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Abstract: Estimating visibility in point clouds has many applications such as visualization, surface reconstruction and
scene analysis through fusion of LiDAR point clouds and images. However, most current works rely on
methods that require strong assumptions on the point cloud density, which are not valid for LiDAR point
clouds acquired from mobile mapping systems, leading to low quality of point visibility estimations. This
work presents a novel approach for the estimation of the visibility of a point cloud from a viewpoint. The
method is designed to be fully automatic and it makes no assumption on the point cloud density. The visibility
of each point is estimated by considering its screen-space neighborhood from the given viewpoint. Our results
show that our approach succeeds better in estimating the visibility on real-world data acquired using LiDAR
scanners. We evaluate our approach by comparing its results to a new manually annotated dataset, which we
make available online.

1 INTRODUCTION

Over the past decade, the use of 3D point clouds as
an alternative to meshes has been constantly growing.
A 3D point cloud simply consists in 3D positions, so-
metimes associated with supplementary information
such as its color, reflectance or normal. It can be con-
sidered as a sampling of continuous surface, provi-
ding a simpler representation than the full topology.

The estimation of the visibility of a point cloud
consists in assigning a label to each point of the scene:
visible if the point lies on an object that is directly vi-
sible from a given viewpoint, non-visible otherwise
(Fig. 1). This task is a typical step for various ap-
plications in computer graphics such as in surface re-
construction (Zach et al., 2007; Shalom et al., 2010;
Berger et al., 2017) in which estimating and remo-
ving points that are not visible from a given point of
view improves the interpolation and the approxima-
tion of the surface to recover. In point cloud rendering
and visualization (Pintus et al., 2011; Bouchiba et al.,
2017), the estimation of the visibility enables better
rendering performances as well as an improvement of
the scene understanding. For both application scena-
rios, the existing methods (Zach et al., 2007; Shalom
et al., 2010; Berger et al., 2017; Pintus et al., 2011;
Bouchiba et al., 2017) strongly rely on strict sampling

a. b. c. d.
Figure 1: Illustration of the visibility problem. (a) an optical
image corresponding to a view point, (b) the 3 main struc-
tures of the scene, (c) the projection of the acquired point
cloud seen from the same view point with same colors as in
(b), (d) the visibility errors brought by the projection (red
points should not be visible).

assumptions (Berger et al., 2017) (e.g. on point clouds
with constant density in terms of number of points per
cubic meters).

Recently, the development of acquisition systems
designed for acquiring urban scenes has been increa-
sing. In particular, Mobile Mapping Systems (MMS)
equipped with LiDAR (Light Detection And Ran-
ging) (Paparoditis et al., 2012; Geiger et al., 2013;
Maddern et al., 2017) have been widely used to sur-
vey cities, road, highways, etc. Those campaigns have
resulted in the production of large, unorganized point
clouds that provide precise 3D representations of the
urban environment. Due to the acquisition method,
these point clouds present high variation in their sam-
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pling and density. Most modern MMS also embed ad-
ditional materials, mostly optical images, which pro-
vide complementary information on the scene. The
multimodal aspect of these datasets may be levera-
ged to improve detection, classification and prediction
techniques in urban environments (Benenson et al.,
2014; Eigen et al., 2014). Therefore, the fusion and
the registration of LiDAR and optical data became
critical as the use of multi-modal data definitely in-
creases performances of classification/prediction al-
gorithms. Most of the recent related works strongly
rely on good visibility estimates (Mastin et al., 2009;
Guislain et al., 2017).

The majority of actual LiDAR/optical registra-
tion techniques that use visibility rely on estimation
techniques that were built for point clouds with strict
sampling assumptions that are not met by the LiDAR
data on which they operate. On the other hand, point
cloud rendering and surface reconstruction methods
presented above are not designed to perform on point
clouds with variable density. However, the quality of
the visibility estimation is a crucial preprocessing step
for multi-modal fusion applications as it drastically
lowers the ambiguities from one modality to another.
This work aims at studying a new method for esti-
mating the visibility in point clouds without constant
density acquired via MMS to improve the data fusion.

The paper contribution is threefold: first, we pro-
pose a novel approach for the visibility estimation in
a point cloud that is robust to high density variati-
ons. This method is designed to be fully automatic
and to perform well on any types of 3D point clouds.
The second contribution of this article is a new visi-
bility dataset of over 1 million annotated points for
testing the performances of visibility estimation met-
hods. This dataset, as well as the code for our method,
are made publicly available online. The third contri-
bution of this dataset is a full numerical and visual
comparison between our method and other state-of-
the-art methods.

The paper is organized as follows: first, a brief
overview of the related work is presented. Then, the
methodology of the method is explained. Finally,
evaluation and results are shown and a conclusion is
drawn.

2 RELATED WORKS

There has been many contributions to the state-of-the-
art techniques for the estimation of the visibility of a
point cloud given a certain viewpoint. In this section,
we briefly overview the methods that are most rele-
vant to our work.

Surface Reconstruction based. One intuitive way
to compute the visibility of a point cloud is to recon-
struct the surface. Indeed, the projection of the sur-
face as a depth map may be used to estimate which
points are not visible. Some methods do not require
prior knowledge of the visibility and can therefore be
used for visibility estimation. Surface smoothness ap-
proaches (Lipman et al., 2007; Xiong et al., 2014)
approximate the surface by locally defining operators
that weigh surrounding points in order to estimate the
local surface. This constrains the reconstructed sur-
face to fit the point cloud as close as possible while
ensuring a certain level of smoothness and preser-
ving sharp features. To deal with large amounts of
missing data, Volume smoothness techniques (Tagli-
asacchi et al., 2011; Huang et al., 2013) exploit the
prior of smooth variation of the volume of the recon-
structed surface. Unfortunately, these methods are ba-
sed on strong prior of uniform sampling of the point
cloud, which is not suitable for MMS LiDAR point
clouds. Primitive based methods (Schnabel et al.,
2009; Lafarge and Alliez, 2013) aim at fitting geome-
tric shapes (i.e. planes, spheres, cylinders, boxes, etc.)
in order to reconstruct the scene. However, the com-
plex shapes that can be met in real world scene often
jeopardize the results of such methods. Finally, Glo-
bal regularity approaches (Li et al., 2011a; Li et al.,
2011b; Monszpart et al., 2015) take advantage of the
repeatability of certain parts of the scene. These met-
hods have shown great strength for the reconstruction
of individual regular shapes such as facades or roads
but underperform on realistic complete scenes. Alt-
hough each technique provides satisfying results on
specific scenarios, surface reconstruction is a difficult
problem, which often requires additional information,
such as normals, sufficiently dense input and uniform
sampling.

Convex Hull based. Some methods estimate the vi-
sibility based on the local geometry of the 3D point
cloud. Based on the raw point cloud (i.e. only 3D
positions), (Katz et al., 2007) proposes an approach
for estimating which part of the point cloud is not
self-occluded given a certain viewpoint. This method
admits to perform better on closed shapes. A spher-
ical inversion is performed on the point cloud. The
convex hull of the inverted point cloud augmented by
the viewpoint position is computed. Then, points that
are lying on the convex hull are considered visible,
and the rest of the point cloud as non-visible. The
acceptance of concave features is tuned by the sphere
radius, which is a global parameter so that this met-
hod strongly relies on a uniform sampling of the point
cloud. Later, this method was improved to handle
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small changes in the sampling corresponding to noisy
acquisitions (Mehra et al., 2010), but still relies on
constant density in the point cloud. Moreover, the
computational cost of the convex hull (Barber et al.,
1996) can rapidly increase depending on the wanted
concavity. Finally, (Katz et al., 2007; Mehra et al.,
2010) are both designed to perform on point clouds
that represent closed shapes, acquired from all directi-
ons, which is not realistic in urban scenarios where
MMS are not able to scan all surfaces.

Likelihood based. Different methods aim at esti-
mating the likelihood of a point to be visible given
a point of view, by considering its neighborhood. The
most common methods rely on the estimation of visi-
bility cones in screen-space (Shalom et al., 2010), and
more recently (Pintus et al., 2011). For each point,
a visibility cone is estimated, where the apex of the
cone is the given viewpoint. The aspect of the cone
is directly related to the visibility. Thus, a point that
belongs to a wide cone is more likely to be visible
than a point that belongs to a narrow cone. However,
the threshold on how open a cone should be in order
to consider the point visible strongly depends on the
point cloud, and can be hard to set.

In this paper, we propose an automatic screen-
space method for estimating the visibility of points in
a point cloud given a viewpoint. This method makes
no assumptions on the sampling or the density of the
point cloud and can therefore performed on any point
cloud.

3 VISIBILITY ESTIMATION
METHOD

The first contribution of this paper is a method for
estimating visibility in a 3D point cloud that is robust
to high sampling variations.

As illustrated in Fig. 2, points from two objects lo-
cated at different distances from the given viewpoint
overlap in the image plane once projected. In this con-
text, a point is visible only if it lies on the closest ob-
ject and occluded otherwise. From this observation,
we propose an algorithm that considers the neighbor-
hood of a point in screen-space in order to estimate
whether this point lies on the closest object or not.
The algorithm consists in 4-steps detailed hereafter.

Projection to Screen-space. Let P be a 3D point
cloud, and Φ a viewpoint such that any 3D point

Figure 2: Illustration of notations in 3D and in the screen-
space. Blue points corresponds to the points lying on the
closest object while red points lies on the farthest object.
Although the blue points and red points are well separated
in 3D, they overlap in screen-space.

(a) (b)

Figure 3: Illustration of the depth and of the closest points.
(a) dp corresponds to the depth between P and the center of
the viewpoint, (b) shows an example of the N closest points
in screen-space (N = 6).

P =

x
y
z

 ∈ P can be projected as a point p =

[
x
y

]
∈

PΦ in the image plane of the viewpoint Φ. The rela-
tion between P and p is illustrated on Fig. 2. We also
define dp as the depth of the point p. It corresponds to
the 3D Euclidean distance between P and the center
of the viewpoint as illustrated Fig. 2(a).

Neighbors Computation. We define N (p) as the
set of the N nearest neighbor points of p in the image
plane as explained in Fig. 3(b) The N (p) set can be
computed using any K-NN alogrithm with a Eucli-
dean distance. The use of the K-NN algorithm de-
fined in (Friedman et al., 1977) ensures logarithmic
computation time while being parallelizable.

Visibility Estimation. For each point, we want to
determine if it lies on the object in its neighborhood
that is the closest to the viewpoint. If so, we can con-
sider it as visible. To that end, we compare its posi-
tion to the closest and the farthest point of its neig-
hborhood. We define the visibility of each point as
follows:

αp = e
− (dp−dmin

p )
2

(dmax
p −dmin

p )
2

(1)

where

dmin
p = min

q∈N (p)
dq,dmax

p = max
q∈N (p)

dq
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The visibility estimation of each point p ∈ PΦ is
now given by αp ∈ [0,1], where αp = 0 means that p
is occluded and αp = 1 means that p is surely visible.

Binarization. The visibility of a point cloud being a
binary notion, we propose the following binarization
of αp:

α̂p =

{
1 if αp ≥ ᾱ

0 otherwise. (2)

with ᾱ = 1
Card(Pφ)

∑
p∈Pφ

αp the mean of the estimated vi-

sibilities. Note that various ᾱ values have been tested
such as ᾱ = 0.5 or the median value of the estimated
visibilities as discussed Section 5. However, in our
experiments on LiDAR data, the mean value remains
the best threshold. When point clouds have constant
densities, ᾱ = 0.99 appears to be more adequate.

4 VISIBILITY ESTIMATION
DATASET FOR LiDAR POINT
CLOUDS

The evaluation of visibility estimation techniques has
mostly been done either by visual analysis or by com-
parison to degradated synthetic models. In (Shalom
et al., 2010; Katz et al., 2007), visual results are dis-
played to show the qualitative performances of each
algorithm. In (Mehra et al., 2010), small degradati-
ons on synthetic model are applied in order to build
groundtruths. Although these methods of evaluation
provide convincing results, they do not provide com-
plete and objective quantitative measures on real data.
Real data, such as LiDAR, differ from synthetic data
in two aspects. The first difference is that the point
cloud density is highly variable on real data depen-
ding on the distance to the sensor, while constant on
synthetic data. The second one is that real urban data
only acquire partial representations of each object of
the scene as the sensor does not see objects from every
possible viewpoints. On the other hand, the synthe-
tic data presented in the related works (Shalom et al.,
2010; Katz et al., 2007; Mehra et al., 2010) are al-
ways complete 3D objects, which can be seen from
any viewpoint. To our knowledge, we give here the
first annoted dataset on real urban LiDAR data, which
makes the second contribution of this paper.

4.1 Overview of the Dataset

We propose a manually annotated dataset containing
over a 1 million points with the label 1 or 0 depen-

Figure 4: Overview of the proposed dataset. First row: op-
tical image corresponding to each viewpoint. Second row:
point cloud once projected in the image domain, where red
pixels correspond to occluded points. Third row: 3D visua-
lization of each point cloud, with the same color code than
in the second row.

Table 1: Content of the visiblity estimation dataset.

Points Visibility Farthest point Size

Scene #1 337384 55.5% 75.8m 20.6Mb
Scene #2 247682 57.0% 54.3m 15.1Mb
Scene #3 463531 65.9% 179.2m 28.3Mb

Total 1048597 59.46% - 64Mb

ding on if the points are visible or not. This data-
set has been obtained by manually labeling 3 point
clouds acquired by the RobotCar system (Maddern
et al., 2017) at different locations, in urban environ-
ment. Two of these point clouds are acquired several
meters from one another in order to test the stability of
visibility estimation methods. The third point cloud
corresponds to another location and covers a much
wider area which enables testing the limit of methods
in case of large distances (> 100m).

Annotations were done manually by comparing
the projections of the point clouds to the optical ima-
ges acquired at the same viewpoints. Fig. 4 presents
an overview of the produced dataset. The first row il-
lustrates each scene as acquired from the optical sen-
sor at each viewpoint. The second row shows the pro-
jections of each point cloud in the image domain (with
the calibration matrices provided by the Robotcar da-
taset (Maddern et al., 2017)), where occluded points
are highlighted in red. Finally, the third row shows a
3D visualization of each point cloud, with same color
code than above. It illustrates the amount of points
to be processed as well as the size of the scenes. The
statistics of the dataset are summed up in Table 1. The
dataset proposes different levels of visible / occluded
points, as well as different size of the scene.
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This dataset is publicly available online1. The ar-
chive contains 3 text files in the .xyz format that cor-
respond to each point cloud. In each file, a line cor-
responds to [x, y, z, u, v, label] where x,y,z are the 3D
coordinates of the point, u,v are the 2D coordinates of
the point when projected into φ and label is the visibi-
lity label (0 for occluded points, 1 for visible points).
To ensure good understanding of each of the 3 sce-
nes, we also provide the optical RGB image of size
1280×960px associated to each viewpoint.

5 EXPERIMENTS & RESULTS

In order to evaluate the performances of our visibility
estimation method, we first perform a full numerical
and visual comparison between our method and other
state-of-the-art methods on (1) the proposed visibility
dataset, (2) a point cloud with constant density. Next,
we show application of our method to data fusion by
performing point cloud colorization from RGB ima-
ges. All the algorithms are run on Matlab 2018a with
a 3.5Ghz CPU.

5.1 Evaluation on the Visibility
Estimation Dataset

Using our new annotated dataset, we propose an eva-
luation with two state-of-the art methods, and with
our proposed model, against a groundtruth. For each

(a) Point cloud (b) Ground truth

(c) HPR (d) Proposed model

Figure 5: Results of visibility estimation on the first scene of
our visibility estimation dataset.. (a) the point cloud where
the heat of the color is proportional to the depth, (b) is the
annotated point cloud (red: visible, grey: non-visible), (c)
HPR result and (d) our result. The result brought by HPR
estimates too many visible points, whereas our method pro-
vides a result that is very close to the groundtruth.

1http://www.labri.fr/perso/pbiasutt/Visibility/

method, we set all the parameters to its optimal va-
lue (e.g. the parameters that gives best results against
the groundtruth). In our case, we set N = 75 and we
detail results for different ᾱ values. We measure the
efficiency of each method by computing the following
metric:

S(P ) =
1

Card(P ) ∑
P∈P

αp×GTp (3)

where GTp corresponds to the annotation of the point
P (0 or 1, occluded or visible respectively). This me-
tric aims at capturing the percentage of correctly la-
beled points provided by each method. The results of
this evaluation are displayed in Table 2.

Table 2 demonstrates that our algorithm outper-
forms each compared methods for the 3 scenes. The
best scores are obtained by setting the threshold ᾱ

equal to the mean of visibility estimations for our met-
hod. This observation is explanable. Indeed, as men-
tionned above, LiDAR aquisitions only capture pieces
of the scene. Thus, objects are represented by one of
their face only which makes them well separated from
one another. In this sense, when an object overlaps an
other in screen-space, the mean of the visibility esti-
mations usually represents the visibility of a point that
would be in between those two objects. If a point has
a visibility estimation above this threshold, it is likely
to fall on the closest object, otherwise, it is occluded.
Therefore, the mean value can be used when working
on LiDAR point clouds because of the way objects are
separated from one another, making the method fully
automatic in this context.

We also demonstrate that our method operates fas-
ter than any other tested method with the ability of
treating the whole dataset in less than a second. Mo-
reover, the code is run on a single CPU. Among the 4
steps of the algorithm, the computation of the K-NN
is the most time consuming (about 86% of the total
running time). Therefore, one can expect much fas-
ter running times by operating on GPU with parallel
implementation of the K-NN algorithm.

The problem of visibility estimation is a classifi-
cation problem with two classes: visible and occluded
points. Therefore, we enrich our evaluation by com-
puting typical classification metrics for each method
and display them in Table 3. For each metric, the best
scores are obtained using our method. In particular,
our method with ᾱ= 0.5 maximizes the true-positives
and minimizes the false-negatives. On the opposite,
our method with ᾱ as the median of the estimati-
ons maximizes the false-positives and true-positives.
Once again, using our method with ᾱ as the mean
of the estimations provides a good tradeoff between
true-positives/true-negatives and false-positives/false-
negatives. On the other hand, (Katz et al., 2007) and
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Table 2: Comparison of the scores of two state-of-the art and our visibility estimation methods on our visibility estimation
dataset.

HPR (Katz et al., 2007) Cone (Pintus et al., 2011) Ours Ours Ours
Threshold optimal optimal ᾱ = 0.5 αp median αp mean

POV #1 74.09% 68.76% 90.15% 86.35% 90.96%
POV #2 69.09% 61.68% 86.95% 86.78% 88.39%
POV #3 81.55% 75.58% 82.21% 76.35% 83.75%

Average 74.91% 68.67% 86.43% 83.16% 87.70%

Total time 7.82s 1.53s 0.91s 1.03s 0.91s

Table 3: Comparison of the different methods for point cloud visibility classification.

HPR (Katz et al., 2007) Cone (Pintus et al., 2011) Ours Ours Ours
Threshold optimal optimal ᾱ = 0.5 αp median αp mean

True-positive 89.54% 85.16% 95.45% 78.31% 88.23%
False-positive 18.84% 17.78% 10.78% 3.66% 5.15%
False-negative 6.26% 8.61% 2.79% 13.18% 7.14%
True-negative 54.47% 56.24% 72.45% 90.80% 86.93%

Accuracy 85.16% 84.27% 92.52% 90.94% 93.44%
F1-score 87.71% 86.59% 93.37% 90.29% 93.49%

(Pintus et al., 2011) tend to over-estimate the visibility
of each point, resulting in many occluded points being
label as visible. This is expressed by the very high
percentage of false-positive. We computed accuracy
and the F1-score of each method against the ground
truth. For both, our method with ᾱ as the mean of the
estimation achieves, once again, the best results.

For the task of data-fusion, it is often preferable to
discard the maximum of occluded points (Bevilacqua
et al., 2017). Therefore, the number of false-positives
has to be kept as low as possible. In this sense, our
method provides very satisfactory results, especially
using the ᾱ as the mean of estimations when working
on LiDAR data.

We conclude this evaluation on LiDAR data by a
visual analysis of the results of the different methods.
Fig. 5 shows the results of the visibility estimations
visualized in 3D. For each result, the dark cone in the
bottom left corner represents the viewpoint. Fig. 5(a)
shows the point cloud colorized with the depth toward
the viewpoint (cold colors for close points, hot co-
lors for far points). Fig. 5(b) shows the annotated
groundtruth for this scene, where red points are points
that are visible from the viewpoint and dark points
are supposed to be occluded. Fig. 5(c) and 5(d) are
the results of HPR (Katz et al., 2007) and our method
(with ᾱ set as the mean of estimations) respectively.
We can see that HPR (Katz et al., 2007) estimates too
many points as visible points, especially on the clo-
sest points. On the opposite, our method succeeds in
discarding occluded points, and provides a result that
is very close to the groundruth.

We also illustrate these results as seen from the as-

(a) Optical image (b) Groundtruth

(c) HPR (d) Proposed model
Figure 6: Results of the visibility estimations on the first
scene of the dataset in screen-space. (a) the optical image
associated with the point of view, (b) visible points with
respect to our annotation, (c) HPR result and (d) ours. Red
points in (c) and (d) correspond to misestimated points.

sociated viewpoint in Fig. 6. For better understanding
purpose, Fig. 6(a) shows an image acquired from the
same viewpoint. In Fig. 6(b), we only display visible
points of the groundtruth. Fig. 6(c) and 6(d) shows
the results of HPR (Katz et al., 2007) and our met-
hod respectively. We can see once again that HPR
(Katz et al., 2007) labels too many occluded points as
visible and fails to distinguish foreground from back-
ground objects. This is mostly due to the fact that this
scene presents very high variations of density. In par-
ticular, the center of the road concentrates a very high
density of points as the sensor is close from the road.
Therefore, the convex-hull has to be relaxed enough
to fit this region of the point cloud, which leads to vi-
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Ground truth HPR (Katz et al., 2007) Cone (Pintus et al., 2011) Ours (ᾱ = 0.99) Ours (mean)

Figure 7: Visual comparison of the visibility estimation from different methods on a point cloud with constant and high
density. Each column corresponds to one method. Rows are respectively: the results in 3D, the results in 2D (seen from
the viewpoint), and a zoom of the 2D result focused on the ear region. The 3 methods succeed very well in estimating the
visibility. Our methods lacks of precision for points that are tangent to the viewpoint as can be seen on the last row.

sual abberations on regions with lower density. Our
method succeeds better results this scene, which de-
monstrates its robustness against high density variati-
ons.

5.2 Evaluation on Constant Density
Point Cloud

In previous section, we demonstrated that our method
performs better than other methods for point clouds
with high density variations. In this section, we aim
at showing that our method remains competitive on
constant density point clouds. The Stanford Bunny
model is a point cloud (from the Stanford University
CG Laboratory) that was created by merging 10 depth
aquisitions of a real object and equalizing the den-
sity of the fused point cloud. The final point cloud is
composed of 31655 points. As each depth acquisition
only acquires points that are visible from a single vie-
wpoint, we created a groundtruth by comparing the
final point cloud to the points that were aquired at a
certain viewpoint. Criterion (3) and classification me-
trics have been computed for our method and state-of-
the-art methods. Results are displayed in Table 4.

Here, the point cloud is of constant density and
represents a very smooth object as illustrated Fig. 7.
This is a scenario that is perfectly adequate for the
HPR algorithm, which shortly outperforms the two
other methods. Our method underperforms only by
about 1 percent but still remains very efficient on
these types of data. Compared to the two other met-
hods, our method fails on tangential points that are
located at the boundaries of the projection of the ob-
ject as it is presented on the last row of Fig. 7. This

Table 4: Comparison of the scores of the different methods
on constant density point cloud.

HPR Cone Ours Ours
Threshold optimal optimal ᾱ = 0.99 αp mean

Score (Eq. (3)) 96.57% 93.75% 95.23% 93.02%

True-positive 95.17% 88.63% 94.44% 98.07%
False-positive 1.15% 0.88% 2.14% 6.07%
False-negative 2.28% 5.37% 2.63% 0.91%
True-negative 97.82% 98.33% 95.95% 88.50%

Accuracy 98.25% 96.76% 97.56% 96.40%
F1-score 98.23% 96.59% 97.54% 96.57%

is mostly due to the fact that on tangential points, the
neighborhood covers only a small area, thus the diffe-
rence between foreground and background is hard to
set. These artifacts are limited when using the mean
of estimation as visibility threshold, but it increases
false-positives. Table 4 also illustrates the classifica-
tion metrics. We can see that all tested methods re-
ach very good levels of accuracy and F1-score. Our
method succeeds better when ᾱ = 0.99 than when
using the mean value. Indeed, for complete object,
there is no separation between foreground object and
background object as was the case for LiDAR point
clouds. Thus, only points with high likelihood should
be kept to improve results, which justifies ᾱ = 0.99.

Finally, Table 4 assesses that all methods limit the
appearance of false-positives while ensuring to gather
as many visible points as possible. To that end, HPR
and our method succeed the best true-positive/false-
positive ratio, which is ideal for data-fusion purposes,
as discussed in next section.
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(a) (b) (c)

Figure 8: Comparison of the colorization of point clouds using RGB images. (a) colorization without any visibility informa-
tion, (b) colorization with HPR (Katz et al., 2007) for the visibility estimation, (c) colorization with our visibility estimation
method. The result provided by our method presents no artifacts on occluded areas, especially behind cars compared to the
two other results.

5.3 Example of Application to Data
Fusion

To conclude our experiments, we show the interest
of our visibility estimation for the task of data fu-
sion. Using the KITTI dataset (Geiger et al., 2013),
we aim at colorizing a 3D LiDAR point cloud acqui-
red in a street using only RGB images. Each point
is projected in the image domain of the closest image
(e.g. the image that was acquired at the closest posi-
tion from the point). The point then takes the color of
the pixel it projects into only if it is considered visible.
Fig. 8 presents the result of the colorization on a point
cloud composed of 3289533 points, and is colorized
using 40 RGB images. Fig. 8(a) shows the coloriza-
tion result where all points are considered visible. We
can see that artifacts appear as the colors do not match
the objects. This is particularly noticeable behind cars
where the ground points take the color of the car. Fig.
8(b) displays the colorization result where the visibi-
lity is estimated using HPR (Katz et al., 2007). There,
some artifacts appear behind cars as the convex-hull
go through the glasses of the car. Moreover, this met-
hod discards many visible points on the ground and
behind cars compared to our method (about 17% less
points are colorized). Fig. 8(c) presents the coloriza-
tion result using our visibility estimation method. We
can see that the artifacts behind cars have completely
disappeared, while keeping most of the visible points.
Finally, due to the number of points, the visibility es-
timation using HPR (Katz et al., 2007) for each vie-

wpoint takes an average of 10.9 seconds whereas our
method processes the point cloud at each viewpoint in
about 1.2 seconds.

6 CONCLUSION &
PERSPECTIVES

In this paper, we have proposed a novel method for
the visibility estimation in a point cloud. Compared
to other methods from literature, this method is very
robust to high variations of density. By considering
the closest neighbors of each point in screen-space,
we defined a criterion in order to automatically deter-
mine the visibility of each point. We have also propo-
sed a new annotated dataset for testing the efficiency
of point cloud visibility algorithms on real LiDAR ur-
ban data. This dataset is composed of over a million
manually annotated points. Finally we have compa-
red our method to state-of-the-art methods. We have
validated that our method significantly outperforms
existing methods on real urban data. Although our
method was specifically designed for the estimation
of visibility on point cloud with various density (such
as LiDAR point clouds), we have also demonstrated
that it still remains competitive on point clouds with
constant density.

In the future, we would like to focus on the eva-
luation of our method against photogrammetric point
clouds, for tasks such as view generation. We also
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would like to improve LiDAR / Optic fusion thanks
to the visibility estimation.
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de télédétection, 200:69–79.

Pintus, R., Gobbetti, E., and Agus, M. (2011). Real-time
rendering of massive unstructured raw point clouds
using screen-space operators. In Eurographics Inter-
national Conference on Virtual Reality, Archaeology
and Cultural Heritage, pages 105–112.

Schnabel, R., Degener, P., and Klein, R. (2009). Completion
and reconstruction with primitive shapes. In Compu-
ter Graphics Forum, pages 503–512.

Shalom, S., Shamir, A., Zhang, H., and Cohen-Or, D.
(2010). Cone carving for surface reconstruction. In
ACM Transactions on Graphics, pages 150–160.

Tagliasacchi, A., Olson, M., Zhang, H., Hamarneh, G., and
Cohen-Or, D. (2011). VASE: Volume-Aware Sur-
face Evolution for Surface Reconstruction from In-
complete Point Clouds. In Computer Graphics Forum,
pages 1563–1571.

Xiong, S., Zhang, J., Zheng, J., Cai, J., and Liu, L. (2014).
Robust surface reconstruction via dictionary learning.
In ACM Transactions on Graphics, page 201.

Zach, C., Pock, T., and Bischof, H. (2007). A globally op-
timal algorithm for robust TV-L 1 range image inte-
gration. In ICCV IEEE International Conference on
Computer Vision, pages 1–8.

Visibility Estimation in Point Clouds with Variable Density

35


