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Abstract: This paper presents a machine vision-based scheme to automatically detect saw-mark defects in solar wafer 

surfaces. A saw-mark defect is a severe flaw when cutting a silicon ingot into wafers. A multicrystalline solar 

wafer surface presents random shapes, sizes and orientations of crystal grains in the surface and, thus, results 

in a heterogeneous texture. It makes the automatic visual inspection task extremely difficult. The deep learning 

technique is an ideal choice to tackle the problem, but it requires a huge amount of positive (defect-free) and 

negative (defective) samples for the training. The negative samples are generally not sufficient enough in a 

manufacturing process. We thus apply a GAN-based model to generate the defective samples for training, 

and then use the true defect-free samples and the synthesized defective samples to train a CNN model. It 

solves the imbalanced data arising in manufacturing inspection. The preliminary experiment has shown 

promising results of the proposed method for detecting various saw-mark defects including black line, white 

line, and impurity in multicrystalline solar wafers. 

1 INTRODUCTION 

Solar power has become an attractive alternative of 

electricity energy in recent years. For the currently 

available solar cell technologies, multicrystalline 

solar cells dominate the market share owing to lower 

manufacturing costs. A main category of defects 

found in silicon solar wafers is called “saw-mark”. It 

occurs when a silicon ingot is sliced into wafers in the 

cutting process with a multi-wire sawing technique. 

This paper presents a machine vision-based scheme 

to automatically detect saw-mark defects in 

multicrystalline solar wafers.  

A saw-mark defect is a severe flaw of wafers for 

making solar cells. It contains potential cutting stress 

that may cause cracks in a thin silicon wafer. It also 

reduces the power transmission efficiency. Therefore, 

detection of saw-mark defects in sliced solar wafers 

at the early processing stage is demanding in solar 

wafer manufacturing. A multicrystalline solar wafer 

presents random shapes, sizes and directions of 

crystal grains in the surface and results in a 

heterogeneous texture. The textured surface shows 

local random patterns in the background and, thus, 

makes the saw-mark defect hardly distinguishable 

from the faultless regions. Fig. 1(a) shows the image 

of a defect-free multicrystalline solar wafer surface. 

It contains multiple grains of random shapes and 

sizes. Fig. 1(b)-(d) presents three different saw-mark 

types. Fig. 1(b) is a thick groove that results in a black 

line saw-mark in the image. Fig. 1(c) is a thin groove 

and is shown as a white stripe saw-mark in the image. 

Fig. 1(d) is a saw-mark defect caused by the saw 

slicing through an impurity. 

The surface defects of a solar wafer or a solar cell 

result in high recovery cost in the manufacturing 

process and reduction in production yield. This calls 

for automatic visual inspection of solar wafers/cells. 

(Fu et al., 2004) implemented a machine vision 

scheme to detect edge crack of solar cells. It only 

inspected the cracks in the solar cell edges with 

obvious gray-level variances. (Ordaz and Lush, 2000) 

analyzed the converting efficiency of a solar cell 

based on the gray-level distribution in the 

electroluminescence image. (Pilla et al., 2002) 
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applied thermographic inspection of photovoltaic 

solar cells to identify cracks. Most of the solar cell 

inspection methods focus on efficiency assessment 

and edge crack detection, and the surface defects are 

rarely mentioned. (Tsai et al., 2010) proposed an 

anisotropic diffusion scheme for detecting micro-

crack defects in multicrystalline solar wafers. The 

micro-crack in the sensed image presents low gray-

level and high gradient characteristics. The 

anisotropic diffusion scheme works successfully for 

detecting micro-cracks in multicrystalline solar 

wafers. However, it can not be extended to the 

detection of saw-mark defects in solar wafer images.  

For heterogeneously textured surfaces, similar 

patterns will not repeatedly appear in the image. To 

detect defects in a heterogeneous texture such as 

marbles or granites, (Ar and Akgul, 2008) employed 

eight Gabor filters to construct a feature extraction 

system for marble tile inspection. (Xie and Mirmehdi, 

2005 and 2007) presented an automatic defect 

detection method for random color-texture surfaces. 

It generated a set of texture exemplars by exploring a 

Gaussian mixture model from defect-free image 

patches, and used them for defect detection in marble 

tiles. (Li and Tsai, 2011) proposed a global spectral-

domain solution to detect saw-mark defects in 

multicrystalline solar wafers. The Fourier image 

reconstruction is used to smooth out the main 

background pattern. Then, the Hough transform is 

applied in the reconstructed image to find the saw-

marks that are deviated from the Hough-lines. Since 

the method requires both Fourier transform and 

Hough transform, it is computationally expensive in 

the inspection process. It is specially designed for 

saw-mark defects, and cannot be extended to detect 

other defect types such as particles and fingerprints. 

 Deep learning (LeCun et al., 2015) has been a 

popular and dominant technique in computer vision 

for object detection and object recognition. It is well 

suited for industry inspection applications because 

the end-to-end model requires no handcrafted 

features. (Soukup and Huber-Mork, 2014) used the 

CNNs to detect defects in the photometric stereo 

images of non-textured metal surfaces. (Li et al., 

2017) proposed Fisher criterion-based autoencoders 

to detect local defects in textile fabric. It is applied to 

the surfaces with homogeneous textures or repetitive 

patterns. (Cha et al., 2017) also used the CNN to 

detect crack damage in concrete surfaces. It trained 

up to 40K images that contain non-textured surfaces. 

(Gibert et al., 2017) used the CNN to inspect the 

railway steels. A high recognition rate is reported. 

The methods above mainly focus on non-textured or 

homogeneously textured surfaces. 

 In the manufacturing environment, especially in 

the product pilot-run stage, it is easy to collect defect-

free samples as many as required. However, it is 

difficult to collect a sufficient number of defective 

samples in a short period of time. The success of a 

well-trained deep learning neural network generally 

depends on a huge number of training samples, where 

both positive and negative datasets should be roughly 

the same in size. The proposed deep learning scheme 

for saw-mark detection in heterogeneous solar wafer 

images is thus composed of two phases: defect 

samples generation using the CycleGAN (Cycle-

consistent adversarial networks, Zhu et al., 2017), and 

then defect detection using the CNN (convolutional 

neural networks, Krizhevsky et al., 2012) based on the 

true defect-free samples and the synthesized defective 

samples. This approach allows the CNN to train as 

many required positive and negative samples as 

possible to obtain the best inspection result.  

 The paper is organized as follows. In section 2, 

the CycleGAN used for defect samples generation is 

first described. The CNN model used for saw-mark 

detection is then presented. In section 3, the 

experimental results on full-sized solar wafer images 

are analyzed. Section 4 concludes this paper. 

2 DEEP LEARNING MODELS 

This section presents the machine vision scheme for 

saw-mark detection in solar wafer images, which 

includes the GAN-based model for defect samples 

generation and the CNN model for defect detection. 

As discussed in the last section and shown in Figure 

1, the multicrystalline solar wafer image contains 

random, irregular crystal grains. The training and 

inspection cannot use the whole sensed wafer image 

as the input to detect small local defects. Instead, 

small image patches are randomly selected from the 

solar wafer images. The image patches are the input 

to the CycleGAN and CNN models. In the inspection 

process, a window of the patch size is slid pixel by 

pixel over the full inspection image, and is fed 

individually to the trained CNN model for the 

classification. 

2.1 CycleGAN for Defect Samples 
Generation 

In this study, we use the CycleGAN developed by 

(Zhu et al., 2017), instead of the GAN (Goodfellow et 

al., 2014), to generate representative defect samples 

from a very limited number of true saw-mark defects. 

The objective of the CycleGAN model combines both 
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the adversarial loss (just like GAN, Goodfellow et al., 

2014) and the cycle consistency loss (Zhou et al., 

2016) to create the output images. It measures the 

adversarial lose for matching the distribution of 

generated images to the data distribution in the target 

domain. The consistency lose is used to prevent the 

learned forward and backward mappings from 

contradicting each other. It does not use specific 

paired samples as training data. Instead, it uses 

unpaired datasets for the training, and is suited for our 

application. It can capture special characteristics 

(especially the color and texture) from one image 

collection and learn how these characteristics can be 

translated into other image collection without any 

paired training examples. To generate artifacts of 

saw-mark defects, we use the true defect patches as 

the target dataset in the CycleGAN, and then 

randomly collect a small set of defect-free patches 

from the solar wafer images as the input set to the 

CycleGAN model. The CycleGAN will learn the 

transformation from the input defect-free patches into 

a set of defective patches. Whenever we change the 

input set with different defect-free patches to the 

trained CycleGAN, a new defective set is created. 

Since we can have as many true defect-free samples 

as we want, the CycleGAN can create as many 

synthesized defective samples as we need for the 

CNN model. The architecture of the CycleGAN 

model for defect samples generation is illustrated in 

Figure 2. 

Figure 3(a) shows 10 demonstrative true defect-

free solar image patches used as the input dataset to 

the CycleGAN. Figure 3(b) and (c) presents 

respectively ten true black saw-mark and ten true 

white saw-mark defect samples used as the target set 

of the CycleGAN. The real datasets, such as those in 

Figure 3(a)-(c), are used to train the CycleGAN. The 

size of the image patch is 50×50. Figure 4(a) displays 

a set of defect-free samples to the trained CycleGAN, 

and Figure 4(b) and (c) shows the resulting black and 

white saw-mark defect samples generated by the 

CycleGAN. It shows that the synthesized defect 

patches present similar textured characteristics as 

those of the true defect sample patches. The defect 

part in the image does not show clear edge changes 

from its surroundings, whereas the crystal grain edges 

are sharp and clear. 

2.2 CNN Classification Model and 
Defect Detection 

The CNN model is used for classifying an unknown 

image patch as defect-free or defective. In this study, 

a simple CNN that comprises 3 convolutional layers 

are used for the training. A CNN model with a limited 

number of convolutional layers gives better 

computational efficiency in the inspection process. 

Figure 5 depicts the detailed structure and shows the 

main parameters of the proposed CNN models. The 

real defect-free image patches collected from the 

solar wafers are used as the positive samples and the 

synthesized defective image patches produced by the 

CycleGAN are used as the negative samples to the 

CNN for training. Illumination normalization is 

applied to both positive and negative samples prior to 

the CNN training. 

In the inspection process, a window of the size of 

the image patch used in the neural networks is moved 

pixel by pixel throughout the full-sized 

multicrystalline solar wafer image. The windowed 

image patch is then fed to the trained CNN model for 

classification. The central coordinates of the window 

will be marked in black in the full-sized image if the 

image patch is classified as a defect. Reversely, it is 

marked in white if the patch is classified as a normal 

one. The resulting black region in the binary image 

gives the shape and location of a detected defect in 

the solar wafer surface. Let W(x, y) be the window 

patch with the center at (x, y) in the full-sized image 

to be inspected. The resulting binary image is given 

by 

  

(a) (b) 

  

(c) (d) 

Figure 1: Solar wafer surfaces: (a) defect-free solar wafer 

image; (b) solar wafer image with a black saw-mark defect; 

(c) white saw-mark defect; (d) saw-mark defect caused by 

impurity. 
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Since the saw-mark in a small windowed patch 

contains only subtle changes with respect to the 

random grain textures, the entire saw-mark region  
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Figure 2: The CycleGAN model used for defect patches 

generation. 
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(b) 

     

     
(c) 

Figure 3: Real solar wafer image patches used for training 

the CycleGAN model: (a) real defect-free samples; (b) real 

black saw-mark samples; (c) real white saw-mark samples. 

may not be completely detected in the full-sized solar 

wafer image. We thus further apply the horizontal 

projection line by line in the resulting binary image 

B(x, y) to intensify the horizontal saw-mark in the 

image. That is 

yyxByP
x

 ,),()(   (2) 

The maximum projection value is then used as the 

discriminant measure for saw-mark detection, i.e. 

P(y*) = max{P(y), y }. If the horizontal projection 

P(y*) is large enough, a saw-mark at line y* is 

declared. 

     

     
(a) 

     

     
(b) 

     

     
(c) 

Figure 4: Synthesized defect patches generated by 

CycleGAN: (a) real defect-free samples input to the trained 

CycleGAN; (b) generated black saw-mark patches; (c) 

generated white saw-mark patches. 

 

Figure 5: The CNN model used for defect detection. 

3 EXPERIMENTAL RESULTS 

This section presents the experimental results on a 

number of solar wafer images containing various saw 

mark defects to evaluate the performance of the 

proposed defect detection scheme. The test images 

are 500×500 pixels wide with 8-bit gray-levels. The 

window patch is of size 50×50 pixels. All the test 

images conducted in the experiment are captured 

from real solar wafer surfaces. 

The proposed algorithms were implemented on a 

personal computer with an Intel Core 2, 3.6GHz CPU 

and an NVIDIA GTX 1070 GPU. The mean 

computation time of the proposed method is 0.004 

seconds for an image patch of size 50×50 pixels. To 

train the CycleGAN model for defect samples 

generation, a small number of 150 real defect-free 
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patches and 150 real defective patches of the solar 

wafers are used as the training samples. To train the 

CNN model for defect classification, a total of 4000 

real defect-free patches and 4000 synthesized saw-

mark patches are used as the training samples. While 

training the CNN model, a set of 150 real defect-free 

patches and a set of 150 real defective patches are 

used to verify the effectiveness of the trained CNN. 

The test results show that the FN (missing detection) 

rate is 22%, and the FP (false alarm) rate is 3%. The 

final CNN trained is then used to inspect the full-sized 

solar wafer image by sliding the window pixel by 

pixel. Since the saw-mark is shown as a long stripe or 

line across the solar wafer, the recognition rate of 

78% in terms of image patches can still reliably detect 

the presence of a saw-mark defect in the inspection 

image. 

Figure 6(a1)-(a5) shows five defect-free solar 

wafer images, and (b1)-(b5) illustrates the detection 

results by superimposing the suspected defect pixels 

in the original images. The profiles shown in Figure 

6(c1)-(c5) are the corresponding horizontal 

projection P(y). The proposed defect-detection 

scheme can reliably ignore the normal grain patterns 

in the detection process and results in clear surfaces 

in the final binary images. 

Figure 7(a1)-(a5) further presents five defective 

solar wafer images that contain dark and bright saw 

marks. Some saw marks are very thin and low-

contrasted. In Figure 7(a1), there is a horizontal dark 

stripe without clear edges in the image, and the saw-

mark is not distinctly visible. As observed from the 

projection profiles, the defect-free solar wafer images 

present very low P(y*) values close to zero, whereas 

all defective solar wafer images yield distinctly large 

projection values. A preliminary test on 15 defect-

free and 15 defective solar wafer images shows that 

the proposed method can correctly identify all types 

of saw-marks without false alarms with a proper 

threshold setting for P(y*).  

The proposed method for defect detection with 

imbalanced data is also compared with the under-

sampling, over-sampling (Chawla et al., 2002, Yen 

and Lee, 2009) and class weights. Let n be the 

number of positive (defect-free) samples and _n  the 

number of negative (defective) samples, and _n <<
n . For under-sampling, the data set used for CNN 

training contains _n  negative samples, and n̂   

random positive samples with n̂  = _n . For over-

sampling, the training data set contains n positive 

samples, and n̂ negative samples. Each collected 

negative sample is replicated int[ n / _n ] times so 

that n̂  = n . For class weights, the data set contains   

positive samples and   true negative (defective) 

samples with respective weights ( ) pn

n n
w




 



 and 

( ) pn

n n
w




 



, where w  and w  are respectively 

the weights assigned to positive and negative 

samples. 

In the experiment, 90 true white sawmark samples 

and 60 black sawmark samples are used for defect 

synthesis, and additional 350 defect-free samples and 

100 true defective samples are used for CNN testing. 

Each sample is of size  . For the under-sampling 

experiment, _n =150 and n =150. It results in a 

recognition rate of 81.5%.  

   
(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

   
(a4) (b4) (c4) 

   
(a5) (b5) (c5) 

Figure 6: Detection results of defect-free solar wafer 

images: (a1)-(a5) faultless test samples; (b1)-(b5) suspected 

defect pixels (shown in red) detected by CNN; (c1)-(c5) 

horizontal projection profile P(y). 
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(a1) (b1) (c1) 

   
(a2) (b2) (c2) 

   
(a3) (b3) (c3) 

   
(a4) (b4) (c4) 

   
(a5) (b5) (c5) 

Figure 7: Detection results of defective solar wafer images: 

(a1)-(a5) defect samples; (b1)-(b5) detected defect pixels 

(shown in red) by CNN; (c1)-(c5) horizontal projection 

profile P(y). 

Figure 8 shows the recognition rates of the over-

sampling, class-weights and the proposed method 

with varying total number of samples used for CNN 

training (half of true defect-free samples and half of 

replicated/synthesized defective samples). It shows 

that the proposed method outperforms the other three 

comparative methods. The recognition rate of the 

proposed method increases as the total number of 

training samples is increased.  

Figure 8 visually displays the detection results of 

the four comparative methods for two normal solar 

wafers and two defective solar wafers. Figures 8(a1)-

(a2) are defect-free wafer images, and (a3)-(a4) are 

defective wafer images with respective black and 

white sawmarks. Figures 8(b1)-(b4), (c1)-(c4), (d1)-

(d4) and (e1)-(e4) are the detection results of the CNN 

models trained with the proposed method, under- 

sampling, over-sampling and class weights. As 

expected, the under-sampling approach creates severe 

    
(a1) (a2) (a3) (a4) 

    
(b1) (b2) (b3) (b4) 

    
(c1) (c2) (c3) (c4) 

    
(d1) (d2) (d3) (d4) 

    
(e1) (e2) (e3) (e4) 

Figure 8: Comparison of defect detection of the four 

comparative methods for imbalanced data:(a1), (a2) defect-

free; (a3)-(3) black sawmark, (a4) white sawmark; (b1)-

(b4) proposed method; (c1)-(c4) undersampling; (d1)-(d4) 

oversampling; (e1)-(e4) class weights. 

false detection in the defect-free regions. The over-

sampling and class-weight approaches improve the 

detection capability of true defects in the solar 

surfaces. They generate quite a few noisy points, and 

severely identify the horizontal grain edges as 

sawmark defects. The proposed method can 

successfully detect white and black sawmarks with 

minimum noise. 

4 CONCLUSIONS 

The proposed paper has presented an automatic defect 

detection scheme to identify saw-mark defects in 

multicrystalline solar wafer images. The 

heterogeneous background of crystal grains in a solar 

wafer image and the saw-mark defect in a small 

window patch are classified by a CNN model. To 

overcome the shortage of defect samples in solar-

wafer manufacturing and the imbalanced data 
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problem in CNN model training, the CycleGAN 

model is applied to generate a sufficiently large 

dataset of negative samples from a very limited 

number of real saw-mark image patches. Due to the 

indiscriminate patterns between the regular random 

crystal grains and the saw-mark in a small image 

patch, the detected saw-mark region in a full-sized 

solar image may not be completely detected. The 

postprocessing with the horizontal projection in the 

segmented binary image can effectively identify the 

presence/absence of a saw-mark in the inspection 

image. The preliminary experimental results indicate 

the proposed method can effectively detect various 

saw-mark defects including black line, white line and 

impurity in solar wafer surfaces. 

The proposed method currently focuses on saw-

mark detection in multicrystalline solar wafers. In the 

future, the use of the CycleGAN or GAN-variant 

models to create various defect types such as 

contaminants, particles and fingerprints and training 

the CNN model for multiple-classes classification are 

worthy of further investigation. 

Table 1: Recognition rates with varying number of training 

samples for the CNN models. 

number of 

samples 1000 2000 4000 6000 8000 10000 12000 

over-

sampling 
88.89 91.78 91.11 92.44 90.89 93.11 90.89 

class-

weights 

( p=1/3 ) 

90.89 92.00 92.22 90.67 90.00 90.00 90.44 

proposed 
method 

91.11 92.67 92.89 93.56 95.11 94.67 95.33 
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