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Visualizing decision boundaries of modern machine learning classifiers can notably help in classifier design,

testing, and fine-tuning. Dense maps are a very recent method that overcomes the key sparsity-related limita-
tion of scatterplots for this task. However, the trustworthiness of dense maps heavily depends on the underlying
dimensionality-reduction (DR) techniques they use. We design and perform a detailed study aimed at finding
the best DR techniques to use when creating trustworthy dense maps, by studying a large collection of 28 DR
algorithms, 4 classifiers, and 2 datasets from a real-world challenging classification problem. Our results show
how one can pick suitable DR algorithms to create dense maps that help understanding classifier behavior.

1 INTRODUCTION

Over the last few decades, advances in machine learn-
ing (ML) enabled breakthroughs in application areas
such as computer vision, natural image processing,
path planning, and business intelligence. However,
most ML methods work largely as black boxes, due to
the lack of interpretability behind the decision func-
tions they employ. The more complex such meth-
ods become, like in the case of the more recent deep
learning (DL) methods, the harder is for their users to
understand, customize, and trust them (Ribeiro et al.,
2016). As such, recent work has focused on visually
explaining how ML techniques learn and take their
decisions (Féraud and Clérot, 2002; Rauber et al.,
2017b; Rauber et al., 2017a).

One interpretability challenge regards the so-
called decision boundaries of classifiers. Formally
put, let D be the data space input by a classifier. The
classifier can be seen as a function f that assigns a
class label to every point in D. Understanding how
f, defined by the training process, partitions D into
same-class regions, separated by so-called decision
boundaries, can help many tasks related to classi-
fier design, e.g., locate how training samples affect
the classification of test samples close to them in D;
spot areas in D that require more training samples;
and find if the classifier technique used is too ‘stiff’
to separate complex labeled-sample distributions in
D (Hamel, 2006; Migut et al., 2015):
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Visualizing complex-shaped decision boundaries
embedded in a high-dimensional space D is very chal-
lenging. All existing solutions essentially perform
some form of dimensionality reduction (DR) to map
D to R? so as to create directly visible metaphors of
the boundaries. However, such solutions have sev-
eral limitations: Visualizing color-coded scatterplots
of training and/or test sets does not actually show the
decision boundaries, leaving the user to guess where
these lie (Rauber et al., 2017b). Image-based dense
maps improve upon this by coloring each pixel of the
target (screen) image by the assigned label(s) of sam-
ples in D that project there. Limitations of such solu-
tions include handling only a specific classifier (e.g.
SVM in (Hamel, 2006)) or using a small-multiple
metaphor, which does not scale for high-dimensional
spaces D (Migut et al., 2015).

A recent attempt to alleviate the above limitations
was proposed by (Rodrigues et al., 2018). The key
asset of this method is that it creates dense bound-
ary maps for any classifier in a generic manner. To
do this, however, a ‘suitable’ DR method needs to
be chosen so as to project D to R?. However, it is
well known that different DR methods create widely
different projections for the same input data (Nonato
and Aupetit, 2018; van der Maaten and Postma, 2009;
Sorzano et al.,, 2014). Hence, the displayed dense
maps depend on the combination of the classifier be-
ing studied and the DR method being used to project
data. However, (Rodrigues et al., 2018) only tan-
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gentially touch such aspects, as they study only the
use of t-SNE (van der Maaten and Hinton, 2008) and
LAMP (Joia et al., 2011) DR techniques for four clas-
sifiers: k-Nearest Neighbors (k-NN), Support Vec-
tor Machines (SVM), Logistic Regression (LR), and
Convolutional Neural Networks (CNN).

In this paper, we aim to methodically cover the
areas left open in (Rodrigues et al., 2018) regarding
the choice of a suitable DR technique. Specifically,
we address the following questions:

e How do the depicted decision boundaries differ as
a function of the chosen DR technique?

e Which DR techniques are best for a trustworthy
depiction of decision boundaries?

e How do misclassifications affect a classifier’s de-
cision boundaries?

To answer these questions, we proceed as fol-
lows. Section 2 overviews related work and the dense
map technique in (Rodrigues et al., 2018). Section 3
presents the experimental setup we used to study how
dense maps depend on DR techniques and classifiers,
covering a combination of 28 DR techniques and 4
classifiers. Section 4 presents and discusses our re-
sults. Section 6 concludes the paper.

2 BACKGROUND

2.1 Preliminaries

We first introduce a few notations. Let x =
(x',...,x"), x¥' € R,1 < i< nbe an-dimensional (nD)
real-valued observation or sample, and let S = {x;},
1 <i g' N bela dataset of N such samples. Let
x/ = (x],...,x4), 1 < j < n be the j” feature vec-
tor of S. Thus, S can be seen as a table with N rows
(samples) and n columns (dimensions). As outlined
in Sec. 1, S is sampled from a particular universe,
or subspace, D C R”", e.g., the space of all images
of digits (LeCun and Cortes, 2018). A classifier for
D is a function f : D — C which associates to every
X € D aclass label from a categorical domain C, e.g.,
the digits 0 to 9. The function f is constructed via a
so-called training-set S; = {x;,¢;}|x; € D,¢; € C and
tested via a similar, but disjoint, test set Sy. Different
machine learning (ML) techniques exist to construct
f, some of the best known being Support Vector Ma-
chines (SVM), k-Nearest Neighbors (k-NN), Logistic
Regression (LR), Random Forests (RF), and Convo-
lutional Neural Networks (CNN) (Krizhevsky et al.,
2012).

Exploring how well f was learned from S; is most
typically done by considering all points x € St labeled

by their inferred classes f(x). To visualize these, one
typically constructs a scatterplot using projections
or dimensionality reduction (DR) methods (Hoffman
and Grinstein, 2002; Liu et al., 2015). A projection is
a function P : D — R™, where typically m = 2, which
aims to preserve data similarities or neighborhoods.
That is, if two points x € D, y € D are seen to be
similar (by any application-dependent suitable metric,
e.g. Euclidean distance, cosine distance, or neighbor-
hood rank), then their projections P(x) and P(y) will
be close in the target 2D (image) space.

2.2 Decision Boundary Maps

Visualizing the behavior of a classifier via the scatter-
plot P(x)|x € St color-coded by the labels f(x)|x €
St exploits the power of projections to group similar
samples x into clusters in the scatterplot. If such a
cluster is uniformly colored, it means that all its un-
derlying (similar) samples were assigned to the same
class by the classifier f. Conversely, differently col-
ored ‘outlier’ points in a cluster typically indicate
classification problems. While useful and simple to
construct, such scatterplots have the fundamental lim-
itation that they do not show how the classifier treats
the entire universe D, but only a sparse sampling St
thereof. Simply put, we do not know what happens in
the blank space between the scatterplot points.

Recently, (Rodrigues et al., 2018) aimed to over-
come this issue by proposing so-called decision-
boundary maps. In brief, this method works as fol-
lows (see also Fig. 1a): For every pixel y of the target
(projection) space, data samples x € D are created,
by gathering the Y scatterplot points P(x) that project
into y and, if this number is below a user-prescribed
value U, adding U — Y synthetically created points
P~!(y’), where y’ are random points falling in the
pixel y. Here, P~' : R* — D is a so-called inverse pro-
jection technique that outputs a nD data point given
a projected (2D) point. Having now R = max(U,Y)
data samples xi,...,Xg for each image pixel, the re-
spective pixel is colored to reflect their assigned la-
bels L ={f(x1),...,f(xg)}. For this, a HSV color is
synthesized where hue (H) reflects the most frequent
label in L; saturation (S) is high when most labels
in L are identical and low (gray colors) when many
different labels exist in L; and value (V) encodes the
sample point density R (pixels with many samples get
brighter).

The key advantages of this method are that it is in-
dependent on the classifier technique f being studied;
it has no complex-to-set free parameters; but most
importantly, it creates dense maps where each image
pixel is colored to reflect how f behaves for the nD
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Figure 1: (a) Dense map construction algorithm; (b) Two-phase experiment set-up.

point(s) that map there via the projection P. These ef-
fectively partition the image space into several same-
color zones, indicating subspaces in D where the
classifier behaves identically, i.e., reflect the under-
lying so-called contiguity hypothesis typical in many
ML contexts (Manning et al., 2008). Zone bound-
aries effectively indicate decision boundaries where
the classifier changes the assigned class. Few com-
pact zones with simple (smooth) boundaries indicate
that the classifier has little difficulty in taking de-
cisions over D. Multiple disjoint same-color zones
and/or zones with tortuous boundaries indicate the op-
posite. Small-size ‘islands’ of one color embedded in
large zones of different colors suggest misclassifica-
tions and/or training problems.

3 EXPERIMENT SETUP

However, the trustworthiness of the dense map tech-
nique in (Rodrigues et al., 2018) heavily depends on
the direct (P) and inverse (P~ ) projection techniques
it uses. Consider, for example, a toy two-class k-NN
classifier for a 3D data space D C R? trained with a
simple S; consisting of one sample of each class. We
know in this case that the decision boundary should
be a plane halfway the two training samples. So, a
good 2D projection P should ideally render two com-
pact decision zones separated by a straight line. Con-
versely, a poor P may create several same-class zones
having complex curved boundaries; if we saw such
an image, we would wrongly judge the behavior of
the classifier.

The original proposal used t-SNE (van der Maaten
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and Hinton, 2008) and LAMP (Joia et al., 2011) to
implement P and iLAMP (Amorim et al., 2012) for
P!, respectively. However, tens of other projection
techniques exist — for recent surveys, see (Nonato and
Aupetit, 2018; van der Maaten and Postma, 2009;
Sorzano et al., 2014). To study which of these tech-
niques are most suitable for constructing effective
dense maps, we designed and executed a two-stage
experiment, as follows (see also Fig. 1b).

Data: We select two different subsets of the Fash-
ion MNIST (Xiao et al., 2017), a state-of-the-art
ML benchmark with clothing and accessory images,
which supersedes complexity-wise the traditional
MNIST dataset (LeCun and Cortes, 2018). Both
MNIST and Fashion MNIST have 70K grayscale im-
ages of 28 x 28 pixels, split into a training set (60K
samples) and a test set (10K samples). The two sub-
sets are as follows:

e S): A two-class subset (classes T-Shirt and An-
kle Boot) that we hand-picked to be linearly-
separable;

e Sio: An all-class subset (7-Shirt, Trouser,
Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle Boot). This is a non-linearly-
separable dataset.

Classifiers: We consider the same classifiers as in
(Rodrigues et al., 2018): LR, RF, k-NN (implemented
in scikit-learn, using their toolkit’s default parame-
ters), and CNN (implemented in keras). For CNN,
we used two convolutional layers with 64 filters each
and 3 x 3 kernels, followed by one 4096-element
fully-connected layer, trained with the Adam opti-
mizer (Kingma and Ba, 2014). These classifiers cre-
ate very different decision boundaries: At one ex-
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Figure 2: Dense maps for Logistic Regression (a) classifier and Random Forest (b) classifiers on the 2-class dataset, all
projections.
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Figure 3: Dense maps for k-NN (a) and CNN (b) classifiers on the 2-class dataset, all projections.
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treme, LR boundaries are linear (hyperplanes). k-NN
boundaries are piecewise-linear (facets of nD con-
vex polyhedra). RF creates typically more complex
boundaries than k-NN. At the other extreme, CNN
boundaries can have arbitrarily complex topologies
and geometries, due to the complex decision func-
tion f coded by the deep network structure. How-
ever, CNNs are known to perform very well for clas-
sifying images like our dataset, while at the other ex-
treme simple classifiers like LR are highly challenged
by such data.

Table 1: Accuracy of classifiers, 2-class and 10-class prob-
lems.

Classifier technique 2-class | 10-class
Logistic Regression (LR) 1.0000

Random Forest (RF) 1.0000 | 0.8332
k-Nearest Neighbors (KNN) 0.9992 | 0.8613
Conv. Neural Network (CNN) | 1.0000 | 0.9080

Training: The four classifiers were separately trained
on the two subsets Sy (S; = 2160 samples, S = 240
samples) and Si9 (S; = 10800 samples, S7 = 1200
samples). We verified that the training yielded good
accuracies in all cases and especially high ones for
the two-problem case. (Tab. 1). This is essential to
know when we next gauge the dense maps’ ability to
capture a classifier behavior (see stage 1 below). Pro-
jections: We selected 28 projection techniques (P)
to create dense maps (Table 2). As selection criteria,
we considered well-known projections of high qual-
ity (following a recent survey (Nonato and Aupetit,
2018)), good computational scalability, ease of use
(P should come with well-documented parameter pre-
sets), and publicly available implementation. Table 3
lists the parameter settings (default indicates using the
standard ones the algorithms come with).

Dense Maps: We use a two-stage creation and analy-
sis of dense maps, as follows (Fig. 1b). In stage 1, for
S>, we create dense maps using all 28 projections for
all 4 classifiers, yielding a total of 112 dense maps.
All maps have a 400 x 400 pixel resolution. Since
S, is quite simple (two linearly separable classes),
and all classifiers for S> have very high accuracies
(Tab. 1), the resulting maps should display (ideally)
two compact zones separated by a smooth, ideally lin-
ear, boundary. We visually verify which of the 112
maps best comply with these criteria, and next select
the five projections (of the 28 tested ones) which re-
alize these maps. These are shown in bold in Tab. 2.
Next, in step 2 of the study, we create dense maps,
for all 4 classifiers again, but using the more complex
S10 dataset. Finally, we explore these visually to gain
fine-grained insights allowing us to further comment
on the dense-map suitability of the five hand-picked

projections.

Table 2: Selected Multidimensional Projections.

Factor Analysis (Jolliffe, 1986)

FastICA (Hyvarinen, 1999)

Fastmap (Faloutsos and Lin, 1995)

IDMAP (Minghim et al., 2006)

Isomap (Tenenbaum et al., 2000)

Kernel PCA (Linear) (Scholkopf et al., 1997)
Kernel PCA (Polynomial)

Kernel PCA (RBF)

Kernel PCA (Sigmoid)

LAMP (Joia et al., 2011)

Landmark Isomap (Chen et al., 2006)

Laplacian Eigenmaps (Belkin and Niyogi, 2002)
LLE (Roweis and Saul, 2000)

LLE (Hessian) (Donoho and Grimes, 2003)
LLE (Modified) (Zhang and Wang, 2007)

LTSA (Zhang and Zha, 2004)

MDS (Metric) (Kruskal, 1964)

MDS (Non-Metric)

PCA (Jolliffe, 1986)

PLMP (Paulovich et al., 2010)

PLSP (Paulovich et al., 2011)

Projection By Clustering (Paulovich and Minghim, 2006)
Random Projection (Gaussian) (Dasgupta, 2000)
Random Projection (Sparse) (Dasgupta, 2000)
Rapid Sammon (Pekalska et al., 1999)

Sparse PCA (Zou et al., 2006)

t-SNE (van der Maaten and Hinton, 2008)
UMAP (Mclnnes and Healy, 2018)

4 RESULT ANALYSIS

We next discuss the results and insights obtained in
our two-stage experiment.

4.1 Phase 1: Picking the Best
Projections

For the simple 2-class problem S, all four classi-
fiers yield almost perfect accuracy (Tab. 1). Hence,
their decision boundaries are ‘where they should be’,
i.e., perfectly separating the two classes in S>. More-
over, since S, is by construction linearly separable,
this means that its dense maps, constructed for these
classifiers, should clearly show two compact zones
separated by a smooth, simple, boundary. We use this
as a visual criterion to rank how well projection tech-
niques can achieve this. Figures 2 and 3 show the
dense maps for all 28 tested projections for the four
tested classifiers, where red and blue indicate pixels
mapping samples having been assigned one of the two
labels in Sp. Very interestingly, we see that even for
this very simple problem not all projections perform
the same. Our key observations are as follows:
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Stability: The dense maps are surprisingly stable for
the same projection over all four classifiers, except
for LLA, LTSA, Random Projection (Gaussian), and
Random Projection (Sparse). Hence, we already flag
these four projections as less suitable.
Smoothness: All projections have relatively smooth
boundaries, except Random Projection (Gaussian),
Random Projection (Sparse), and MDS (Non-Metric).
Since we expect smooth boundaries, these projec-
tions are less suitable. The projections which yield
boundaries closest on average to a straight line (which
is what we expect) are MDS, UMAP, Projection by
Clustering, t-SNE, and PLMP.
Compactness: Projections succeed up to widely dif-
ferent degrees in creating two compact, genus-zero,
decision zones. t-SNE, UMAP, Projection by Cluster-
ing, and IDMAP do this almost perfectly. MDS (Non-
Metric), the two Random Projections, LLE (Hessian),
and LTSA perform the worst.

Summarizing the above, we select MDS (Metric),
PLMP, Projection by Clustering, UMAP, and t-SNE
as the overall best projections to analyze further.

4.2 Phase 2: Refined Insights on
Complex Data

We now examine how the five selected projections (in
phase 1) perform on the 10-class dataset Sjp which
is a tough classification problem (Xiao et al., 2017).
We already see this in the lower achieved accuracies
(Tab. 1). Hence, we expect to have significantly more
complex boundaries. Figure 4, that shows the dense
maps for our 4 classifiers for the 5 selected projec-
tions, confirms this. Several interesting patterns are
visible, as follows.

For a given projection, the dense map patterns are
quite similar over all four tested classifiers. This is
correct, since the dense map is constructed based on
the scatterplot created by that projection from the test
set S7, which is fixed. The variations seen along
a given column in Fig. 4 are thus precisely those
capturing the differences of decision boundaries due
to different classifiers. We see, for instance, that
LR tends to create slightly simpler boundaries than
the other three classifiers. Conversely, if we scan
Fig. 4 row-wise, we see greater variations, which can
be purely ascribed to the projection characteristics.
Techniques designed to better separate data clusters,
such as t-SNE and UMAP, show more compact deci-
sion zones with simpler boundaries than MDS, PLMP,
and Projection by Clustering. Also, the choice of
neighborhood used internally by the projection tech-
nique to estimate points in the lower dimension (2D)
does not seem to play a key influence: MDS, which
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uses global neighborhoods, shows similar pattern-
variations along classifiers to the other four projec-
tions, all of which use local neighborhoods.

Another salient visual element of the dense maps
in Fig. 4 is the presence of many small color islands.
Let us analyze these in more detail. An island essen-
tially indicates that (at least) one sample was assigned
a label different from the labels of most samples that
are close to it in the 2D space. In turn, this means
that (a) either the projection did a bad job (the is-
land does not actually exist in the high-dimensional
space D); or (b) the island actually exist in D, i.e.,
there are very similar samples that get assigned dif-
ferent labels. Refining (b), this further indicates that
(b1) the classifier did a good job for a complex con-
figuration in the data space D, or (b2) the classifier
misclassified the point(s) in the island for some rea-
son. To understand which of these cases actually oc-
cur, we plot misclassified points atop the dense map
as half-transparent white disks. Hence, regions hav-
ing many (densely packed) misclassifications show up
as white areas. Figure 5 shows this for the LR and
CNN classifiers, all projections. The insets (t-SNE
dense map) exemplify how islands point to two of the
above-mentioned issues: In Fig.4a, we see two very
small color islands around the misclassified samples
A and B. These islands indicate the extent up to which
other samples, close to A or B, would also get misclas-
sified. In contrast, the detail in Fig. 4b shows a (red)
island containing no white dots (misclassifications).
This island either reflects a real small-scale)variation
of the classifier decision, or else reflects an artifact of
the t-SNE projection.

Separately, we see that, overall, the LR dense
maps have more white dots than the CNN ones, which
correlates with the lower LR accuracy (Tab. 1). More
interestingly, we see that the white points are non-
uniformly spread over the dense maps by different
projections. MDS and PLMP show many islands
without white dots, which indicate that these projec-
tions have trouble preserving nD similarities in 2D.
At the other extreme, t-SNE, and evenmore so UMAP,
strongly pack the white dots, which tells that misclas-
sifications actually occur for quite similar data sam-
ples. These two dense maps effectively show the con-
fusion zones to the ML specialist, so one can use them
to decide which kinds of samples need to be further
added to the training set to improve accuracy.

S DISCUSSION

We discuss next a few key aspects of our evaluation.
Best Choice: From all our experiments, t-SNE and
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UMAP appear to be the best projections for construct-
ing dense maps in terms of recognizability of decision
boundaries in the produced patterns, limited errors
(spurious islands), and concentration of confusion
zones (misclassifications). Since UMAP has similar
properties with t-SNE but is significantly faster, we
label it as the optimal candidate for this task.
Influence Factors: As mentioned, dense maps de-
pend not only on the direct projection P but also on
its inverse P~'. We studied in detail the dependency
on P, but only used a single P~! implementation (iL-
AMP). This is due to the fact that we are not aware of
any other scalable, generic, and publicly-available in-
verse projection alternative. However, designing such
alternatives is an interesting topic in itself for future
work.

Experiment Coverage: Dense maps constructed
using projections are a novel technique in high-
dimensional visualization. Besides their use dis-
cussed here for showing classifier boundaries, they
are also used to analyze projection quality (Martins
et al., 2014; Aupetit, 2007). All such maps strongly
depend on the projection technique being used. To
our knowledge, our current work that evaluates how
dense maps depend on the choice of 28 possible pro-
jection techniques, is the broadest evaluation of this
type in existence. To limit the amount of work re-
quired to analyze over hundred classifier-projection
combinations, we designed a two-phase experiment
where we pre-select the best projections (using a sim-
ple classification problem) to study next in detail.
This, of course, limits the potentially interesting in-
sights one can find. The same is true for our choice
of using a single (though, highly-recognized complex
ML benchmark) dataset.

Replicability and Extensibility: To be useful, our
work on evaluating projection-based dense maps must
be accessible, replicable, and extensible. All involved
materials and methods (projections, datasets, dense
maps, classifiers, automated workflow scripts) are
available online (Espadoto et al., 2018). We intend to
organically extend this repository with new instances
along all above-mentioned dimensions.

6 CONCLUSIONS

In this paper we have presented a methodology for
evaluating the quality of multidimensional projec-
tions for the task of constructing 2D dense maps to
visualize decision boundaries of ML classifiers. To
this end, we have evaluated 28 well-known projec-
tions on a two-class, respectively ten-class, subset of
a well-known ML benchmark, using four classifiers
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often used in practice. Our evaluation shows wide,
and to our knowledge, not yet known, differences be-
tween the behavior of the studied projections. Using
a visual analytics methodology, we next refined our
analysis to a small set of five high-quality projections,
and found that t-SNE and UMAP perform best for this
task. On the practical side, our results can be used
to drive the selection of suitable projections for other
types of dense maps used in high-dimensional visu-
alization. On the methodological side, our workflow
can serve as a model for the exploration of a large de-
sign space in similar visual analytics contexts.

Future work can address several directions. First,
we aim to explore how dense maps depend on the in-
verse projection, and propose better alternatives to iL.-
AMP. Secondly, we aim to detect, flag, and possibly
eliminate projection errors, like spurious islands, so
as to make the dense map interpretation simpler and
faster. Last but not least, we will extend our pub-
licly available results (data, code, workflow scripts)
and hope thereby to create the starting point for a rec-
ognized benchmark for the practical analysis of the
quality of multidimensional projections.
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APPENDIX: PROJECTION
PARAMETERS

Table 3: Parameters used for each projection.

Projection Parameters

Factor Analysis iter: 1000

FastICA fun: exp, iter: 200
Fastmap default parameters
IDMAP default parameters
Isomap neighbors: 7, iter: 100
Kernel PCA (Linear) default parameters
Kernel PCA (Polynomial) degree: 2

Kernel PCA (RBF) default parameters
Kernel PCA (Sigmoid) default parameters
LAMP iter: 100, delta: 8.0

Landmark Isomap
Laplacian Eigenmaps

neighbors: 8
default parameters

LLE neighbors: 7, iter: 100
LLE (Hessian) neighbors: 7, iter: 100
LLE (Modified) neighbors: 7, iter: 100
LTSA neighbors: 7, iter: 100

MDS (Metric) init: 4, iter: 300

MDS (Non-Metric)

PCA

PLMP

PLSP

Projection By Clustering
Random Projection (Gaussian)
Random Projection (Sparse)
Rapid Sammon

Sparse PCA

t-SNE

UMAP

init: 4, iter: 300
default parameters
default parameters
default parameters
default parameters
default parameters
default parameters
default parameters
iter: 1000

perplexity: 20, iter: 3000

neighbors: 10
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