Subpixel Catadioptric Modeling of High Resolution Corneal Reflections

Chengyuan Lin and Voicu Popescu

Computer Graphics and Visualization Lab, Purdue University, West Lafayette, U.S.A.

Keywords: Corneal Reflections, Catadioptric Modeling, Bundle Adjustment, Epipolar Geometry, 3D Reconstruction.

Abstract: We present a calibration procedure that achieves a sub-pixel accurate model of the catadioptric imaging system defined by two corneal spheres and a camera. First, the eyes’ limbus circles are used to estimate the positions of the corneal spheres. Then, corresponding features in the corneal reflections are detected and used to optimize the corneal spheres’ positions with a RANSAC framework customized to the corneal catadioptric model. The framework relies on a bundle adjustment optimization that minimizes the corneal reflection reprojection error of corresponding features. In our experiments, for images with a total resolution of $5,472 \times 3,648$, and a limbus resolution of 600×600, our calibration procedure achieves an average reprojection error smaller than one pixel, over hundreds of correspondences. We demonstrate the calibration of the catadioptric system in the context of sparse, feature-based, and dense, pixel-based reconstruction of several 3D scenes from corneal reflections.

1 INTRODUCTION

Digital cameras now capture images with a resolution that far exceeds conventional displays. Whereas a display cannot show simultaneously all the pixels of the image, the underlying high resolution is useful for digital zoom-in operations or for large format printing. Another important benefit of high resolution is increasing the quality of 3D scene reconstructions derived from images.

Many real world scenes contain reflective objects, and high resolution images capture a wealth of scene information in fortuitous reflections. Reflections on convex surfaces are particularly rich in information, as the divergent reflected rays sample the scene comprehensively, with a large field of view. Furthermore, reflections introduce additional sampling viewpoints, which allow measuring disparity and triangulating 3D positions from a single image.

The human eyes are convex reflectors, and researchers have long speculated on the possibility of using corneal reflections to infer 3D scene structure. One challenge is the small baseline, i.e. a typical interpupillary distance is 63 mm (Dodgson, 2004), which translates to low depth accuracy at distances of 0.5 m and beyond. Another challenge is the low resolution of the corneal reflections. Both challenges are alleviated by increases in the overall image resolution. A third challenge is accurate calibration of the catadioptric system defined by the two eyes and a camera. An accurate catadioptric model is needed to limit the search for correspondences between corneal reflections to 1D epipolar curves, and for accurate triangulation of 3D scene points.

In this paper we present a procedure for calibrating the catadioptric model defined by two corneal spheres and a camera. The input is a high resolution image of a person looking at a 3D scene. In our experiments, the image resolution is $5,472 \times 3,648$ and each corneal reflection has a resolution of approximately 600×600. First, a preliminary corneal catadioptric model is inferred from the projection of the limbus circles in the corneal reflections. Then, the model is refined iteratively using a custom RANSAC approach that relies on bundle adjustment to minimize feature reprojection error. We obtain an error between 0.16 and 0.58 pixels. We use the corneal catadioptric model to recover dense depth through stereo matching with the support of epipolar-like constraints (Figure 1). The truth geometry used for comparison (grey points in Figure 1c) was obtained by scanning the toys with an active depth sensing camera.

2 PRIOR WORK

We first give an overview of prior efforts on acquiring scenes using catadioptric imaging systems, and then we review prior work in modeling the catadiop-
Researchers have long noticed the benefits of devising acquisition systems that combine refractive and reflective elements. One such benefit is an increased field of view. Debevec used a chrome ball as a light probe to capture the complex illumination of a real world scene with a single shot, and to apply it to synthetic objects integrated into the scene (Debevec, 2008). Nayar has developed omnidirectional cameras using paraboloidal mirrors with a single viewpoint, so their images can be resampled to conventional images (Nayar, 1997). A second scene acquisition benefit of catadioptric systems is the ability to integrate multiple perspectives in the same image. The additional perspectives encode depth disparity, which enables single-shot depth from stereo (Kuthirummal and Nayar, 2006). The additional perspectives are also useful for devising acquisition systems that are robust to occlusions, by guiding the scanning laser beam towards hard-to-reach places (Fasano et al., 2003).

Human eyes are often captured in images, and leveraging corneal reflections to infer information about the scene is appealing and has been carefully studied (Nitschke et al., 2013). The corneal reflections are readily available, without the challenge of augmenting the camera with reflective elements. Furthermore, the corneal reflections introduce additional viewpoints that capture parts of the scene missed from the camera viewpoint. The additional viewpoints not only provide a comprehensive image of the scene, but also allow measuring disparity to extract depth. The catadioptric system defined by a camera and two eyes requires modeling the cornea’s reflective surface. Prior work models this surface as a sphere cap, which is part of the corneal sphere, and delimited by the sclera sphere (Nishino and Nayar, 2006). We use the same cornea surface model. Another challenge is that, unlike for catadioptric imaging devices where the reflective elements have a fixed, pre-calibrated position and orientation with respect to the camera, in the case of corneal reflections the eyes are free to move with respect to the camera, and their position has to be recovered in every image.

One use of corneal reflections is to capture a panoramic image of the scene, leveraging the large field of view sampled by the reflected rays (Nishino and Nayar, 2006). The information in the corneal reflection can be used to extract gaze direction in camera-display systems (Nitschke et al., 2011a), and also to extract a panorama of the environment reflected in the user’s eyes (Nitschke and Nakazawa, 2012). Corneal reflections have also been proposed as a way of gaining insight into a crime scene, demonstrating that camera resolution is now sufficient for identifying humans present in such reflections (Jenkins and Kerr, 2013).

We discuss in detail the two prior art papers most...
relevant to our work. One describes a system that does not recover 3D scene structure from corneal reflections, but rather from parabolic metal mirrors (Agrawal et al., 2011). Metal mirrors greatly simplify catadioptric scene reconstruction by providing a precisely known reflective surface shape, and by generating clear and high contrast reflections. Furthermore, metal mirrors are perfectly stationary which avoids the blurriness that results from the slight user head motion as the picture is taken. Moreover, the metal mirrors used are about three times larger than the corneal sphere, and about four times larger than the limbus circle, which delimits the reflection in our case. Consequently, the prior work reflections have a resolution of 2M pixels, compared to the 0.1M pixels for our work, which aids significantly with reconstruction quality. The earlier system refines calibration without a preliminary RANSAC step to weed out mismatched features. The reprojection error achieved by the earlier system is about five times larger than ours, most likely due to the simpler calibration refinement step, as discussed above. Finally, the earlier work does not report any quantitative measure of the 3D reconstruction error. Our work validates the 3D reconstruction quality in an absolute sense by reconstructing objects of known size, as discussed in the following sections.

The other paper highly relevant to our work is the only prior art paper that actually recovers any 3D structure from corneal reflections (Nishino and Nayar, 2004). The paper proposes the idea of finding correspondences between a pair of corneal reflections and of triangulating them into depth. We extend this work in the following ways. First, the earlier system calibration stops at our precalibration phase. The earlier system is crudely calibrated by inferring the position of the corneal spheres from the limbus circles, whereas our system refines this initial calibration with our custom RANSAC + bundle adjustment approach, which reduces the reprojection error substantially. We achieve sub-pixel accuracy, whereas the previous paper doesn’t report calibration accuracy, which we estimate as being orders of magnitude lower based on the accuracy achieved by our similar precalibration stage. Second, the earlier system requires establishing correspondences between the two corneal reflections manually, by clicking corresponding points. Our system detects, matches, and validates correspondences automatically. Third, the earlier system does not perform dense stereo reconstruction, whereas our system does. Finally, the only scene where 3D reconstruction is demonstrated is that of a large cube with uniformly colored faces. Inspired by their pioneering work, with the help of our subpixel catadioptric modeling framework, we demonstrate 3D scene structure recovery from corneal reflections.

3 CATADIOPTRIC MODEL OF CORNEAL REFLECTIONS

Many scenes of interest to computer vision applications contain humans, and corneal reflections present the opportunity for catadioptric stereo scene reconstruction. Before scene reconstruction can begin, one has to model the catadioptric system defined by two eyes and a camera.

3.1 Eye Model

Figure 2a shows an outer view of the human eye. The most distinctive components are the color-textured iris and the surrounding white sclera. The cornea is the transparent outer layer of the eye that covers the iris. The cornea has an internal pressure higher than that of the atmosphere, which maintains the cornea’s convex shape. The cornea surface is coated with a thin film of tear fluid which makes it smooth, with mirror-like reflective characteristics (Nitschke et al., 2011b).

Geometrically, the eye is well approximated by two intersecting spherical segments of different radii: a smaller, anterior corneal segment, and a larger, posterior scleral segment (Figure 2b). The intersection of the two segments defines the limbus circle, i.e. the perimeter of the iris. In the field of anatomy, extensive measurements of the shape and dimensions of the cornea have been conducted (Mashige, 2013). The corneal segment covers about one-sixth of the eye, and has a radius of curvature \(r_C \) of 7.8 mm. The radius of the limbus circle \(r_L \) is 5.5 mm. The displacement \(d_{LC} \) between the center of the limbus circle and the center of the corneal sphere can be obtained as

\[
d_{LC} = \sqrt{r_C^2 - r_L^2} \approx 5.53 \text{mm}.
\]
3.2 Catadioptric Model

We model the catadioptric system defined by a camera and two eyes with the following parameters: (1) the intrinsic parameters of the camera, (2) the limbus circle radius \(r_L \), (3) the corneal sphere radius \(r_C \), and (4) the 3D positions of the centers of each of the two corneal spheres in the camera coordinate system.

We measure the camera intrinsic parameters with a standard calibration process (Zhang, 1999). We assume that both eyes have the same limbus circle radius, and we use the average value of 5.5 mm. We assume both corneal spheres have the same radius, and we use the average value of 7.8 mm. We confirm the validity of these assumptions in Section 5.3. The 3D positions of the corneal sphere centers are found for each image as described in the next section.

Using the catadioptric model (Figure 3), given a pixel \(s \) in the corneal reflection, one can compute the corresponding reflected ray \(SP \) by reflecting the camera ray \(OS \) off the corneal sphere. The converse, projection operation is more challenging. Given a scene 3D point \(P \), we compute its corneal reflection projection \(s = \pi(C,P) \) by first finding its reflection point \(S \) with a fourth order equation (Eberly, 2008). Then \(s \) is computed by projecting \(S \) on the image plane.

3.3 Epipolar Geometry

Epipolar geometry is used in stereo matching to reduce the dimensionality of the correspondence search space from two to one. In our case the rays reflected by the corneal sphere are not concurrent, so the epipole is ill-defined, and traditional epipolar geometry does not apply. However, we derive epipolar-like constraints as follows. Given a pixel \(s_1 \) in the left corneal reflection (Figure 4), we compute its left corneal sphere reflected ray \(r \), we sample \(r \) with 3D points, and we project each 3D point \(P \) onto the image plane using the right corneal sphere, leveraging the projection operation described above. The projected points define an epipolar curve in the right corneal reflection which is known to contain the correspondence \(s_2 \) of \(s_1 \), if such a correspondence exists. Like in traditional stereo, the search for correspondences is confined to a 1D subset of the image pixels. We note that the epipolar curve can be described analytically with a quartic (Agrawal et al., 2010). However, we have opted to sample the epipolar curve by sampling the 3D ray for a better control of the sampling rate, as it is challenging to sample a high-order parametric curve with steps of equal Euclidean length.

4 SYSTEM PIPELINE

Figure 5 shows the stages of our system pipeline. Please also refer to the supplementary video for results of each stage.

4.1 Eye Region Extraction

The first stage crops the input image to only contain the eyes region. We use a Haar feature-based cascade classifier specialized for eye detection, proposed by Viola (Viola and Jones, 2001) and improved by Lienhart (Lienhart and Maydt, 2002). Previous approaches for extracting the eye regions proceed with a preliminary step of finding the faces in the input image. In our case, a single face dominates the input image, and it can even happen that an image does not capture the entire face, so face detection is not necessary, and sometimes not even possible.
4.2 Initial Calibration

The second stage of the pipeline derives an estimate of the position of the corneal spheres in the camera coordinate system. This is achieved with a method similar to the one described before in the context of achieving super-resolution of corneal reflections (Nitschke and Nakazawa, 2012). We summarize the procedure here for completeness.

The limbus projection is detected in each eye region using a weak perspective assumption. Prior art has also developed methods for recovering the limbus under full-perspective projection assumption (Schnieders et al., 2010). However, the weak-perspective assumption is justified by the small limbus diameter relative to the distance to the camera, and by the fact that at this stage we are only deriving an initial estimate that is then refined in the subsequent pipeline stages.

The ellipse corresponding to the limbus projection is found in a downsampled eye region image using a Canny edge detector. Edge segments are assembled from edge map pixels and the ellipse is assembled from edge segments with a combinatorial search (Kassner et al., 2014). The downsampling of the eye region not only helps accelerate ellipse detection, but also serves as a low-pass filter that improves robustness. In particular, the downsampling suppresses the corneal reflections, which are an important source of noise for this stage of the pipeline. Note that the limbus circle is never entirely visible, as it is occluded by eyelids and eyelashes. Our edge detection/combinatorial search method handles well the variable occlusion of the limbus. Figure 6b shows a limbus detection example. Once the ellipse is determined, using the known radius of the limbus circle, the 3D position of the center and the orientation of the limbus circle are computed leveraging the known camera intrinsics. Since the radius of the corneal sphere is known, the corneal sphere center is computed using the 3D position of the center and the normal of the limbus plane (Schnieders et al., 2010).

4.3 Feature Extraction

The third stage of the pipeline extracts features in the reflections within the two limbus ellipses. We detect features using the FAST algorithm (Rosten and Drummond, 2006) (Figure 7). In anticipation of fe-
Algorithm 1: Refinement of catadioptric model.

Input: Initial catadioptric model C_0, features F_L and F_R, # of iterations k

Output: Feature matching M, and refined catadioptric model C

1: $M_0 =$ InitialMatching(F_L, F_R)

2: for each iteration i of k do

3: $hex_i = \{(f_{l1}, f_{r1}), \ldots, (f_{l6}, f_{r6})\} \subset M_0$

4: $C_i =$ BundleAdjustment(C_0, hex_i)

5: for each (l_j, r_j) in M_0 do

6: $e_{ij} =$ ReprojectionError ($(l_j, r_j), C_i$)

7: if $e_{ij} < \epsilon$ then // inlier correspondence

8: $M_i += (l_j, r_j), n_i++$

9: if $n_i > n_{best}$ then

10: $n_{best} = n_i, M = M_i, C_{best} = C_i$

11: $C =$ BundleAdjustment(C_{best}, M)

The fourth stage of the pipeline refines the catadioptric model with a RANSAC approach we have developed (Algorithm 1). The algorithm takes as input the initial catadioptric model C_0 estimated from the limbic circle projections in the second stage of the pipeline: the set of features F_L and F_R detected in the left and right corneal reflections in the third stage of the pipeline: and the number of RANSAC iterations k over which to refine the catadioptric model.

An initial matching of features M_0 is computed (line 1) with an all-pairs approach that considers each feature f_{l_j} in F_L and matches it to the f_{r_j} feature with the smallest distance to f_{l_j}. However, in the case of scenes with repetitive texture, a feature could have several matches with similar quality, which can lead to matching ambiguity. We reject such features using the ratio test (Lowe, 1999), which only keeps a feature if its second best match is significantly worse.

Based on this initial matching M_0, each iteration i of the RANSAC approach computes a possible refined catadioptric model C_i, and retains the best refinement (lines 2-10). The refined model C_i is computed with a bundle adjustment approach from a set of six correspondences hex_i that are drawn at random from M_0 (line 3). The bundle adjustment uses a trust-region optimization (Conn et al., 2000) to find the two corneal centers C_L and C_R ($2 \times 3 = 6$ parameters), and the 3D positions P_j of the six scene features ($6 \times 3 = 18$ parameters). The optimization minimizes the sum of correspondence reprojection errors. For correspondence (f_{l_j}, f_{r_j}) the reprojection error is:

$$||\pi(C_L, P_j) - f_{l_j}||^2 + ||\pi(C_R, P_j) - f_{r_j}||^2, \quad (2)$$

where π is the projection function of the corneal catadioptric system (Section 3.2). An initial guess of a feature’s 3D position P_j is computed by triangulation, as the midpoint of the common perpendicular segment of the two reflected rays at f_{l_j} and f_{r_j}).

The six correspondences are sufficient to determine the $6 + 18 = 24$ parameters, since each of the six correspondences contributes two 2D corneal projection equations, for a total of four scalar equations:

$$\begin{align*}
\pi(C_L, P_j)_x &= f_{l_jx}, & \pi(C_L, P_j)_y &= f_{l_jy}, \\
\pi(C_R, P_j)_x &= f_{r_jx}, & \pi(C_R, P_j)_y &= f_{r_jy}.
\end{align*} \quad (3)$$

Then, using the model C_i, the correspondences in M_0 are partitioned in inlier and outlier correspondences (lines 5-8). A correspondence is considered an inlier if its reprojection error e_{ij} (Equation 2) is smaller than a threshold ϵ. Inlier correspondences are counted by n_i, and are collected in set M_i. The model C_{best} with the most inlier correspondences is found over all k RANSAC iterations (lines 9-10). In a last step, C_{best} is refined over all inlier correspondences M with the bundle adjustment procedure described above for line 4), to generate the final catadioptric model C. The catadioptric model refinement reduces the average reprojection error to subpixel levels (Figure 8).

In conventional structure from motion, bundle adjustment is used over multiple frames, which results in a more robust estimation of the camera parameters. However, in our case, where the camera is moving along a fixed path, the bundle adjustment is performed over a single frame, which reduces the number of parameters to estimate and increases the accuracy of the correspondences.
Figure 9: Correspondence search on epipolar curve (top), and rotation of corresponding patches (bottom).

in a large but sparse feature correspondence matrix. This sparsity is exploited by specific optimization methods (e.g. Sparse Bundle Adjustment based on Levenberg-Marquardt (Lourakis and Argyros, 2009)). In our case, we only rely on the two images provided by the two corneal reflections, so our correspondence matrix is always full and small, hence our choice of the trust-region optimization.

4.5 Dense Stereo

The catadioptric model refinement stage produces a sparse reconstruction of scene geometry by computing the 3D positions of corresponding features. Scene reconstruction fidelity is increased in a final stage that attempts to compute a correspondence, and thereby a 3D point, for each corneal reflection pixel. For every pixel in the left corneal reflection we search for a correspondence \(p_R \) in the right corneal reflection along \(p_L^e \) epipolar curve (Figure 9, top). The epipolar curve (blue) is truncated to a short arc (red) based on a depth range estimate inferred from the sparse reconstruction. The smaller search space accelerates correspondence finding, and increases robustness by removing from consideration parts of the image with similar texture.

Given a candidate corresponding point \(p_R \) on the epipolar curve, the matching error \(E(p_L, p_R) \) is the sum of squared color differences between square patches \(R_{p_L} \) and \(R_{p_R} \) centered at \(p_L \) and \(p_R \) in the left and right reflections:

\[
E(p_L, p_R) = \sum_{p_L \in R_{p_L}} \| R_{p_L}(p_L) - R_{p_R}(F(p_L)) \|^2 .
\]

Whereas in standard stereo configuration the mapping \(F \) from \(R_{p_L} \) to \(R_{p_R} \) can be approximated with the identity, in our case there is significant rotation between \(R_{p_L} \) and \(R_{p_R} \). We use a mapping that rotates each patch to become aligned with the epipolar curve tangent (Figure 9, bottom).

5 RESULTS AND DISCUSSION

Figure 10 shows our experimental setup. All the pictures were taken with a Canon E70D camera, which has a resolution of 5,472 x 3,648, and with a 135 mm lens. Aperture, ISO and shutter time were chosen to best capture the corneal reflections. Focus bracketing was used to obtain sharp corneal reflections, which is also aided by the fact that the reflection in a small convex surface is "shallow", forming close to the reflective surface, and focusing close to the surface will capture the entire reflection in focus, even for a small depth of field. We have tested our pipeline on several scenes: Checkerboard (Figure 6), Toys (Figure 1), Presents (Figure 11), and Workbench (Figure 12).

5.1 Quality

The automatically detected ellipse has an average Hausdorff distance of 1.5 pixels to a truth ellipse fitted through manually chosen points (Rockafellar and Wets, 2009).

We extract features with OpenCV’s FAST feature detector (Rosten and Drummond, 2006). The initial feature matching (line 1 in Algorithm 1) has a low outlier rate, e.g. 8 out of 106 for the Toys scene. Consequently, a small number of RANSAC iterations (i.e. \(k = 10 \)) are sufficient to converge to an accurate catadioptric model since the randomly selected sets of six correspondences are unlikely to contain outliers. The refinement stage reduces the average reprojection error (Equation 2) substantially, as shown in Table 1. For the Workbench scene the limbus is heavily occluded in the input image, so limbus detection is approximate, which leads to a coarse initial calibration. However, even for this case, model refinement converges, reducing the reprojection error below one pixel.

For the Checkerboard scene, the average out of plane displacement for the 144 3D points recovered at the 12 x 12 checker corners is 7.3 mm. For the dense-stereo reconstructed points, the average out of plane
Table 1: Reprojection errors [pixel].

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Refined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkerboard</td>
<td>2.44</td>
<td>0.16</td>
</tr>
<tr>
<td>Toys</td>
<td>7.93</td>
<td>0.54</td>
</tr>
<tr>
<td>Presents</td>
<td>13.88</td>
<td>0.57</td>
</tr>
<tr>
<td>Workbench</td>
<td>62.26</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Table 2: Typical running times for our pipeline.

<table>
<thead>
<tr>
<th>Pipeline stage</th>
<th>Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye region extraction</td>
<td>53</td>
</tr>
<tr>
<td>Initial calibration</td>
<td>82</td>
</tr>
<tr>
<td>Feature extraction</td>
<td>50</td>
</tr>
<tr>
<td>Calibration refinement (Algorithm 1)</td>
<td></td>
</tr>
<tr>
<td>Initial feature matching (line 1)</td>
<td>2</td>
</tr>
<tr>
<td>RANSAC iterations (lines 2-10)</td>
<td>20</td>
</tr>
<tr>
<td>Final bundle adjustment (line 11)</td>
<td>1,053</td>
</tr>
<tr>
<td>Dense Stereo</td>
<td>287,327</td>
</tr>
</tbody>
</table>

Figure 11: *Presents* scene: reflection, and reconstruction aligned with truth geometry (grey points), for comparison.

displacement is also 7.3 mm. The length of the reconstructed diagonal of the checkerboard is 0.61 m, whereas the true diagonal is 0.59 m, which corresponds to a 2.7% error. For a qualitative assessment of our depth maps, we scanned the *Toys* and the *Presents* scenes with a depth camera (i.e. a Structure sensor). The truth geometry aligns with the geometry reconstructed from corneal reflections (Figures 1c and 11). For the *Presents* scene we fitted planes to the box faces, with an average error of 15.3 mm. The normals of parallel faces had an average angle error of 6.2°.

5.2 Speed

We measured performance on an Intel(R) Core(TM) i5-7600K 3.8GHz workstation. The running times of each stage of our pipeline are given in Table 2. For eye region extraction, we use the Haar cascade classifier provided in OpenCV. A minimum eye region size is set to avoid false detections. For the limbus detection in the initial calibration, we start the search at the center of the eye region. The bulk of the limbus detection time goes to downsampling the image. The dense stereo stage is by far the slowest, but also the best candidate for parallelization.

Figure 12: *Workbench* scene: reflection and reconstruction.

5.3 Error Analysis

Like any depth from stereo system, our depth accuracy depends on the baseline, on the image resolution, and on the correspondence detection error. There isn’t much flexibility for the baseline, which is fixed to the interpupillary distance. In terms of resolution, we use one of the off-the-shelf highest resolution cameras. Due to the high curvature of the corneal sp-

here, correspondence detection errors result in larger depth errors than in the case of conventional stereo, as reflected rays are more divergent. The detection error is commensurate to the feature reprojection error, which in our experiments is consistently below one pixel. For our system, a one pixel detection error translates to an average depth error of 20 mm at 0.5 m. This error is larger closer to the limbus circle, where reflected rays are more divergent.

We use a catadioptric model that assumes known and equal limbus circle radii. The limbus circle radius is only used in the initial calibration stage, which provides an initial guess for the model refinement stage. In all our experiments this initial guess was good enough for the model refinement stage to converge, which indicates that one can safely use the known and equal limbus circle radii assumption. Our catadioptric model also assumes that the corneal surfaces are spherical, and that the corneal sphere radii are known and equal. We have investigated the reconstruction error sensitivity to deviations from these two assumptions analytically. The reconstruction error is computed for a 3D point \(P \) at a typical distance from the eyes of 0.5 m. The projections \(p_L \) and \(p_R \) of \(P \) in the corneal reflections are computed with our ideal catadioptric model \(C \). Then, for a given imperfect catadioptric model \(C' \), we compute a deviated position \(P' \) of \(P \) as follows. First, the camera rays at \(p_L \) and \(p_R \) are reflected according to \(C' \), and then the reflected rays are triangulated to obtain \(P' \). The reconstruction error is defined as the Euclidean distance between \(P \) and \(P' \).

Figure 13 shows the reconstruction error dependence on cornea eccentricity and on left/right eye asymmetry. The same 0 to 0.2 range is used for both independent variables. Cornea eccentricity is modeled by assuming the true cornea is in fact an ellip-
For an eccentricity of 0.2, which corresponds to a small/large ellipse axis ratio of 0.98, the reconstruction error is 38 mm. The eye asymmetry is quantified as the ratio of the radii of the left and right eye corneal spheres. For an eye asymmetry of 10%, the error is 40 mm. This analysis indicates that the reconstruction error is quite sensitive to these two parameters.

In our anatomy research review we did not find a human population range for these parameters. We experimented with extending our bundle adjustment to optimize for eye asymmetry as well, but the reprojection errors did not decrease significantly. Furthermore, we have also investigated the validity of our assumptions empirically, by reconstructing our scenes from reflections captured from two high-grade steel bearing balls of similar size to the human corneal spheres (Figure 14). The bearing balls are truly spherical and of equal size, so the bearing balls catadioptric system satisfies all our assumptions. The reconstructed scene accuracy was comparable to the reconstructions from corneal reflections for the Checkerboard scene, which indicates indirectly that our corneal catadioptric system assumptions are valid.

6 CONCLUSIONS AND FUTURE WORK

We described a pipeline for extracting 3D scene structure from high resolution corneal reflections. The system first calibrates the position of the eyes with respect to the camera with subpixel accuracy, and then uses the resulting catadioptric model to triangulate corresponding corneal reflection features and pixels.

One limitation of the system stems from the assumption that the input image provides a perfect corneal reflection. Future work should take into account the iris texture, which is a considerable source of noise for light colored eyes. Methods for separating the local from the global illumination (Nayar et al., 2006) could be used to this effect. Another limitation of the current pipeline implementation is that the dense stereo stage relies on a naive patch color matching algorithm, which reduces the quality of the 3D scene reconstruction. Our paper contributes a subpixel accurate calibration of the corneal catadioptric imaging system, which can be readily used with more sophisticated stereo matching algorithms, such as for example those that exploit scene geometry coherence (Ohta and Kanade, 1985), (Sun et al., 2003), (Scharstein and Szeliski, 2002).

Another direction of future work is to accelerate the pipeline to interactive performance, which allows accumulating scene 3D structure over several frames, or even from a video stream. A first step is to implement the dense stereo stage on a GPU. For a stationary camera, the 3D points contributed by each frame are already in a common coordinate system and can be readily merged, without alignment.

Future work to extend our method beyond the lab setting is challenging. Our work already reduces the calibration error of the catadioptric system below one pixel, which is an order of magnitude improvement over prior art. But the inherent limitation that prevents the reconstruction of scenes outside the lab is the large distance from the eyes to the scene, relative to the interpupillary distance and to the corneal reflection pixel resolution. Indeed, even for a 0.1 pixel reprojection error, which is the standard for the calibration error of simple optical systems with one camera, corneal reflection reconstructions will incur errors of 6.33, 25.3, and 602 mm at scene distances of 1, 2, and 10 m, for a 5,472 x 3,648 resolution camera placed at 0.5 m from the eyes. Our corneal catadioptric system calibration and scene reconstruction pipeline already achieves the best results afforded by the current resolution of commercial digital cameras, further improvements will have to come from increasing the resolution of the corneal reflections.

Although images now have sufficient resolution for direct display, giving the user the option to zoom in on regions of interest, such as faces, and extracting scene information from corneal and other fortuitous reflections will continue to benefit from further increases of image resolution. Many of these applications...
do not require high resolution throughout the image, and a promising direction of future work in imaging system design is to achieve a variable resolution over the field of view. Although consumer-level devices, such as phones, now have multiple cameras with various focal lengths, achieving a high resolution at application specified locations in the field of view remains intractable. A more promising approach is to rely on a high resolution sensor with a wide angle lens and to read and save only the pixels needed, resulting in a versatile imaging system that helps leveraging secondary rays for scene acquisition.

REFERENCES

Debevec, P. (2008). Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In ACM SIGGRAPH 2008 classes, page 32. ACM.

