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Abstract: In recent years, natural and highly accurate outputs in domain transfer tasks have been achieved by deep
learning techniques. Especially, the advent of Generative Adversarial Networks (GANs) has enabled the
transfer of objects between unspecified domains. Voice conversion is a popular example of speech domain
transfer, which can be paraphrased as domain transfer of speakers. However, most of the voice conversion
studies have focused only on transforming the identities of speakers. Understanding other nuances in the
voice is necessary for natural speech synthesis. To resolve this issue, we transform the emotions in speech by
the most promising GAN model, CycleGAN. In particular, we investigate the usefulness of speech with low
emotional intensity as training data. Such speeches are found to be useful when the training data contained
multiple speakers.

1 INTRODUCTION

Alongside the development of deep learning in recent
years, domain transfer tasks have been actively rese-
arched. Domain transfer converts an attribute of data
such as a style and a form of image and speech to
another without changing any other attribute. For ex-
ample, in human images, domain transfer can con-
vert the gender domain while keeping the human in-
dividual. This paper considers the domain transfer of
speech, which is important for natural speech synthe-
sis.

Domain transfer of speech is popularly performed
by voice conversion (VC). The VC technique con-
verts the speaker information while preserving the
linguistic information which can be paraphrased as
the speaker domain transfer. Representative VC met-
hods are based on Gaussian mixture models (GMMs)
(Toda et al., 2007) and restricted Boltzmann machi-
nes (Nakashika and Minami, 2017). Some recent
VC methods use deep learning approaches such as
autoencoders (Hinton and Salakhutdinov, 2006)(Se-
kii et al., 2017) and generative adversarial networks
(GANs) (Goodfellow et al., 2014)(Miyoshi et al.,
2017). Among the most attractive methods is Cy-
cleGAN (Zhu et al., 2017)(Kaneko and Kameoka,
2017)(Fang et al., 2018). CycleGAN-based methods

output high-quality speech despite the unsupervised
learning with non-parallel data. Here parallel data re-
fer to a collection of the same set of utterances spoken
by multiple speakers. Parallel data-based methods are
expected to yield high-quality speech. However, these
methods are compromised by the problematic data
collection. On the other hand, non-parallel data-based
methods are difficult to output high-quality speech.
However, their data are easily collected. Neverthe-
less, CycleGAN-based methods output higher quality
speech than conventional methods.

Although VC has been widely studied, few of the
existing studies convert information other than the
identities of speakers. Speech also includes linguistic,
emotional, and non-parametric information. Under-
standing the emotional information is important for
natural speech synthesis. Emotional speeches con-
structed by natural speech synthesis would benefit call
centers (Sakurai and Kimura, 2013) and speech gui-
dance (Iida et al., 1999). To this end, the present paper
performs domain transfer of the emotions in speech.

Liu et al. (Liu et al., 2014), Aihara et al. (Ai-
hara et al., 2012) and Yasuda et al. (Yasuda et al.,
2018b)(Yasuda et al., 2018a)(Yasuda et al., 2018c)
have investigated the issue. In (Liu et al., 2014), they
focused on prosodic information and converted the
emotion by replacing the fundamental frequency (F0)
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Figure 1: Schematic of a GAN.

in input with altered one suitable to express emotions
for each word. In (Aihara et al., 2012), they converted
F0 using a GMM. These studies used single-speaker
training data. Creating converters from the training
data of multiple speakers would drastically reduce the
cost of collecting the training data. In (Yasuda et al.,
2018b)(Yasuda et al., 2018a)(Yasuda et al., 2018c),
they performed domain transfer of the emotion in
speech by a CycleGAN with training data including
multiple speakers, and investigated the transforma-
tion result by varying acoustic features and hyperpa-
rameters. However, they did not report on the dif-
ference between results learned from single-speaker
training data and multiple-speaker training data. To
improve the accuracy of domain transfer, high-quality
data are generally required. However, high-quality
speech data with high emotional intensity are costly
to collect. If speech data with low emotional inten-
sity could improve the accuracy of domain transfer
for emotions, the speech data collection costs could be
reduced. For high-quality domain transfer of speech
emotions, one must investigate the training data. The-
refore, we investigate whether speech with low emoti-
onal intensity provides useful training data with mul-
tiple speakers and a single speaker.

The rest of this paper is organized as follows.
Section 2 describes the model used in this rese-
arch and the system that transfers the emotion in the
speech. In Section 3, we evaluate the system and dis-
cuss the training data. Conclusions and idea for future
works are presented in Section 4.

2 METHOD FOR DOMAIN
TRANSFER ON SPEECH

2.1 Generative Adversarial Network
(GAN)

The GAN (see Figure 1) is a generative model of
unsupervised learning proposed by Goodfellow et al.

Figure 2: CycleGAN.

(Goodfellow et al., 2014)(Orihara et al., 2018). Given
a dataset, the GAN generates data that are indistin-
guishable from the original data. The GAN is compo-
sed of two networks. The two main networks in the
GAN are configured as adversarial networks that are
optimized by a mini-max game. One component of
the GAN is the generator G, which learns the distri-
bution pdata(x) of the training data x. The generator
randomly samples a vector z from the prior distribu-
tion pz(z) and maps it to the output data x′ = G(z).
The other component of the GAN is a discriminator
D, which tries to discriminate between real input, that
is a member of the training data, and a fake one, that is
the output of the generator. The goal of D is D(x) = 1
for real x and D(x) = 0 for fake x. Whereas the op-
timized generator creates realistic data that fool the
discriminator, the optimized discriminator precisely
distinguishes the real and fake inputs:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))] (1)

Many recent GANs use deep convolutional ge-
nerative adversarial networks (Radford et al., 2015)
which adopt convolutional neural network (CNNs)
(Lecun et al., 1998) for GANs.

2.2 CycleGAN

CycleGAN is a generative model proposed by Zhu
et al. (Zhu et al., 2017). The architecture of Cycle-
GAN is shown in Figure 2. A main advantage of
CycleGAN is its unsupervised learning ability from
non-parallel training data. To explain the model, let
us assume two domains X and Y. The generator G
consists of two networks. In the first step, GX→Y
obtains x in X as input and generates y′ = GX→Y (x).
In the second step, GY→X obtains y′ and generates
x′′ = GY→X (GX→Y (x)). The third step compares x′′

and x. As CycleGAN assumes a one-to-one corre-
spondence between the domains, x and x′′ must be
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equal. Meanwhile, the discriminator DY discrimina-
tes y′ against Y . This process is also done vise versa.
As a result, two generators are created, enabling bidi-
rectional domain transfer.

The loss function in CycleGAN combines two ob-
jective functions, Adversarial Losses and the Cycle-
Consistency Loss (Zhou et al., 2016). The total loss
function is given by

L f ull = Ladv(GX→Y ,DY )+Ladv(GY→X ,DX )

+λcycLcyc(GX→Y ,GY→X ) (2)

where the adversarial losses are represented as fol-
lows:

Ladv(GX→Y ,DY ) = Ey∼pdata(y)[logDY (y)]
+Ex∼pdata(x)[log(1−DY (GX→Y (x)))] (3)

Ladv(GY→X ,DX ) = Ex∼pdata(x)[logDX (x)]
+Ey∼pdata(y)[log(1−DX (GY→X (y)))] (4)

and the cycle-consistency loss is determined as

Lcyc = Ex∼pdata [∥GY→X (GX→Y (x))− x∥1]

+Ey∼pdata(y)[∥GX→Y (GY→X (y))− y∥1] (5)

2.3 CycleGAN-VC

CycleGAN-VC was proposed by Kaneko and Kame-
oka for VC tasks. The original CycleGAN was desig-
ned for image translation applications. CycleGAN-
VC is a modified version of CycleGAN that performs
VC tasks using a gated CNN (Dauphin et al., 2017)
and an identity mapping loss. The present research
applies these ideas to the CycleGAN. Therefore, the
total loss function of CycleGAN in this research given
by

L f ull = Ladv(GX→Y ,DY )+Ladv(GY→X ,DX )

+λcycLcyc(GX→Y ,GY→X )

+λidLid(GX→Y ,GY→X ) (6)

We will give the definition of Lid in Section 2.3.2.

2.3.1 Gated Linear Unit

Time-series data must be processed in natural lan-
guage processing and speech processing. Deep lear-
ning of time-series data is usually performed by a re-
current neural network (RNN). However, because the
architecture of CycleGAN is based on CNN, adopting
CycleGAN to RNN is a difficult task. The activation
units in a gated CNN are gated linear units (GLUs).

Hl+1 = (Hl ∗Wl +bl)⊗σ(Hl ∗Vl + cl) (7)

where ⊗ means the element-wise product and σ is the
sigmoid function. The GLU gate structure describes
by Eq. 7 selectively propagates the time-dependent
information, enabling modeling of the time-series
data. CycleGAN-VC also uses GLUs as the activa-
tion units.

2.3.2 Identity Mapping Loss

When a generator designed to convert data from a spe-
cific domain obtains an input from a different domain,
the foreign input should be unaltered. To this end,
Kaneko and Kameoka proposed a constraint called
the identity mapping loss. In the domain transfer of
speech emotions, converting other domains is unde-
sirable. The identity mapping loss is represented as
follows:

Lid = Ey∼pdata(y)[∥GX→Y (y)− y∥1]

+Ex∼pdata(x)[∥GY→X (x)− x∥1] (8)

During training, Lid is added weight coefficient λid in
Eq. 6.

2.4 Overall Architecture of the
Proposed System

The system for transforming the emotions in speech
is overviewed in Figure 3. The speech features
are extracted from the speech data by TANDEM-
STRAIGHT (Kawahara et al., 2008). The extrac-
ted features are the mel-frequency Cepstrum coef-
ficients (MFCCs), F0, and the aperiodicity index
(AP). Each feature is popular among voice conver-
sion studies (Toda et al., 2007)(Kaneko and Kame-
oka, 2017)(Fang et al., 2018)(Sekii et al., 2017). The
MFCC, F0 and AP represent the vocal tract characte-
ristics, the pitch and intonations of the voice, and the
mixed sound of random and periodic components, re-
spectively. Therefore, MFCC and F0 are strongly de-
pendent on the speaker and the emotion. The MFCC
and F0 are converted by generators in the CycleGAN,
and the AP is unchanged from those of the input AP.
In this system, one set of networks is constructed for
each gender because the gender greatly influences the
F0 values.

2.5 Network Architecture and Training
Details

The generators and discriminators are designed as
2D CNNs following StarGAN-VC (Kameoka et al.,
2018). The features of CycleGAN-VC (Kaneko and
Kameoka, 2017) used in our architecture are shown
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Figure 3: The system for transforming the emotions in speech.

below. Each generator comprises three downsam-
pling layers, six residual layers (He et al., 2016), two
upsampling layers, and a convolutional layer. Each
discriminator is composed of a convolutional layer
and four downsampling layers. The activation units
employ GLUs in the hidden layers of the generators
and discriminators, and sigmoid functions in the out-
put layers. For layers other than the input and out-
put layers in the generators and discriminators, in-
stance normalization (Ulyanov et al., 2016) is app-
lied. The networks are trained with the Adam opti-
mizer (Kingma and Ba, 2015) with a batch size of 1.
The training rate is 0.001 for generators and 0.00001
for discriminators. λcyc and λid are set to 10 and 15,
respectively.

3 EXPERIMENTS

3.1 Datasets

Experiments were performed on the OGVC dataset
(Arimoto et al., 2012), a Japanese speech dataset with
emotion labels. There are eight types of emotions,
namely, acceptance (ACC), anger (ANG), anticipa-
tion (ANT), disgust (DIS), fear (FEA), joy (JOY),
sadness (SAD), and surprise (SUR). Speeches expres-
sing these emotions were given by four professional
voice actors: two males (MOY, MTY) and two fe-
males (FOY, FYN). Each datum in OGVC is labeled

with one emotion type and the degree of its intensity
on a scale of 0 to 3. In the present experiment, we
use three emotions (“ANG”, “JOY”, “SAD”), follo-
wing the choice made by (Aihara et al., 2012), each
with an intensity level of 2 and 3. The speech data
are downsampled to 16 kHz, and the acoustic features
are extracted every 5 ms by TANDEM-STRAIGHT.
In acoustic features, the first channel represents a 24-
dimensional MFCC, the second channel represents
a 24-dimensional F0 after discrete cosine transform
(sliding window size: 25, frame size: 1), and the third
and fourth channels employ one-hot speaker labels.
The data combination is shown in Table 1. In Table
1, the column of “name” is combination name, the
column of “speaker” is the name of speakers used in
training and evaluation, the column of “intensity” is
the emotional intensity used in training, the column
of “train” is the number of the utterances used in trai-
ning, and the column of “evaluation” is the number of
the utterances used in evaluation.

Since the purpose of this research is conversion of
emotional speeches, we are uninterested in less emo-
tional speech. Therefore, only speech data of inten-
sity 3 is used for evaluation data, and those that ap-
parently failed in speech synthesis are removed from
evaluation data.
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Table 1: Conversion pattern.

Name Speaker Intesity Train Evaluation
MA MOY, MTY 2, 3 68 6
MB MOY, MTY 3 34 6
FA FOY, FYN 2, 3 68 6
FB FOY, FYN 3 34 6
MAX MOY 2, 3 34 3
MAY MTY 2, 3 34 3
FAX FOY 2, 3 34 3
FAY FYN 2, 3 34 3

3.2 Experimental Conditions

We conduct both objective and subjective evaluation
experiments.

Objective experiments evaluate the emotional ex-
pressions using classifiers constructed in random fo-
rest of Weka (Garner, 1995). The maximum and mi-
nimum values of the 24-dimensional MFCC and F0,
and the speaker information, are available for training
the classifiers. The 10-fold cross validation results of
the classifiers are shown in Table 2.

The subjective experiments evaluated the natural-
ness, identifiability of the speakers, and emotional ex-
pressions of the conversion results using ten subjects.
The naturalness and identifiability of the speakers are
evaluated by the mean opinion score, and the emo-
tional expressions are evaluated by the classification
accuracy.

3.3 Results

3.3.1 Objective Evaluation

The recalls and precisions of the classifier’s outputs
for the created speeches are shown in Table 3. MA is
relatively more accurate than MB, and there is a tra-
deoff between FA and FB. These results confirm that
when training with multiple speakers, speech with
emotional intensity 2 contributes to the accuracy of
the emotional expressions. In Table 3, MAX&MAY
is a combination of MAX and MAY, and FAX&FAY
is a combination of FAX and FAY. We also find
that MAX&MAY is relatively more accurate than
MB, and that FB is relatively more accurate than
FAX&FAY. Therefore, speech with emotional inten-
sity 2 can improve the accuracy of the emotional ex-
pressions when training with a single male speaker.
However, in the case of a single female speaker, it
does not improve. We conclude that speech with emo-
tional intensity 2 provides useful training data when
training with multiple speakers.

Figure 4: Naturalness results.

Figure 5: Similarities results.

3.3.2 Subjective Evaluation

The naturalness evaluation results are shown in Figure
4. MA is relatively more natural than MB, and FA
is relatively more natural than FB. These results de-
monstrate that when training with multiple speakers,
speech with emotional intensity 2 can contribute to
the naturalness. MAX and MAY are relatively more
natural than MB, and FAX and FAY are relatively
more natural than FB. That is, speech with emotional
intensity 2 also contributes to the naturalness when
training with a single speaker. In fact, training with a
single speaker achieved higher naturalness than trai-
ning with multiple speakers.

The speaker identifiability evaluation results,
which are evaluated by the similarity between the
speaker identity found in the converted voice and the
original, are shown in Figure 5. In MA, the spea-
ker identities are more similar than in MB. In FA, the
speaker identities are more similar than in FB. These
results demonstrate that when training with multiple
speakers, speech with emotional intensity 2 can con-
tribute to the similarity. In MAX and MAY, the spea-
ker identities are more similar than in MB. In FAX
and FAY, the speaker identities are more similar than
in FB. These results show that even when training
with a single speaker, speech with emotional intensity
2 improve the similarity. Also, it is found that training
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Table 2: Performance of classifiers [%].

ANG JOY SAD
Recall Precision Recall Precision Recall Precision

Male 52.9 50.7 56.9 62.1 68.1 65.3
Female 69.1 58.0 63.9 69.7 61.1 67.7

Table 3: Classification results of emotional expressions by classifiers [%].

ANG JOY SAD
Recall Precision Recall Precision Recall Precision

MA 81.8 42.9 50.0 66.7 41.7 100.0
MB 72.7 47.1 30.0 37.5 41.7 62.5
FA 41.7 27.8 41.7 35.7 16.7 50.0
FB 25.0 30.0 58.3 43.8 36.4 44.4

MAX&MAY 83.3 45.5 27.3 37.5 16.7 40.0
FAX&FAY 45.5 31.3 36.4 30.8 10.0 33.3

Table 4: Classification results of emotional expressions by subjects [%].

ANG JOY SAD
Recall Precision Recall Precision Recall Precision

MA 23.3 27.5 25.8 27.4 39.1 31.9
MB 19.1 22.1 35.0 35.0 36.7 32.6
FA 31.7 23.0 19.2 24.7 29.2 34.3
FB 20.8 19.5 12.5 17.0 30.9 25.4

MAX 18.3 17.5 11.7 16.7 28.3 22.7
MAY 16.7 16.9 6.0 7.7 41.7 34.7
FAX 18.3 18.3 8.0 10.8 38.0 30.2
FAY 8.0 7.7 15.0 20.0 20.0 15.9

with a single speaker achieves higher similarities than
training with multiple speakers.

The results of the emotional expression evaluati-
ons are shown in Table 4. Here, the accuracies of MA
and MB have little difference. However, FA is relati-
vely more accurate than FB. These results show that
when training with multiple speakers, speech with
emotional intensity 2 contributes slightly to the accu-
racy of the emotional expressions. We also find that
MB is relatively more accurate than MAX and MAY,
and that FB is relatively more accurate than FAX and
FAY. These results show that when training with a sin-
gle speaker, speech with emotional intensity 2 cannot
contribute to the accuracy of the emotional expressi-
ons. Some cases show extremely low scores. The
reason is unclear.

From the results of the three evaluation experi-
ments, we conclude that when training with multi-
ple speakers, speech with emotional intensity 2 can
contribute to the accuracy of the naturalness, the si-
milarities, and the emotional expressions in speech.
Therefore, speech with emotional intensity 2 provides

useful training data when training with multiple spea-
kers in conversion of emotional intensity 3. However,
when training with a single speaker, speech with emo-
tional intensity 2 can contribute to the accuracy of the
naturalness and similarities, but not to the accuracy
of the emotional expressions. Therefore, including
speech with emotional intensity 2 in the training data
will not help the transfer domain of the speech emoti-
ons when training with a single speaker. More speech
with emotional intensity 3 might improve the accu-
racy of the emotional expressions when training with
a single speaker.

3.4 Inception Scores

We calculated the inception scores (Salimans et al.,
2016) of features generated by CycleGAN. The fea-
ture targeted in this additional experiment is F0 and
MFCC of emotional intensity 3 generated from the
evaluation data. In this experiment, we used Incepti-
onV3 of Keras (Chollet et al., 2015). In order to make
the input size of feature same as the inception model,
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Table 5: Results of inception scores.

Number of features Inception score
All training data (intensity 2 & 3) 1500 1.0000968

All training data (intensity 3) 792 1.0000962
MA 178 1.0000932
MB 178 1.0000933
FA 172 1.0000973
FB 172 1.0000973

MAX 90 1.0000981
MAY 88 1.0000910
FAX 82 1.0000979
FAY 90 1.0000906

it was resized and complemented by adding random
value. The inception scores are shown in Table 5.
In Table 5, the inception score from each experiment
have little difference.

4 CONCLUSION AND FUTURE
WORKS

To improve natural speech synthesis, we performed
domain transfer of the emotions in speech. We con-
vert speeches to the “ANG”, “JOY”, and “SAD” dom-
ains by a network based on CycleGAN, which de-
monstrates high performance in VC. In addition, we
investigate the usefulness of speech with emotional
intensity 2 as training data. The evaluation experi-
ment confirmed that speech with emotional intensity 2
provides useful training data when training with mul-
tiple speakers in conversion with emotional intensity
3.

In future works, we will investigate many-to-many
conversions of emotion and conduct investigations on
networks that can convert to arbitrary attributes, such
as Semi-Latent GAN (Yin et al., 2017) and StarGAN
(Choi et al., 2017).
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