (Tsai, Yang and Black, 2016; Zhang et al., 
2016).  

2.2 Motion for Object Segmentation 

Researchers have demonstrated that incorporating 
dense motion information for object segmentation 
provides better results than using color information 
alone (Wang et al., 2011; Simonyan and Zisserman, 
2014). This discovery, combined with the 
advancement of the superpixel as a tool in image 
processing (Shi and Malik, 1997; Fulkerson, Vedaldi 
and Soatto, 2009), led to the development of “super-
voxel” strategies (Tsai et al., 2012). A popular 
approach is to use dense optical flow to oversegment 
video into super-voxels that are then hierarchically 
merged until an action is localized (Grundmann et al., 
2010; Jain et al., 2014). Optical flow orientations are 

used to provide depth-independent pixel clustering 
(Narayana et al., 2013). Another technique uses a 
CNN to rank how likely a potential spatiotemporal 
region is to contain a moving object (Tokmakov, 
Schmid and Alahari, 2017). 

To outperform supervoxel methods, (Chang, Wei 
and Fisher, 2013) introduced and developed 
“temporal superpixel” methods. (Pathak et al., 2016) 
propose an unsupervised motion-based approach to 
segment foreground objects at the pixel level, then 
using the resulting segmentations to train a CNN to 
segment from the static frames of a video.  

2.3 CNNs for Action Recognition 

Recent action-recognition approaches incorporate 
both spatial and motion features to train classifiers to 
distinguish different types of actions (Wang et al., 
2011; Simonyan and Zisserman, 2014; Zhang et al., 
2016). These approaches exploit the computational 
power of convolutional neural networks (CNNs), 
which generally yield strong results but require a 
large amount of training data and computational cost. 
CNNs became popular due to their success in the 
image classification field (Krizhevsky, Sutskever and 
Hinton, 2012; He et al., 2015). Though critics of 
CNNs highlight the fact that neural networks are 
easily fooled into misclassification (Nguyen, 
Yosinski and Clune, 2014), CNNs remain pivotal to 
current methods being developed for action 
recognition. Some approaches consider spatial 
features and temporal features separately, using the 
input pixels as the spatial representation and multi-
frame optical flow as the temporal representation, and 
combining the information at a later stage to generate 
a class (Simonyan and Zisserman, 2014). Other 
approaches use dense optical flow to sample dense 
trajectories from a video, which can be encoded into 
feature descriptors and evaluated with a bag-of-
features classifier (Wang et al., 2011).  

2.4 Single Target 
Localization/Recognition 

The existence and development of large video 
datasets such as DAVIS, UCF 101, HMDB51, or 
Thumos-2014 (Soomro, Zamir and Shah, 2012; 
Kuehne et al., 2013; Jiang et al., 2014; Perazzi et al., 
2016) has facilitated research in action recognition. 
However, the convention of a single target action per 
video has skewed progress away from the problem of 
recognizing multiple entities performing actions 
concurrently. Furthermore, it has forcefully 
encouraged the field toward CNNs. Most action  
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Figure 1: Subsequent frames of three separate processes. The first row is the input video. The second row is a simulated output 
of the magnocellular pathway in the human visual system. We use it to extract low frequency motion information. Bright 
pixels correspond to detected motion, while dark pixels correspond to a lack thereof. The third row is the result of our method. 
Note that ellipses are constructed around groups of moving pixels. 

localization techniques, temporal or spatiotemporal, 
use CNNs to analyze video to make a single 
determination about how the action of interest should 
be isolated (Simonyan and Zisserman, 2014; Gkioxari 
and Malik, 2015; Tran et al., 2015; Caelles et al., 
2016; Shou et al., 2016; Zhang et al., 2016). In a 
departure from previous work, we propose a method 
to handle simultaneous action localization of multiple 
targets. As a result, performing our method on 
available datasets and benchmarks limits the potential 
questions. 

3 OVERVIEW OF APPROACH 

The primary goal is to spatially and temporally 
localize each separate moving foreground entity in 
videos “from the wild.”  Furthermore, we suggest a 
localization tool that also functions as a compact 
representation of each entity’s motion. We 
accomplish this by enclosing each moving 
foreground entity within a tube, a sequence of ellipses 
on consecutive frames as illustrated in Figure 2. Each 
ellipse exists on a single frame and encloses a 
temporal cross section of a moving entity. Each 

ellipse is represented by an eight-element vector of 
ellipse properties. For an ellipse e, the ellipse vector 
is 

e = [x, y, a, b, ϕ, f, Vx, Vy], (1)

 

Figure 2: A visualization of an ellipse, a partial tube, and a 
tube. Note that the ellipse exists on a single frame and its 
descriptor contains the center location, size, rotation angle, 
frame present, and velocity. Both the partial tube and tube 
are lists of ellipses. A partial tube does not contain ellipses 
at dense frames. A tube does. 
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where (x, y) is the center of the ellipse and a, b, and ϕ 
are the semi-major axis length, semi-minor axis 
length, and the angle of rotation (counterclockwise 
from the x-axis to the major axis) respectively. 
Property f is the frame of the video where the ellipse 
is present and Vx and Vy are the Cartesian velocity 
components of this ellipse at frame f. The x property 
of ellipse e is denoted ex. 

We detail and propose a four-step process to 
create tubes from input video data. Given a video with 
T frames {Ft}t=1…T we find a list of tubes such that 
each encompasses a foreground object. Note that 
none of the following methods require the use of 
spatial information. 

3.1 Alg. 1: Magnocellular Motion 
Processing 

At each video frame, we invoke the work of (Benoit 
et al., 2010) to perform biologically inspired low 
level image processing replicating the magnocellular 
retino-thalamic pathway of the mammalian visual 
system. This method is distinct from typical 
“background subtraction” schemes due to the 
presence of a relative sensitivity and memory/time 
decay associated with identified motion. This 
naturally introduces a hierarchical attention span 
based on relative size, magnitude of motion, and 
motion duration.  

 
Algorithm 1 reads the input video and creates a 

list of ellipses that spatially enclose foreground 
moving objects. 

Notably, the output of this magnocellular 
processing provides motion information that would 
be completely unavailable from individual still 
frames alone. The method captures motion that is 
abstracted from average motion spanning multiple 
frames. The identified pixel locations are reduced via 
a threshold set according to the mean pixel value in 
the magnocellular output. This creates a binary image 
with groups of “activated” pixels, which we erode 
then dilate.  

An ellipse is then fitted around each surviving 
group of pixels. After filtering out ellipses with a 
semi-major axis less than equal to five pixels, each 
ellipse’s identifying information is stored onto a list.  
The result is a list of ellipses, each of which enclose a 
moving object in the foreground.  

3.2 Alg. 2: Constructing Partial Tubes 

The list of ellipses becomes input to the creation of a  
sequence of ellipses, termed a partial tube. This is our 
primary attempt at locating an entity across time. 
First, the ellipses are gathered in groups Gt based on 
the frame number, f, of each. Since only one ellipse is 
selected per partial tube per group, the width of the 
bin (in frames) is a hyperparameter. A larger bin size 
encourages a scarcer localization of the entity across 
time. In the limit as bin size is decreased, Algorithm 
2 approaches a frame-by-frame analysis. We chose 
our bin size as 5 frames (i.e., ellipses in frame 6-10 
are in a group, ellipses in 11-15 are in the next group, 
etc.). We then pair each ellipse in a group with its 
“best match” in the next group. 

Algorithm 2 organizes the list into paths that 
represent an entity’s motion through time. 

The best match is defined as follows. Let ellipse e 
ϵ Gt and ellipse g ϵ Gt+5. If velocity information is 
available for e, we use it to create a “prediction 
ellipse” at the expected location of e in each frame in 
Gt+5. Then, g is the best match ellipse if and only if it 
is the closest of all ellipses in Gt+5 to its prediction  
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ellipse. If the velocity information does not yet exist 
(i.e., the ellipse belongs to the first group in the video 
or is the start of a new entity), g is the best match to e 
if and only if it is the closest in Gt+5 to e via size and 
distance. 

Once an ellipse pairing occurs, two important 
things happen. First, since we assume the pair of 
ellipses are two different temporal cross sections of 
the same object, we can calculate the velocity (in 
pixels/frame) between the center of each ellipse using 
the forward difference method. This information is 
stored simply as two scalar properties, Vx and Vy, of 
the latter ellipse. Second, pairs of ellipses are stored 
as partial tubes unless the former ellipse of the pair 
already belongs to another partial tube. In that case, 
the latter ellipse in the pair is simply appended to the 
same partial tube.  

We iterate through the frames of the video 
repeating the grouping and pairing process, to create 
partial tubes. Each partial tube is a list of ellipses that 
corresponds to one potential foreground object. 

3.3 Alg. 3: Tube Completion 

The partial tubes create a sparse localization of the 
potential foreground entities in the video, existing 
approximately once per every bin size, unlike the 
continuously present entities they are meant to 
represent.   For the representation to be like the entity, 
an ellipse must exist at every frame between the start 
and end frames of the entity. Algorithm 3 makes tubes 
by defining and creating ellipses between existing 
ellipses in the partial tube.  

We consider each partial tube separately. For 
every frame, t, in a partial tube, P, we construct a 
group, C, that consists of every ellipse e ϵ P “near” 
frame t. To be near frame t is to be within half of 
binsize (rounded down to nearest integer) away from 
t (i.e., ef ϵ [t-2, t+2]). If nothing is near t, we extend 
the definition to include any ellipse within binsize of 
t (i.e., ef ϵ [t-5, t+5]). The ellipses grouped in C are 
used to artificially smooth the properties of the ellipse 
at t. 

At each frame, we check if an ellipse exists in the 
partial tube. If it does, the ellipse becomes a part of 
the new tube. Otherwise, we interpolate the value of 
the new x and y coordinates using the nearest ellipses 
before and after frame t. The a and b properties of our 
new ellipse are defined as the maximum a and b 
values across C. The orientation, ϕ, of the new ellipse 
is chosen as the ϕ of the closest ellipse in the partial 
tube. The velocities, Vx and Vy, are defined as the 
average Vx and Vy across C. 

 
Algorithm 3 interpolates between sparse ellipses 

in each partial tube to create a tube, the union of a 
sequence of ellipses across consecutive frames. 

After repeating the grouping and interpolating 
process for each frame in the partial tube, the result is 
a list of ellipses at every frame. This representation, 
shown in Figure 3, is henceforth referred to as a tube. 
The process is repeated for each partial tube, resulting 
in a list of tubes.  

3.4 Alg. 4: Tube Merging 

Immediately after tube creation, a single entity, as 
defined by human perception, is occasionally 
represented by a union of several tubes instead of a 
single tube. Usually, this is a result of one or more 
occlusions. Consider the case shown in Figure 3. In 
the first video, the pedestrian on the left is represented 
by two separate tubes. By connecting those tubes 
across the occlusion, we keep track of the entity. 
Algorithm 4 connects tubes that likely cover the same 
entity. To that end, we must first define a prediction 
horizon, k, a positive integer denoting the number of 
frames to look before/after a tube to determine its 
potential connection. We consider each tube 
separately. When considering a tube, we check for 
other tubes that begin k frames after the end of (or that 
end k frames before the start of) the tube. 

Consider finding a second tube to connect to tube 
T. First, we calculate an average Vx and Vy across the 
first (and last) frames of T. Using this velocity vector, 
we create a prediction ellipse where the entity would 
be k frames before the beginning and after the end of 
T. The prediction ellipse is compared with the 
beginning and end of the other tubes. We determine 
the tube that either begins (if the prediction ellipse is 
after T) or ends (if the prediction ellipse is before T) 
closest in space to the prediction ellipse and call this 
potential match U. If the prediction ellipse is within a 
spatial threshold (we chose 100 pixels) of U at the 
same frame and both tubes have similar velocity  
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Figure 3: A scene before (top) and after (bottom) the implementation of Algorithm 4. The pedestrian with the backpack is 
occluded by the group of people walking oppositely. In the first video, the pedestrian’s tube ends at the occlusion and a new 
tube begins once the group has passed. In the second video, we can keep track of the pedestrian even during the occlusion. 

vectors (Vx and Vy signs match unless |V| <1), we 
combine the tubes into one. Otherwise, T remains 
unmatched. When two tubes are combined, the 
properties of the ellipses between the two tubes are 
interpolated. 

We repeat this tube connecting process for all 
tubes. Furthermore, we conduct the process thrice, 
each at a different value of k (k = 5, k = 25, and k = 
60). This connects tubes across occlusions up to two 
seconds long. 

4 TOP DOWN STRATEGIES 

Our localization framework offers the opportunity to 
insert feedback loops that use preliminary results to 
improve the quality of the tubes. We believe this is an 
advantage for scalability. In this section, we detail 
some of our feedback loops, which we denote as top-
down methods. The methods discussed are not an 
exhaustive list, as we believe the possibilities for top 
down solutions are numerous. 

 

Algorithm 4 connects tubes separated by several 
frames. 

4.1 Magnocellular Sensitivity 

As previously stated, the magnocellular-inspired low 
level image processing uses relative sensitivity to 
introduce an attention span based on size and motion. 
When a large, quickly moving object exits the frame, 
it creates a change in sensitivity. This effect increases 
the intensity value of the pixels in the magnocellular 
output as shown in Figure 4.  

A false match created by a sensitivity effect is 
detrimental to the system’s ability to keep track of an 
object. Rigid pairwise matching schemes experience 
difficulty with such outlier frames. Our sparse 
matching approach in Algorithm 2 is more robust to 
outlier frames. 

In long periods with relatively small amounts of 
motion, the sensitivity effect can last for consecutive 
frames. To prevent the system from creating false 
matches as a result, we incorporate our knowledge 
about the tubes before and after the sensitivity effect.  

We measure pixel intensities in each frame of the 
magnocellular output to detect the temporal borders 
of the prolonged sensitivity effect. Empirically, we 
expect a majority of pixels to be dark or mostly dark 
(intensity = 0–5). When the total number of non-dark 
pixels surpass the total number of dark pixels in a 
frame, we consider the frame a product of 
oversensitivity. Intermittent spikes of sensitivity are 
usually manageable because of our implementation of 
Algorithm 2, while prolonged areas of sensitivity can 
indicate a need for top-down solutions.  
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Figure 4: The visual result of a spike in magnocellular 
sensitivity. Analysis of this effect tells us when to consider 
top-down strategies. 

We believe cases of prolonged sensitivity are 
regions that require feedback paths to repair 
trajectories in the region. In addition to measuring 
pixel intensities, we can also use our preliminary tube 
results to detect magnocellular sensitivity. For 
example, we consider the number of tubes present in 
each frame. The magnocellular sensitivity creates a 
large number of tubes that are short in duration. The 
sudden increase in the number of tubes corresponds 
to the area of sensitivity, as shown in Figure 5. 
Recognizing this phenomenon via the tube 
information from the first pass demonstrates our 
approach’s unique propensity for incorporating 
feedback loops. 

To remedy the effect of magnocellular sensitivity, 
we consider the tubes present immediately before and 
after the sensitivity effect. Using the velocity 
information from the former tube, we predict where 
we expect it to be after the effect. If a tube begins after 
the effect within a location threshold (we chose 100 
pixels), we connect the tubes and interpolate the 
ellipse values between them. 

4.2 Segmenting Object Tracks 

An existing tube trajectory may need to be segmented 
for either of two reasons. The first is that the 
trajectory is corrupted with noise, in which case the 
spurious trajectory may be flagged. The second is that 
a tube trajectory may change to a different object; 
sometimes, multiple objects are caught in one tube 
track. Reasons for this may be that two objects 
became close to each other and were merged, or after 
one object stopped, a nearby object had similar 
motion characteristics and the initial tube 
construction therefore combined them. An example 
of this is shown in Figure 6. We can clearly see in a  

 

Figure 5: Histogram intensity counts of a magnocellular 
output (top). We consider magnocellular sensitivity when 
the orange line is above its blue counterpart. These same 
patterns are emulated in the mean and median pixel 
intensity lines (second). Tube identities and durations 
(third) are shown along with the number of tubes in each 
frame (last). Either of the above can be used to detect 
magnocellular sensitivity. 

qualitative manner how the trajectory shifts from one 
object to another; fortunately, we can clearly see the 
difference in the trajectories as well. 

The correct subset of trajectories clusters well in 
space and time. Algorithm 5 identifies these clearly 
different trajectories and re-labels them as separate 
tubes. Algorithm 5 is a feedback process that does not 
necessarily have to be performed on every tube. 

Algorithm 5 segments a given tube into smaller 
sections of consistent trajectories. After 
segmentation, the algorithm also recombines the 
sections. In this manner, noisy areas of the trajectory, 
or areas where the trajectory clearly shifted to another 
object are identified as separate tubes. 
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Figure 6: In the center, we see an example of tubes switching objects as they track. The red tube (left) follows the car as it 
moves across the parking lot, and then switches to the nearby pedestrian. Meanwhile, the purple tube (right) began on the 
pedestrian track and switched to the car, and then to another pedestrian. The dots in either trajectory correspond to the frames 
shown in the video (center). 
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Figure 7: Three videos from separate datasets illustrating the results of our method.  (Top) row is from the VIRAT video 
dataset, (middle) is from Thumos-15, and (bottom) is from our recorded dataset (Oh et al., 2011; Gorban et al., 2015; Ray 
and Miao, 2016) .  

5 CONCLUSIONS 

Action localization methods often require training 
data, supervision, and/or dense motion information. 
In this paper, we have presented a novel approach that 
performs unsupervised spatiotemporal action 
localization on videos in the wild without any of this 
information. 

Our framework simultaneously localizes multiple 
actions and creates a compact macro representation of 
the associated spatiotemporal motion for each. 
Additionally, our approach does not require spatial 
information. Subsequent incorporation of spatial 
information within this framework offers exciting 
opportunity for improvement. For the above reasons, 
we believe our approach provides a strong foundation 
for object/action classification as well as broad 
possibility for top-down improvements. 
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