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Abstract: This article presents a mixed integer linear programming method and a heuristic algorithm to deal with the 

problem of multi-period, multiple-product batch purchases, with a finite time horizon, considering delivery 

times, order placement costs and independent batch size for each product. The objective of this problem is to 

minimize the costs of placing purchase orders and inventory. This problem is motivated by its application in 

a marketing company that handles the sale of fashion products (footwear and accessories) through catalogs 

and for which excess inventory represents a major problem given the short life cycle of its products. 

Experimental results show that the heuristic algorithm is able to obtain feasible solutions that improve in cost 

by up to 37% the best integer solutions reported by the model when it reaches the time limit. To validate the 

efficiency of the algorithm, a real scenario was solved for a trading company, obtaining results that improve 

by 28% compared to the current company’s situation. These results show that the heuristic approach is 

promising in terms of the quality of the solution and the computational time required.

1 INTRODUCTION 

At present, companies are immersed in a globalized 

market full of varied demand for products. The 

customers go in search of a quality product that meets 

their requirements and is also easy to access. 

Therefore, companies compete to adapt and satisfy 

each client’s preferences, seeking new strategies such 

as optimal inventory management (Christopher et al., 

2004). 

Inventory control is a medullar part for the 

company’s management since a large number of 

resources are used to buy merchandise that will later 

give profits to the company. But to be able to buy all 

such materials it is necessary to store them and place 

purchase orders that also have an economic cost.  

This work was motivated by a real problem faced 

by a company that has over 28 years in the market 

selling clothing, footwear and accessories by catalog. 

The firm handles around 465 different SKUs per 

season. The company has a large amount of data that 

helps with the understanding of their products’ 

demand. This information is used by employees to 

carry out the planning of the purchases and to satisfy 

such a demand. The problem with this practice is that 

it is carried out manually and supported by empirical 

sui generis methods of older, more experienced, 

workers. Coupled with this problem, each supplier 

has its own delivery time and, in addition, to be able 

to offer competitive prices, they establish that orders 

shall be in batches, which complicates the purchase 

and inventory management mechanism. That's why 

the company identified the need to incorporate 

efficient methods to determine the appropriate 

purchase program for each item so that the demand is 

always met and the weekly budget and inventory 

capacity are not exceeded. 

In this work, a mixed integer linear programming 

(MILP) model for inventory management is 

presented in order to improve management’s current 

situation. Alternatively, a heuristic algorithm that 

obtains high-quality solutions in reasonable 

computational times is presented, which allows the 

company to make decisions based on information ob- 
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tained in "real-time". 

2 LITERATURE REVIEW 

According to DeHoratius (2008), inventory 

management pursues two fundamental objectives: 1) 

Minimize inventory levels and 2) Ensure stock 

availability. In particular, the fashion market shows 

peculiar characteristics such as short life cycles, 

volatility, poor predictability and shopping behavior 

by critical mass (Christopher et al., 2004). Liu et al. 

(2013) state that optimal management of inventory by 

retailers depends to a large extent on accuracy in 

predicting future demand.  

For the economic problem of lot size, Wagner and 

Whitin (1958) designed an algorithm to solve it. Due 

to the large number of applications that this model 

has, several authors, such as Chowdhury et al. (2018), 

have developed an algorithm where lists are used and 

data structures are stacked to find the optimal 

solution. O'Neill and Sanni (2018) propose a model 

that seeks to manage efficiently the inventory of a 

single product in order to maximize the profit; since 

this problem seeks to increase profit, the price of the 

item and the replenishment time of the inventory must 

be found so that the demand can be met. Albrech 

(2017) presents a heuristic that uses item-based 

approximations, this can be very useful especially for 

retail companies. Similarly, Gruson, Cordeau, and 

Jans (2018) analyze how service level constraints 

affect lot size problems where there is a deterministic 

demand in a finite planning horizon. Torkul et al. 

(2016) propose a model of inventory in real-time 

where orders are made once delivery time to the 

customer and replenishment time of the supplier are 

the same; in this way, it is necessary to have only the 

items that are going to be needed and the amount of 

product to be stored is decreased. 

In most cases, suppliers try to get customers to 

place their orders in large quantities by offering better 

purchase prices. Archetti, Bertazzi, & Speranza 

(2014) determined a balance point where the goods 

are bought at good prices but do not generate an 

increase in storage costs. Later, Alfares and Ghaithan 

(2016) developed a model that seeks to determine the 

size of the purchase orders and the sale price for the 

item and, upon modifying these two variables, what 

the purchase price of the items will be. Furthermore, 

Goisque and Rapine (2017) developed an algorithm 

that seeks to cover a deterministic demand in its 

entirety, in order to reduce the costs of storage and 

production at the two levels that it models: the 

manufacturer and the retailer.  

In the case of some warehouses, the storage 

capacity will not always be the same throughout the 

planning horizon. That is why Tapia-Ubeda, Miranda 

and Macchi (2018) model this situation in a stochastic 

way and solve it using what they call Generalized 

Bender Decomposition with which they ensure 

optimality. Previously, Guan, and Li (2010) presented 

two models of lot size where the first only has a 

restriction on the storage capacity and the second 

adds a constraint on the quantity of orders. Fan and 

Wang (2018) model a lot size problem that seeks to 

reduce expenses; to this end, costs for ordering and 

storing are taken into account. It is also allowed to 

modify the size of the warehouse, incurring a cost for 

each change in capacity. 

Yang et al. (2014) analyzed how to optimize 

inventory management of a single product that is 

purchased in batches. Similar to the case under study 

in the present document, the placement cost is taken 

into account and the warehouse capacity is limited. 

The case of a product acquired by lots can also be 

combined with a stochastic demand and achieved by 

means of a heuristic as developed by Zhu, Liu and 

Chen (2015). Akbalik et al. (2017) propose an 

algorithm to supply a company that buys its products 

in batches and where the storage cost varies in case of 

exceeding the determined capacity. Farhat et al. 

(2017) study the purchase in batches with the option 

of returning those items that were not sold to the 

supplier. In some cases, products purchased in 

batches are perishable; due to this, they must be 

treated with special care and the model must consider 

a series of constraints such as those proposed by 

Broekmeulen, and van Donselaar (2009). 

To the best of the author’s knowledge, and after 

reviewing several articles related to the research 

presented here, an optimal approach for the problem 

of capacitated lot sizing considering variable batch 

sizes and variable delivery times applied to retail 

sales was not found in the literature. Although many 

of the articles consider discounts when buying in 

large volumes, in the model presented here, a fixed 

unit cost will be maintained because this is what the 

company handles. The aforementioned problem and 

the results obtained might be of interest to both 

academics and practitioners.  

3 PROBLEM STATEMENT 

3.1 Characteristics of the Problem  

Formally, the problem under study has the following 

characteristics: 
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 A set of N items. 

▪ A planning horizon of T weeks (periods). 

▪ A weekly demand (𝐷𝑖𝑡) for the item 𝑖 in the 

week 𝑡 . 

▪ An ordering cost ( 𝑆𝑖) for the purchase order of 

item 𝑖. 
▪ Inventory cost (ℎ𝑖) for item 𝑖 (same for all 

periods). 

▪ Unitary purchase cost (𝑎𝑖) for item 𝑖 (same for 

all periods). 

▪ A weekly budget (for the period) Pt. 

▪ Lead time (𝐿𝑇𝑖) determined for the item 𝑖. 
▪ Batch size (𝐵𝑆𝑖) (in units) for item 𝑖. 
▪ Maximum inventory size (𝑅𝑖) in units for item 

𝑖. 
▪ A shifted time-horizon (ST). 

An equal maximum inventory size is defined for 

all products since they have a similar volume. In 

addition, the warehouse constantly changes its 

availability due to it is also used to store other 

supplies. 

3.2 Mathematical Formulation 

The batch size indicates the number of products taken 

together for item 𝑖. On the other hand, the lot size 

refers to the total number of batches in the purchase 

order for all items. Thus, the quantities to order shall 

be merely an integer multiplier of the batch size of 

each product. The retailer also owns a capacitated 

warehouse. It is desirable to make decisions about 

"what products to order", "how much to order for 

each product" and "when to order".  

Once the purchase order is placed, the arrival of 

the products will delay a certain number of periods 

according to their 𝐿𝑇. To be able to represent the lead 

time of those purchases that are made to cover the first 

week of demand, a sufficient number of periods are 

added at the beginning of the planning horizon in 

order to place the purchases. The original planning 

horizon plus the weeks that were added are known as 

shifted time-horizon (𝑆𝑇). 

Decision Variables: 

 𝑋𝑖𝑡  = Quantity of batches of item 𝑖 to purchase in 

period 𝑡. 

 𝐼𝑖𝑡  = Quantity of units of item 𝑖 to hold in inventory 

in period 𝑡. 
𝐵𝑖𝑡 =

 {
1 𝑖𝑓 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑜𝑟𝑑𝑒𝑟 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑍 = Total cost incurred by purchase and inventory. 

 

Objective function: 

min 𝑍 = ∑ ∑ ( 𝑆𝑖  𝐵𝑖(𝑡−𝐿𝑇𝑖) +  ℎ𝑖  𝐼𝑖𝑡 )

𝑆𝑇

𝑡=𝐿𝑇𝑚𝑎𝑥+1

𝑁

𝑖=1

 

 

(1) 

Subject to: 

 

𝐼𝑖(𝑡−1) + 𝑋𝑖(𝑡−𝐿𝑇𝑖) 𝐵𝑆𝑖 − 𝐷𝑖𝑡 = 𝐼𝑖𝑡  

∀  𝑖 ∈ 𝑁, 𝑡 ∈ 𝑆𝑇; 𝑡 > 𝐿𝑇𝑚𝑎𝑥  

 

(2) 

𝐼𝑖𝑡 ≤  𝑅𝑖     ∀  𝑖 ∈ 𝑁, 𝑡 ∈ 𝑆𝑇; 𝑡 > 𝐿𝑇𝑚𝑎𝑥 

 
(3) 

𝐼𝑖𝑡 = 0     ∀  𝑖 ∈ 𝑁, 𝑡 ∈ 𝑆𝑇; 𝑡 ≤ 𝐿𝑇𝑚𝑎𝑥  
 

(4) 

∑ 𝑋𝑖(𝑡−𝐿𝑇𝑖) 𝐵𝑆𝑖  𝑎𝑖 + 𝑆𝑖  𝐵𝑖(𝑡−𝐿𝑇𝑖) ≤ 𝑃𝑡   

𝑁

𝑖=1

 

∀  𝑡 ∈ 𝑆𝑇; 𝑡 > 𝐿𝑇𝑚𝑎𝑥 

 

(5) 

𝑋𝑖(𝑡−𝐿𝑇𝑖) ≤ (1 +
∑ 𝑑𝑖𝑡

𝑆𝑇
𝑡=𝐿𝑇𝑚𝑎𝑥+1

𝐵𝑆𝑖
) 𝐵𝑖(𝑡−𝐿𝑇𝑖) 

∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑆𝑇; 𝑡 > 𝐿𝑇𝑚𝑎𝑥  

 

(6) 

∑ 𝐵𝑖𝑡 ≤  
𝑇

𝐿𝑇𝑖

     ∀  𝑖 ∈ 𝑁

𝑆𝑇

𝑡=1

 

 

(7) 

𝐼𝑖𝑡 ≥ 0              ∀  𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 

 
(8) 

𝑋𝑖𝑡 ∈  ℕ∗        ∀  𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 

 
 

𝐵𝑖𝑡 ∈ {0,1}                ∀  𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 

 
 

In this model, the objective function (1) aims to 

minimize the total cost incurred by placing purchase 

orders and inventory. Equation (2) makes reference to 

the fact that the demand of item 𝑖 in period 𝑡 must be 

equal to the sum of the inventory of the previous 

period plus the products that arrive in the current 

period minus what remains of surplus in the current 

period. Equation (3) controls the maximum inventory 

allowed for each item in each period, while equation 

(5) controls the total order size based on the weekly 

budget. On the other hand, equation (4) ensures that 

during the lag period no inventory is generated. 

Equation (6) determines, based on the batch size for 

each item, the maximum quantity of lots allowed (in 

general) to buy for the item 𝑖. Equation (7) allows to 

determine, according to the lead time of each item, 
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the maximum number of purchase orders allowed for 

the item 𝑖 during the planning horizon. Finally, the 

group of equations (8) denotes the nature of the 

variables.  

To provide an illustration of how the model 

works, the following example is presented: Consider 

the case of having 3 products (A, B and C) to purchase 

and a time-horizon of 6 periods. The lead times for 

the products are 2, 1 and 3 respectively. thus, the 

value for 𝐿𝑇𝑚𝑎𝑥 = 3. After solving the model, an 

example of the placement of purchases during the 

previous periods for the first demand period is shown 

in Table 1: 

Table 1: Example of purchases with the shift. 

Item / Period 1 2 3 4 5 6 7 8 9 

1 0 2 0 0 1 2 0 0 0 

2 0 0 1 2 0 0 2 0 0 

3 3 0 0 3 0 0 0 0 0 

In Table 1, it is shown that during the first 3 

periods, purchases were made to satisfy the first 

period of demand set in the fourth stage.  

As we can see, the model is in charge of deciding 

which purchasing policy favors the reduction of 

operating costs. 

According to Akbalik, et al. (2017), the nature of 

the problem is NP-hard, even for the single item case, 

a reason for which the MILP model may not able to 

solve the problem for which it was developed in a 

reasonable computational time. As an alternative, a 

greedy heuristic to deal with large size instances is 

proposed. 

3.3 Greedy Heuristic Procedure 

For this problem, it must be contemplated that in 

order to solve the problem in a commercial 

optimizing engine it would be necessary to pay for the 

license and train people to use it, which increases the 

expenses, while a heuristic has the benefit of being 

coded in any language and compiled using free 

license Integrated Development Environments. 

This heuristic algorithm is adapted from the 

algorithm presented by Maes (1986) and consists of 

three mechanisms: classification based in the time 

between orders (TBO), assignment and procurement 

of potential advanced purchases (consolidate the lot 

size) after calculating the purchase cost (PCt) for the 

current period. These three mechanisms are described 

in Algorithm 1. 

 

 

Algorithm 1: Pseudo-code for the proposed heuristic. 

Input: Data Base 

Output: Purchasing and Inventory Program 

                  

1. Mechanism classification based on TBO 

2. For each period 𝑡 ∈  𝑆𝑇 

3. Apply search mechanism for purchasing  

4. If (PCt <Pt) Calculate savings for advancing 

future orders using the Silver-Meal criteria  

5. Conformation of lot size for period t 

6. End t 

7. Report the program of orders and inventories 

3.3.1 Mechanism of Classification based on 
TBO 

For the case of heuristics, the ordering of the items 

considers the time between orders (TBO). This 

ordering is carried out from highest to lowest. This 

arrangement allows to first seek to advance purchases 

for those items that have a longer delivery time.  

 

𝑇𝐵𝑂𝑖 =  √
2 𝑆𝑖  𝑇

𝐻𝑖 ∑ 𝐷𝑖𝑡
𝑆𝑇
𝑡=𝐿𝑇𝑚𝑎𝑥+1

  ∀𝑖 ∈ 𝑁 

 

(9) 

3.3.2 Search Mechanism for Purchases by 
Period and Calculation of Savings  

The next step in the heuristic procedure is to know 

and separate the amount of money needed to cover 

the demand of the period under analysis. 

Subsequently, and if there is still a budget available 

in the current week (CW), it is sought to advance 

purchases respecting the lexicographical order of 

appearance for the items. When making advances on 

an item, it is sought to cover as much as possible using 

the Silver-Meal (SM) criterion and checking not to 

exceed the budget or inventory capacity, as shown in 

eq. (10). 

 

𝑠𝑖 + 𝐻𝑖  ∑ (𝑡 − 𝐶𝑊) (𝑑𝑖𝑡 − 𝐼𝑖(𝑡−1))𝐶𝑊+𝑟
𝑡=𝐶𝑊

𝑟 + 1
 

≤  
𝑠𝑖 +  𝐻𝑖  ∑ (𝑡 − 𝐶𝑊) (𝑑𝑖𝑡 − 𝐼𝑖(𝑡−1))𝐶𝑊+𝑟−1

𝑡=𝐶𝑊

𝑟
 

 

(10) 

The SM criterion indicates how many periods can 

be advanced by averaging the operating expenses. 

Index r is an integer that denotes the periods to be 

overtaken. To know how many periods would be 

advanced, the value of 𝑟 is increased consecutively 

starting from 1 until finding the greatest value that 

satisfies the inequality (10), once the inequality is not 
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met, its value should not be increased further. 

Another stopping criterion, is that 𝑟 can’t be bigger 

than 𝑆𝑇 − 𝐶𝑊. The appearance of the inventory aims 

to reduce the value of the demand, but consequently, 

it is necessary to update it from one period to another. 

This will cause it to decrease through the periods with 

the lower limit being the value of zero. 

3.3.3 Lot Size Conformation Mechanism 
based on the Budget 

The lot size order for the period in question will 

consist of the number of batches needed to cover the 

current period plus the overtaken ones, based on the 

criteria explained in the previous section. The lot size 

maintains the viability in terms of budget and 

maximum inventory. It is important to mention that 

the purchase order is scheduled with enough 

anticipation to cover the periods and to avoid shortage 

until the next order arrives. 

In the next section, we report the experimental 

results obtained. 

4 EXPERIMENTAL RESULTS 

The objective of this section is to make a comparison 

between the results obtained with the model and those 

obtained with the heuristic. 

4.1 Test Instances  

To evaluate the performance of the formulation, small 

instances were generated by randomly choosing 

subsets of products, from the original problem, 

respecting their parameter values (demand, LT, BS, 

configuration, purchase and maintenance costs). As a 

result, 12 different instances of sizes 10, 20 and 30 

were created (4 instances per size). All the 

experiments were executed in a PC with AMD E1-

2500 processor @ 1.40 GHz with 4 GB of RAM 

memory with Windows 10 operating system. In the 

case of the formulation, this was solved using LINGO 

as an optimizer. 

4.2 Comparison of the Results of the 
Model Vs the Heuristic Procedure 

As a first approximation, it was decided to evaluate 

the resolution capacity of the model in terms of the 

size of the instance to be solved (only the quantity of 

items varied). The results of this experimentation are 

shown in section 4.2.1.  

A second approach is to solve the case study. Due 

to the high complexity of the scenario for the model 

(in terms of the number of variables or items), it was 

only solved by the heuristic algorithm. The results 

obtained are reported in section 4.2.2. 

4.2.1 Results for the Test Instances 

The small instances were used to compare the results 

obtained through the model and the heuristic. The 

notation followed is “X-Y”, where X denotes the 

number of items to analyze while Y indicates the 

number of scenarios. For all instances, a time horizon 

of 21 weeks is considered. The results obtained are 

reported in Table 2. The first column displays the 

name of the instance, while columns 2 and 4 report 

the best integer solution obtained by the model (BSF) 

and the heuristic (BSH), respectively. Finally, 

columns 3 and 5 show the Gap and percentage of 

improvement (%IMP), respectively. 

Table 2: Comparison of results. 

Instance 

name 
BSF 

% 

Gap  
BSH 

%  

IMP 

10-1 $ 240,572.10 19.24 $ 247,843.22 -3 

10-2 $ 289,740.69 38.35 $ 258,946.31 11 

10-3 $ 230,528.85 19.31 $ 234,153.85 -2 

10- 4 $ 184,613.20 10.05 $ 195,425.70 -6 

20-1 $ 465,488.20 41.39 $ 473,609.95 -2 

20-2 $ 581,353.59 91.00 $ 460,754.84 21 

20-3 $ 621,747.58 100 $ 391,210.08 37 

20-4 $ 643,663.88 100 $ 424,523.88 34 

30-1 $ 736,259.16 53.02 $ 704,887.29 4 

30- 2 $ 913,004.60 100 $ 680,633.35 25 

30-3 $ 767,168.65 73.62 $ 691,104.90 10 

30-4 $ 706,989.09 55.96 $ 677,200.38 4 

Mean  
 

 11.08 

As it can be observed, for the case of the 

formulation, no instance could be solved to optimality 

within the time allowed (2 hours). The GAP column 

is calculated as the percentage difference between the 

lower bound obtained (LB) against the best total 

solution obtained. 

%𝐺𝑎𝑝 =
100 (𝐵𝑆𝐹 − 𝐿𝐵)

𝐿𝐵
 

 

(11) 

We can see that generally, the Gap tends to be 

smaller in the instances of smaller size and to increase 
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significantly for the largest instances. This may be 

because, by increasing the number of items, the 

model must analyze a greater amount of information 

and different possibilities for purchases along the 

planning horizon.  

As a heuristic, the quality of the solution obtained 

(BSH) is measured by the percentage of improvement 

(IMP) respect to the best integer solution reported by 

the model using the following equation: 

%𝐼𝑀𝑃 =
100 (𝐵𝑆𝐹 − 𝐵𝑆𝐻)

𝐵𝑆𝐹
 

 

(12) 

Results obtained for each instance are reported in 

the %IMP column. In the case of negative values, this 

indicates that the algorithm obtained a worse solution 

than the one reported by the model. 

In general, the heuristic presents an irregular 

behavior for the first 5 instances. Subsequently, its 

performance is stabilized by obtaining better results 

for larger instances (up to 37% improvement). 

Another aspect to consider in the analysis of the 

heuristic performance is the execution time. The 

elapsed CPU time per instances is displayed in Fig.1. 

 

Figure 1: Elapsed CPU times per instance. 

As it can be seen, the heuristic spent around 8 

seconds to solve the largest instances. In summary, 

the heuristic outperforms the behavior of the model in 

both the quality of the solution and the time spent. 

For instance, 10-1, comparative graphs are also 

presented to allow visualizing in detail the order 

schemes proposed both by the model and by the 

heuristic algorithm. Figures 2, 3 and 4 displays this 

comparison. 

 

Figure 2: Apportionment of purchase costs for instance 10-

1. 

In Figure 2, it is observed that both the model and 

the heuristic propose large initial purchases at the 

beginning of the season and decrease the amount of 

money spent as the season progresses. 

 

Figure 3: Apportionment of inventory costs for instance 10-

1. 

Figure 3 presents the total inventory cost for each 

week. It can be noted that the inventory at the end of 

the period represents 56% of the average inventory 

cost. 

Figure 4 compares the amount of money spent 

every period and the budget average, the model 

reports periodical purchases than save around 52% of 

the total costs while the heuristic produces savings for 

48%. 
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Figure 4: Apportionment of budget spent for instance 10-1. 

4.2.2 Results for the Case Study 

As explained previously, given that the effective 

performance of the heuristic is validated for larger 

instances, it is now implemented to solve the case 

study that motivated its development. The results 

obtained are shown in Figures 5, 6, 7. 

 

Figure 5: Apportionment of purchase costs for the case 

study. 

As observed in Fig. 5, the purchases of the first 

weeks are very scarce because the items bought are 

those with large delivery times. The costs related to 

the inventory are broken down by periods (week) in 

Fig. 6. 

In addition, the low cost in the last period is 

favorable for the company and indicates a good 

formulation of the algorithm. Finally, the amount of 

purchase in units for each period is presented in Fig. 

7. Also, by minimizing the number of purchase orders 

placed for each item, this part of the cost can become 

negligible and the company can focus more on the 

configuration of the items to be purchased in each 

period. 

 

Figure 6: Apportionment of inventory costs for the case 

study. 

 

Figure 7: Apportionment of budget spent on the case study. 

Finally, the inventories obtained by the company 

are compared against the inventory proposed by the 

heuristic at the end of the season. In the real situation, 

the inventory cost for the final week equals to 

$195,778.5 MXN, while the heuristic produced a 

final inventory cost of $140,866.75, According to this 

information, the heuristic improves the final cost of 

inventory by 28.04%. 

5 CONCLUSIONS AND FUTURE 

WORK 

In the case of the mathematical formulation, it was 

evident that none of the instances could be solved 

optimally within the time-limit, obtaining feasible 

solutions that deviated up to 100% of the lower bound 

reported. 

As an alternative, a heuristic algorithm was 

developed. It was capable of generating high-quality 

solutions in a reasonable computational time. When 
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comparing it against the MILP model, it can be 

observed that in the small instances it obtains worst 

solutions than those achieved by the formulation, 

while in the case of the larger instances, the algorithm 

provides better solutions, reaching an improvement 

up to 37%. Another point of comparison is the 

elapsed CPU time to find the solution. It was shown 

that the time spent by the heuristic is quite fast and it 

is still more efficient for large size instances.  

Regarding the case study, the algorithm was able 

to obtain a structure of purchases that improve the 

final inventory with respect to the real situation of the 

company by 28%. It is important to emphasize that, 

because items are acquired by batches, it would be 

very difficult to get rid of all the inventory at the end 

of the planning horizon.  

Future works include modeling scenarios with 

stochastic demand and variable purchase cost. The 

development of metaheuristics is also proposed to 

improve the quality of the solution obtained without 

significantly worsening the execution time. 

Additionally, it is proposed to consider more realistic 

problems involving penalty costs for purchases of 

fractions of batches, over stock in the last period and 

allowing for non-compliance in some items. 

REFERENCES 

Akbalik, A., Hadj-Alouane, AB, Sauer, N., Ghribi, H. 2017. 

NP-hard and polynomial cases for the single-item lot 

sizing problem with batch ordering under capacity 

reservation contract. European Journal of Operational 

Research 257 (2017) 483–493. 

Albrech, M. 2017. Optimization of safety stocks in models 

with an order service level objective or constraint. 

European Journal of Operational Research 263 (2017) 

900–909. 

Alfares, HK, Ghaithan, AM 2016. Inventory and pricing 

model with price-dependent demand, time-varying 

holding cost, and quantity discounts. Computers and 

Industrial Engineering 94 (2016) 170–177. 

Archetti, C., Bertazzi, L., M. Grazia Speranza 2014. 

Polynomial cases of the economic lot sizing problem 

with cost discounts. European Journal of Operational 

Research 237 (2014) 519–527. 

Broekmeulen, RACM, Van Donselaar, KH 2009. A 

heuristic to manage perishable inventory with batch 

ordering, positive lead-times, and time-varying 

demand. Computers and Operations Research 36 

(2009) 3013 – 3018. 

Chowdhury, NT, Baki, MF, Azab, A. 2018. Dynamic 

Economic Lot-Sizing Problem: A new O(T) Algorithm 

for the Wagner-Whitin Model. Computers and 

Industrial Engineering 117 (2018) 6–18. 

Christopher, M., Lowson, R., and Peck, H. 2004. Creating 

agile supply chains in the fashion industry. 

International Journal of Retail and Distribution 

Management, 32(8), 367-376. 

DeHoratius, N., Mersereau, A. J., and Schrage, L. (2008). 

Retail inventory management when records are 

inaccurate. Manufacturing and Service Operations 

Management, 10(2), 257-277. 

Fan, J., Wang, G. 2018. Joint optimization of dynamic lot 

and warehouse sizing problems. European Journal of 

Operational Research 267 (2018) 849–854. 

Farhat, M., Akbalik, A., Sauer, N., Hadj-Alouane, A. 2017. 

Procurement planning with batch ordering under 

periodic buyback contract. IFAC PapersOnLine 50-1 

(2017) 13982–13986. 

Goisque, G., Rapine, C. 2017. An efficient algorithm for the 

2-level capacitated lot-sizing problem with identical 

capacities at both levels. European Journal of 

Operational Research 261 (2017) 918–928. 

Gruson, M., Cordeau, JM., Jans, R. 2018. The impact of 

service level constraints in deterministic lot sizing with 

backlogging. Omega 79 (2018) 91-103. 

Guan, Y., Li, T. 2010. Stochastic lot-sizing problem with 

inventory-bounds and constant order-capacities. 

European Journal of Operational Research 207 (2010) 

1398–1409. 

Liu, N., Ren, S., Choi, T.-M., Hui, C.-L. and Ng, S.-F. 2013 

'Sales forecasting for fashion retailing service industry: 

a review', Mathematical Problems in Engineering, 

2013. 

Maes, J., and Van Wassenhove, LN 1986. A simple 

heuristic for the multi item single level capacitated lot 

sizing problem. Operations research letters, 4(6), 265-

273. 

O'Neill, B., and Sanni, S. (2018). Profit optimisation for 

deterministic inventory systems with linear cost. 

Computers and Industrial Engineering 122 (2018) 303-

317. 

Tapia-Ubedaa, FJ, Miranda, PA, Macchi M. 2018. A 

Generalized Benders Decomposition based algorithm 

for an inventory location problem with stochastic 

inventory capacity constraints. European Journal of 

Operational Research 267 (2018) 806–817. 

Torkul, O., Yılmaz, R., Selvi, IH, Cesur, MR 2016. A real-

time inventory model to manage variance of demand for 

decreasing inventory holding cost. Computers and 

Industrial Engineering 102 (2016) 435–439. 

Yang, Y., Yuan, Q., Xue, W., Zhoud, Y., 2014. Analysis of 

batch ordering inventory models with setup cost and 

capacity constraint.  Int. J. Production Economics 155 

(2014) 340–350. 

Wagner, HM, and Whitin, TM 1958. Dynamic version of 

the economic lot size model. Management Science, 

5(1), 89–96. http://dx.doi.org/10.1287/mnsc.5.1.89. 

Zhu, H., Liu, X., Chen, Y., 2015. Effective inventory 

control policies with a minimum order quantity and 

batch ordering. Int. J. Production Economics 168 

(2015) 21–30. 

ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems

236


