
A Meta Constraint Satisfaction Optimization Problem for the
Optimization of Regular Constraint Satisfaction Problems

Sven Löffler, Ke Liu a and Petra Hofstedt
Brandenburg University of Technology Cottbus-Senftenberg, Department of Mathematics and Computer Science, MINT,
Programming Languages and Compiler Construction Group, Konrad-Wachsmann-Allee 5, 03044 Cottbus, Germany

Keywords: Constraint Programming, CSP, Decomposition, Optimization, CSOP, Regular CSP.

Abstract: This paper describes a new approach on optimization of regular constraint satisfaction problems (rCSPs) us-
ing an auxiliary constraint satisfaction optimization problem (CSOP) that detects areas with a potentially high
number of conflicts. The purpose of this approach is to remove conflicts by the combination of regular con-
straints with intersection and concatenation of their underlying deterministic finite automatons (DFAs). This,
eventually, often allows to significantly speed-up the solution process of the original rCSP.

1 INTRODUCTION

Constraint programming (CP) is a powerful method to
model and solve NP-complete problems in a declara-
tive way. Typical research problems in CP are ros-
tering, graph coloring, optimization and satisfiability
(SAT) problems (Marriott, 1998).

Since the search space of CSPs is very big and
the solution process often needs an extremely high
amount of time we are always interested in im-
provement and optimization of the solution process.
Mostly, a CSP in practical can be described in vari-
ous ways; and consequently, the problem can be mod-
eled by different combinations of constraints, which
results in the diversity of resolution speed and behav-
ior. Hence, the diversity of models and constraints
for a given CSP offers us an opportunity to improve
the problem solving by using another model in which
a subset of constraints can be replaced with a faster
constraint which combines the original constraints.

Our approach based on the idea that CSPs can
be modeled as (Löffler et al., 2017) or transformed
into (Löffler et al., 2018) rCSPs. Nevertheless, there
are also several rCSP descriptions for a given prob-
lem which also have a diversity in their resolution
speed and behavior. The solving speed and behav-
ior depends amongst other things from the number of
backtracks in the depth first search of the solving pro-
cess. Because only overlapping constraints can lead
to backtracks in a rCSP, we developed a CSOP which

a https://orcid.org/0000-0002-5256-9253

detects highly overlapping parts of a CSP which can
be substituted by a singleton regular constraint.

2 PRELIMINARY

In this section, we introduce the necessary definitions,
methods and theoretical considerations which are the
basis of our approach. The basis for all of our con-
siderations is the regular membership constraint (in
the following regular constraint called) and its prop-
agation algorithm defined and explained in (Pesant,
2004).

We consider furthermore constraint satisfaction
problems (CSPs), regular constraint satisfaction prob-
lems (rCSPs), constraint satisfaction optimization
problems (CSOPs) and sub-CSPs which are defined
as follows.
CSP (Dechter, 2003) A constraint satisfaction prob-
lem (CSP) is defined as a 3-tuple P = (X ,D,C)
with X = {x1,x2, . . . ,xn} is a set of variables, D =
{D1,D2, . . ., Dn} is a set of finite domains where Di
is the domain of xi and C = {c1,c2, . . . ,cm} is a set
of primitive or global constraints containing between
one and all variables in X .
rCSP (Löffler et al., 2017) A regular constraint sat-
isfaction problem (CSP) is a CSP P = (X ,D,C) like
defined before, with only regular constraints in C.

Additionally, we consider only rCSPs with a strict
variable order x1, ...,xn. This means that in each con-
straint c∈C, the variables are also ordered by their in-
dex, where xi occur earlier as x j∀i, j ∈ {1, ...,n}, i< j.

Löffler, S., Liu, K. and Hofstedt, P.
A Meta Constraint Satisfaction Optimization Problem for the Optimization of Regular Constraint Satisfaction Problems.
DOI: 10.5220/0007260204350442
In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), pages 435-442
ISBN: 978-989-758-350-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

435

CSOP (Rossi et al., 2006; Tsang, 1993) A constraint
satisfaction optimization problem (CSOP) Popt =
(X ,D,C, f) is defined as a CSP with an optimiza-
tion function f that maps each solution to a numerical
value.
Sub-CSP Let P = (X ,D,C) be a CSP. For C′ ⊆C we
define Psub = (X ′,D′,C′) such that X ′ =

⋃
c∈C′ vars(c)

with corresponding domains D′ = {Di | xi ∈ X ′} ⊆D.

2.1 Definitions and Methods

For the further concepts and methods we assume that
a CSP P = (X ,D,C) is given.

In our description we use the two functions
vars(c) and cons(x), where the method vars has a
constraint c ∈ C as input and returns all variables
X ′ ⊆ X which are covered by this constraint. Simi-
larly, the method cons has a variable x ∈ X as input
and returns all constraints C′ ⊆ C which cover this
variable.

We say two constraints ci,c j ∈C, i 6= j overlap if
the intersection of variables vars(ci) and vars(c j) is
not empty.

We define the maximal size size(P) of a CSP
P = (X ,D,C) as the product of all cardinalities of the
domains of the CSP P.

size(P) =
|X |

∏
i=1
|Di| (1)

The size of a variable and of a constraint can be
defined similar, i.e. size(xi) = |Di| and size(c) =
∏xi∈vars(c) |Di|.

2.2 Theoretical Consideration

In this paper, it is important to distinguish between
local (Apt, 2003) and global consistency (Dechter,
2003). Local consistency guarantees that each value
of a variable in the scope of a certain constraint is at
least part of one of its solutions. A CSP is locally
consistent if all of its constraints are locally consis-
tent. In contrast, global consistency implies that each
value of the variable of the CSP can be extended to at
least one solution of the entire CSP. Therefore, global
consistency is a much stronger enforcement of con-
sistency. In particular, search interleaved with global
consistency is backtracking free.

For a given CSP P, we can separate the propaga-
tors of the constraints into two sets: the one set ensure
local consistency for the constraints and the other one
not (e.g. bound consistency). In the following we
name a constraint locally consistent if the constraint
has only propagators which enforce local consistency.

Examples for both categories based on their imple-
mentation in Choco Solver (Prud’homme et al., 2017)
are for locally consistent constraints: arithm, count
or regular and for not locally consistent constraints:
cumulative or sum.

Consider a CSP P with only one constraint c1,
which has a propagator that ensures local consistency,
and this implies that P must be backtracking free. The
question is what leads to a not backtracking free CSP?
If we add another constraint c2, which has a propaga-
tor that ensures local consistency, to P then there are
two possibilities.

Case 1: The two constraints c1 and c2 do not over-
lap. It is clear that this cannot lead to a fail because we
can decompose such a CSP into two separate CSPs P1
and P2, solving them individually and merge the re-
sults together. Hence, each solution of P1 contains no
value assignment for a variable of P2 and vice versa,
every element of the cross product of the solutions of
P1 and P2 is a solution of P.

Case 2: The two constraints c1 and c2 overlap.
Depending on different things such as the types of
constraints c1 and c2, search strategy, propagation or-
der, variable order etc. the CSP has a fail or not.

Thus, the origins for fails in a CSP P with only
locally consistent constraints are overlapping con-
straints. This leads to the consideration that areas of
the CSP P with a high number of overlapping con-
straints have the potential to be responsible for a large
number of fails.

Because the regular constraint is locally con-
sistent based on the propagation algorithm used in
(Prud’homme et al., 2017) and discussed in (Pesant,
2004), we can assume that a rCSP needs only back-
tracks if their exist overlapping variables.

For the reason that only overlapping constraints
leads to backtracking in the search process we assume
that the areas in the CSP with a high density of con-
straints leads to a high number of backtracks. If we
substitute all constraints of an area with a high density
of constraints by only one locally consistent (regular)
constraint we can reduce the number of backtrackings
significantly and so we can improve the solving speed
of the CSP.

3 THE META CSOP FOR THE
OPTIMIZATION OF rCSPs

In this section, we present an approach to detect
highly overlapping areas in a CSP P using a Meta
CSOP Popt .

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

436

3.1 A General CSOP to Find Maximal
Overlapping Sub-CSPs

The idea behind this approach is to find sub-CSPs
P′ = {P1, ...,Pk} in the original CSP P which are re-
sponsible for a large number of fails inside the back-
track search and small enough to replace each of them
by a singleton regular constraint. We assume that
a sub-CSP with a large number of overlapping con-
straints is likely to incur fails during backtrack search.

For detecting k sub-CSPs {P1, ...,Pk} of a
given CSP P = (X ,D,C) where X = {x1, ...,xn},
D = {D1, ...,Dn} and C = {C1, ...,Cm} we
use a CSOP Popt = (X ′,D′,C′, f) where
X ′ = {x′j|∀ j ∈ {1, ...,m}} ∪ xopt , D = {D j =

{0, ...,k}|∀ j ∈ {1, ...,m}} ∪ Dopt = {0, ...,∞},
C = {cspOverlapSplit(X ′,M,k,s,D,v)} and
f = maximize(xopt) which finds an optimized
decomposition of P into k sub-CSPs with maximum
number of overlapping.

For each constraint c j ∈ C a variable x j with do-
main D j = {0, . . . ,k} is created. The value assign-
ment v j of each variable x j ∈ X ′ of Popt represents
that the corresponding constraint c j ∈ C of P is part
of sub-CSP Pv j with v j is greater null, otherwise the
corresponding constraint c j is not part of a sub-CSP.

The cspOverlapSplit constraint will be explained
in the next section. The objective function f maxi-
mizes the xopt variable with domain Dopt = {1, ...,∞}
which is also explained in the following section.

3.2 The cspOverlapSplit-Constraint

The cspOverlapSplit constraint is a newly developed
constraint which split a set of constraints (from a CSP
P) in maximum k sub-sets (representing sub-CSPs
P1, ...,Pk) where the sum of overlapping variables in-
side of each sub-set is maximum and the size of each
sub-CSP is smaller or equal a given value.

The algorithm gets a set of variables X ′, a two-
dimensional array of integers M, the maximum num-
ber of sub-CSPs k, a maximum sub-CSP size s (so
that size(Pl) ≤ s|∀l ∈ {1, ...,k}), the domains D of
the original CSP P and a n-dimensional vector v =
v1, ...,vn as input.

The variables X ′ must be the variables like de-
scribed in the last section. Each variable x j ∈ X ′

represents the corresponding constraint c j ∈C of the
given CSP P. If the value of variable x j is set to a
value v it means that the constraint c j is part of the
sub-CSP v and therefore not included in other sub-
CSPs.

The two-dimensional array M illustrates which
variables are covered by which constraints. For each

constraint c j ∈C of CSP P exist one line which con-
tains all variables Xc which are covered by the con-
straint (Xc = {xi|xi ∈ vars(c)}). So the entry M j,l = i
follows from the fact that constraint c j contains vari-
able xi at l-th position.

Each value vi ∈ v|∀i ∈ {1, ...,n} represents the
number of constraints which cover variable xi ∈ X in
P.

Algorithm 1: cspOverlapSplit.

Input: variables X ′, int × int M, int k, int s,
Domains D, intVector v = v1, ...,vn

1 Create k+1 integer vectors a0, . . . ,ak of size
|X |

2 forall xi ∈ X ′ do
3 if (isInstantiated(xi)) then
4 int v = xi.getValue()
5 forall j ∈ {1, ..., |vars(ci)|} do
6 av[Mi, j]++

7 int maxValue = 0
8 forall l ∈ {1, ...,k} do
9 maxValue = maxValue +

calculateValueSubCsp(a0, ...,ak, l,D,s,v)
10 update upperBound of xopt to maxValue

Algorithm 1 shows the propagation algorithm of
the cspOverlapSplit constraint. In line 1, k + 1 in-
teger vectors of size |X | (number of variables in the
original CSP P plus 1) are created. The vectors
a1, ...,ak represent the sub-CSPs P1, ...,Pk and the vec-
tor a0 represents the variables which could not as-
signment to a sub-CSP. For each vector al the i-th
entry (∀i ∈ {1, ..., |X |}) represents if the i-th variable
xi ∈X of CSP P is part of sub-CSP Pl (al [i]> 0) or not
(al [i] = 0). If the value al [i] is greater than zero then
it represents also the number of covering constraints
of xi in sub-CSP Pl .

In lines 2 to 6, the variables xi ∈X ′ (representation
of ci in the original CSP P) are checked if there are
already instantiated. If a variable xi is instantiated to
value v then it means that constraint ci ∈ C of P and
all of it variables (vars(ci)) are part of the sub-CSP Pv.
If such assignments exist, the algorithm increase all
integer values in av by one which represent variables
covered by the constraint ci (line 5 and 6).

In lines 7 to 9, the new upper bound of the opti-
mization variable will be calculated, based on the as-
signments for the sub-CSPs. The calculation process
will be explained below.

Finally, in line 10, the upper bound of the opti-
mization variable will be updated.

Remark Finding the optimized solution for the
CSOP Popt is also very time consuming and in this
case may not useful. Our algorithm find a compro-

A Meta Constraint Satisfaction Optimization Problem for the Optimization of Regular Constraint Satisfaction Problems

437

mise between a good solution and a short execution
time.

Algorithm 2: calculateValueSubCsp.

Input: integer vectors a0, ...,ak, integer l,
domains D, integer s, integer vector
v = v1, ...,vn

Output: The maximum integer influence of
the sub-CSP Pl to xopt .

1 Integer list doms = new sorted list
2 Integer list values = new sorted list
3 Integer currentSize = 1
4 Integer value = 0
5 forall i ∈ {1, ...,n} do
6 Integer additionalValue = vi
7 forall a j ∈ {a0, ...,ak}|(j 6= l) do
8 additionalValue =

additionalValue−a j[i]
9 if al [i]≥ 1 then

10 doms.add(|Di|)
11 currentSize = currentSize∗ |Di|
12 if (additionalValue > 1) then
13 value = value+additionalValue2

14 else
15 values.add(additionalValue)
16 if currentSize > s then
17 fails()
18 Integer domValue = getNextDomain(doms,

sort(D))
19 currentSize = currentSize∗domValue
20 while currentSize≤ s do
21 value = value + (values.next())2

22 domValue = getNextDomain(doms,
sort(D))

23 currentSize = currentSize∗domValue
24 return value

Algorithm 2 calculates the maximum value which
is possible for the subCSP Pl .

In lines 1-4, the needed variables are instantiated.
The integer list doms will be filled with the do-

mainsizes of all variables which are part of the sub-
CSP Pl starting with the smallest. The integer list
values will be filled with the possible values which
variables (outside of Pl) can add to the result value
whenever they are added to Pl . The currentSize rep-
resents the size of the sub-CSP Pl with the current
variable and constraint selection size(Pl). The value
is the maximum integer influence of the sub-CSP Pl
to xopt .

In lines 6-8, the possible number of constraints
which cover the variable xi in the sub-CSP Pl will be
calculated (additionalValue). For this the number of
constraints which covers variable xi in P (vi) will be

reduced by every constraint which is assignment to an
other sub-CSP (line 8).

If the variable xi is part of the sub-CSP Pl (al [i]≥
1) and more than one constraint cover this vari-
able in sub-CSP Pl (additionalValue > 1) then the
additionalValue will be added to the result value and
the currentSize value will be updated, otherwise only
the additionalValue will be added to the values list,
lines 9-15.

We are interested in an area with a high number
of overlapping so if a variable is covered by only one
constraint in a sub-CSP it does not infect the num-
ber of overlapping, and therefore the value will not
change (line 12). If the variable is covered by more
than one constraint in the sub-CSP then we consider
it in a quadratic way (line 13).

If the variable xi is no variable of the sub-CSP Pl
at the moment then it is not clear if additionalValue
is the best value or there are other variables with a
higher value. For this reason the additionalValue is
added to the values list, from which we will take the
best values later.

If the currentSize of the sub-CSP Pl is greater than
the maximum allowed sub-CSP size s then the CSP is
temporary not satisfiable and the propagator fails (line
16 and 17).

At this point the value is only calculated based on
the variable assignments to the sub-CSP Pl which are
already done. In lines 18-23, the value will be in-
creased by a value which can be reached by variables
which are not in Pl yet but can be added to the sub-
CSP Pl .

In lines 18 and 19, the smallest domain which
is not part of sub-CSP Pl will be selected and the
currentSize will increased by this value.

While the currentSize is not as big as the given
maximum CSP size s, the value will be increased by
the next value from the list values with descending
order. This will be repeated until the currentSize is
getting to big (lines 20-23).

With this calculation we obtain a value which
might be bigger as the real possible value because
we say always that the variable with the smallest size
leads to the biggest impact to value. It is clear that the
real value cannot be higher so that value can be used
as upper bound of our optimization variable xopt .

3.3 The Complexity of the
CspOverlapSplit Algorithm

In this section we prove the complexity of the
cspOverlapSplit algorithm. We first prove the
complexity of the calculateValueSubCsp algorithm
which is used in the other one.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

438

In lines 5-8, there are two nested loops which
leads to a complexity class of O(n ∗ (k+ 1)). In line
10, there is an inclusion into a sorted list with the
maximum length of n− 1 if all other variables have
been included before. The other efforts in lines 1-17
can be ignored for the complexity class, the complex-
ity is in O(n∗ (k+1+ log(n))) for this part.

The getNextDomain method has a complexity of
n in worst case if the next domain is Di with Di ≥
D j|∀ j ∈ {1, ...,n}, j 6= i where xi is the only variable
which is not part of sub-CSP Pl . In this case the while
loop in lines 20-23 will be ignored because after this
all variables are part of the sub-CSP Pl , currentSize =
size(P) and logicaly s is chosen smaller as size(P).

If the loop is not ignored then the effort of
getNextDomain and the loop is accumulated in O(n)
in the worst case. This leads to a complexity of
O(n ∗ (k+ 1+ log(n))+ n) ∈ O(n ∗ (k+ 1+ log(n)))
for the calculateValueSubCsp algorithm.

The cspOverlapSplit algorithm is partitioned into
two parts. The first part (lines 1-6) has two nested
loops, where the first is repeated |X ′| ≤ |C|=m times.
The inner loop is repeated vars(ci) ≤ |X | = n times.
This leads to the complexity class O(m ∗ n) for the
first part.

The second part repeats k times the
calculateValueSubCsp algorithm, so it is in
O(k ∗ (n∗ (k+1+ log(n)))).

Finally, the overall complexity is in O(n∗m+n∗
k ∗ (k + 1+ log(n))) ∈ O(n ∗ (m+ k2 + k ∗ log(n))).
Depending on log(n) or k is bigger, this can be re-
duced to O(n∗ (m+ log2(n))) or O(n∗ (m+ k2)).

For a static number of sub-CSPs k, the algorithm
can be propagated in quadratical time, which is an ac-
ceptable time for such constraints and which is in the
same complexity class like the arc consistency prop-
agation algorithm of the allDifferent constraint or the
propagator of the cumulative constraint.

3.4 Integration of the Algorithm into
the Regularization Process

This section explains where we use the Meta CSOP
problem in the regularization process.

Figure 1 shows the regularization process from a
general CSP P to an optimized rCSP P′′reg. It starts
with a general CSP P=(X ,D,C) which have different
kinds of constraints c ∈ C like count, allDifferent or
sum, then P will be transformed into a rCSP Preg. This
can be realized by direct transformations as explained
in (Löffler et al., 2018) or with the detection of all
solutions of a sub-CSP of P which will be convert to
a regular constraint.

After getting the rCSP Preg we optimize it (P′reg) by

the intersection and minimization of the DFAs which
are used in the regular constraints. By doing this, we
reduce the number of constraints in Preg; therefore,
some potential fails and unwanted redundancy are re-
moved.

Unwanted redundancy means implicit redundancy
between two (or more) constraints which leads to a
slow down of the solving process.

Do not confound this kind of redundancy with the
positive redundancy which is often called in the lit-
erature. We expect that not such positive redundancy
constraints were added to the model before so that all
the negative redundancy can be removed first then we
add the positive redundancy. The interplay of positive
and negative redundancy would also be an exciting
research topic.

These optimizations can be repeated until only
one regular constraint is left (P′′reg) but these may not
be useful. The optimization steps are also very time-
consuming. Reducing the rCSP to one with only one
regular constraint needs maybe more time as solving
the original CSP P. Mostly, it is very time improv-
ing to do some optimization steps and solve the rCSP
then. To find the perfect point until which the opti-
mization is useful or not is also one of our research
areas and will be answered in the future.

The presented Meta CSOP Popt is part of the op-
timization steps of the algorithm. It detects the con-
straints which should be combined (intersected) next.
Using Popt with a maximum sub-CSP size s lower as
the size of the given CSP (size(P)) leads automati-
cally to a stopping point in the optimization which is
reached before all constraints are combined into one
regular constraint.

Remark: the algorithm is not only but especially
useful for regular constraints. It is also possible to
substitute constraints for the table constraint or a set
of different types of constraints.

4 COMBINING OF REGULAR
CONSTRAINTS

This section explains how we combine two (or more)
regular constraints into a new one.

We assume that we have a orderd rCSP Preg =
{X ,D,C} like explained in 2.1. Given are two
regular constraints c1 = regular(X1,M1) and c2 =
regular(X2,M2) with c1,c2 ∈ C and the variables
X1 ⊆ X and X2 ⊆ X where ∀k ∈ {1,2} ∀i, j ∈
{1, ..., |Xk|}, i < j|xi occur earlier in ck as x j.

There are two cases. Case one: the two constraints
cover the same set of variables (X1 = X2). Case two:

A Meta Constraint Satisfaction Optimization Problem for the Optimization of Regular Constraint Satisfaction Problems

439

general CSP P trans f orm
−−−−−−→

rCSP Preg optimize
−−−−−→

rCSP P′reg optimize∗
−−−−−−→

rCSP P′′reg

constraint 1 −→ regular
constraint 2 −→ regular minimize−−−−−→ regular
constraint 3 −→ regular ... regular
constraint 4 −→ regular intersect−−−−−→ regular

Figure 1: The regularization of CSPs.

the two constraints cover different sets of variables
(X1 6= X2).

In the first case, we construct the automatons M1
and M2 and using then the intersection method of
DFAs (∩). The resulting regular constraint is then
creg = regular(X1,M1∩M2).

In case two we use the particular shape of the
internally used automatons of regular constraints.
An inputted automaton M to a regular constraint
regular(X ,M) will be transformed internally into an
automaton M′ which looks like M′ = M∩Mall , where
Mall is an automaton which accept all words with
length |X |. M′ is a directed multigraph (Pesant,
2004) and can be partitioned into levels of states
L = {l0, ..., l|X |}. In each level li ∈ L are all states of
M′ which can be reached after reading i many vari-
ables.

For the combination of two regular constraints
c1 = regular(X1,M1) and c2 = regular(X2,M2) with
internal used automatons M′1 and M′2, we search the
first index i where the i-th variable xi ∈ X1 is not equal
to the i-th variable xi ∈ X2 or vice versa.

Without loss of generality, we assume that xi is in
X1 and not in X2. For each state si−1,k in M′2 at level
i−1 we create a new state snew,k and change all tran-
sitions from all states si−1,k to their destination states,
in a way that they starts now from state snew,k. After
these, we add the transitions from si−1,k to snew,k with
every value in the alphabet of M′1.

This will be repeated for all variables x which
are only in X1 or X2 and not in the other. Doing
this leads to two new automatons M′new1 and M′′new2
which can be intersected with the DFA intersection
method. The resulting regular constraint is then creg =
regular(X ′,M′new1 ∩M′new2), where X ′ is the sorted
union of X1 and X2.

5 EXPERIMENTAL RESULTS

In this section, we present our experimental results of
our Meta CSOP when applied to a random benchmark
suite. All the experiments are set up on a DELL lap-
top with an Intel i7-4610M CPU, 3.00GHz, with 16
GB 1600 MHz DDR3 and running under Windows

7 professional with service pack 1. The algorithms
are implemented in Java under JDK version 1.8.0 171
and Choco Solver (Prud’homme et al., 2017).

We create randomly rCSPs with different number
of variables (50, 100, 150), different domain sizes
(5 or 10), different number of constraints (1 or 1.5
times the number of variables), different maximum
sub-CSP size (10,000, 100,000, 1,000,000) different
maximum number of sub-CSPs (5 or 10), different
time for optimization (1s or 3s), different solution ra-
tio for each regular constraint (0.2-0.4 or 0.4-0.6 or
0.6-08) and a solving time of 5 minutes.

With these parameter settings, we try to cover a
big area of CSPs with nonempty solution space be-
cause CSPs with no solution can be solved very fast
often.

We created for each parameter combination rCSPs
and solved it without and with regularization. For the
regularization we limit the solving time of the Meta
CSOP by 1 second and 3 seconds and limit the solv-
ing process of the regularized model by 5 minutes.
We also solved the original problem without regular-
ization and limit the time of the solving process by
the total time which was needed for transforming and
solving of the regularization model to got a fair com-
parison.

The regular constraints cover between 2 and 4
variables and are randomly created. A random reg-
ular constraint for variables X with domains D was
created in the following way.
• Create a matrix M ∈ |X | × |

⋃
D| which contains

all value combinations for the variables X respec-
tively their domains D.

• Remove rows from M until only the given solution
ratio (0.2-0.4 or 0.4-0.6 or 0.6-08) is left.

• Create an automaton which accepts exactly the in-
puts given in M.
With these randomly generated constraints we

simulate a not optimized CSP with small constraints.
We expect that the given CSP is not modelled in a
perfect way so that our regularization approach can
optimize it.

Table 1 shows the results of our test benchmark.
We only consider the results for one second as op-
timization time because the results for three seconds

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

440

Table 1: The improvements of regularization.

Selection Programs Relevant Failure Improve. Constant Deterior. Average improve. (%)
All 99 73 3 39 3 28 1.849
Top 10% 99 60 0 39 2 19 3.014
Top 20% 99 26 0 23 2 1 8.297

were not significantly different. We created 99 ran-
dom regular programs like described before from
which 73 were relevant because they were complex
enough that the problem was not solved in less than
five minutes. For 3 of these 73 relevant programs
could not found a useful regularization in one second.
For the other 70 programs we speed up the solving
process in 39 cases, had 3 times no difference and
decrease 28 times the solving speed. All in all we ob-
served an average improvement of 1.849% (inclusive
all transformation times).

This sounds not very successfully but it is clear
that this approach is not useful for all kind of rCSPs.
May some of them were modeled efficiently before so
our approach decrease the solving speed for the rea-
son that the transformations also need time. Another
reason can it be that the rCSP has to less overlapping
constraints which can be combined.

So the question is can we find out for which kind
of rCSP our approach is useful in short time? The
answer is yes, we can! In line 2 and 3 of table 1 you
can see that the average improvement increase if we
only consider the programs in which the combination
of constraints reduces the total number of constraints
by at least 10% respectively 20%.

With our Meta CSOP we detect if a rCSP can be
reduced by 10% or 20% in one second. If it is useful
we can automatically decide to combine the detected
regular constraints and so our rCSP will be improved
by 3.014% respectively 8.297%. Where is no risk
to slow down the system significantly. If we cannot
find a reduction of constraints which is big enough
then we do not use the transformations and we only
loss one second for checking this. Otherwise we can
do the combinations and so we will mostly improve
the solving speed. All other optimizations like adding
positive redundancy or parallelization can still be ex-
ecuted afterward.

Remarks: For some of the researchers 8.297%
may sounds also not very improvement. But con-
sider that we used a very general approach in the Meta
CSOP based on the size of sub-CSPs. If we specify
this in a way that we do not use the size of the sub-
CSPs but the size of the automatons and the potential
size of the new created automaton then it allows us to
choose constraints with a higher precision and with a
higher number of variables.

The biggest influence on the number of constraints

which can be combined (and so the biggest influence
on the solving speed) has the parameter sub-CSP size.
What is not shown in the table is that all models which
where created with sub-CSP size equal 1,000,000 re-
duced the number of constraints at least by 10%.

6 CONCLUSION AND FUTURE
WORK

We have presented a new way to combine a set of con-
straints of a rCSP to one new regular constraint by the
use of a Meta CSOP. The Meta CSOP is specialized
to find sub-CSPs with a maximum size which are pre-
destined for the substitution with a regular constraint.
We also have shown how a set of regular constraints
can be combined to one new regular constraint by the
use of the automaton intersection method. We evalu-
ated our approach by a random benchmark suite.

The experimental results showed that rCSP could
be replaced with fewer constraints in a short time.
Furthermore the experimental results show that our
approach speedups the solving process of special rC-
SPs.

Future work will include a more specific side con-
dition for the Meta CSOP based on the size of the
automatons and not of the sub-CSP size. We also will
distinguish between positive and negative redundancy
and explain the advantages and disadvantages of con-
straint combination in detail. Furthermore a com-
parison between table and regular constraint looks
promising. Both constraints are powerful enough to
substitute each other constraint in a CSP. It would be
interesting to analyze which one is in which situations
better.

REFERENCES

Apt, K. (2003). Principles of Constraint Programming.
Cambridge University Press, New York, NY, USA.

Dechter, R. (2003). Constraint processing. Elsevier Morgan
Kaufmann.

Löffler, S., Liu, K., and Hofstedt, P. (2017). The power of
regular constraints in csps. In 47. Jahrestagung der
Gesellschaft für Informatik, Informatik 2017, Chem-
nitz, Germany, September 25-29, 2017, pages 603–
614.

A Meta Constraint Satisfaction Optimization Problem for the Optimization of Regular Constraint Satisfaction Problems

441

Löffler, S., Liu, K., and Hofstedt, P. (2018). The regulariza-
tion of csps for rostering, planning and resource man-
agement problems. In Artificial Intelligence Applica-
tions and Innovations - 14th IFIP WG 12.5 Interna-
tional Conference, AIAI 2018, Rhodes, Greece, May
25-27, 2018, Proceedings, pages 209–218.

Marriott, K. (1998). Programming with Constraints - An
Introduction. MIT Press, Cambridge.

Pesant, G. (2004). A regular language membership con-
straint for finite sequences of variables. In Wallace,
M., editor, Principles and Practice of Constraint Pro-
gramming - CP 2004, volume 3258 of Lecture Notes
in Computer Science, pages 482–495. Springer.

Prud’homme, C., Fages, J.-G., and Lorca, X. (2017). Choco
documentation.

Rossi, F., Beek, P. v., and Walsh, T. (2006). Handbook of
Constraint Programming. Elsevier, Amsterdam, First
edition.

Tsang, E. P. K. (1993). Foundations of constraint satis-
faction. Computation in cognitive science. Academic
Press.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

442

