
Multi-layer Extreme Learning Machine-based Autoencoder for

Hyperspectral Image Classification

Muhammad Ahmad1,2,∗, Adil Mehmood Khan1, Manuel Mazzara1 and Salvatore Distefano2

1Innopolis University, Innopolis, Russia
2University of Messina, Messina, Italy

Keywords: Extreme Learning Machine (ELM), Deep Neural Networks (DNN), Auto Encoder (AE), Hyperspectral Image

Classification.

Abstract: Hyperspectral imaging (HSI) has attracted the formidable interest of the scientific community and has been

applied to an increasing number of real-life applications to automatically extract the meaningful information

from the corresponding high dimensional datasets. However, traditional autoencoders (AE) and restricted

Boltzmann machines are computationally expensive and do not perform well due to the Hughes phenomenon

which is observed in HSI since the ratio of the labeled training pixels on the number of bands is usually

quite small. To overcome such problems, this paper exploits a multi-layer extreme learning machine-based

autoencoder (MLELM-AE) for HSI classification. MLELM-AE learns feature representations by adopting

a singular value decomposition and is used as basic building block for learning machine-based autoencoder

(MLELM-AE). MLELM-AE method not only maintains the fast speed of traditional ELM but also greatly

improves the performance of HSI classification. The experimental results demonstrate the effectiveness of

MLELM-AE on several well-known HSI dataset.

1 INTRODUCTION

Hyperspectral images (HSI) provides a unique way

for characterizing objects of interest in geographi-

cal scenes with very rich spatial-spectral informa-

tion contained in a 3-D hypercube (Ahmad et al.,

2016). However, classification of such high dimen-

sional hyperspectral data is still a challenging task,

especially in the case the ratio between the number of

available labeled training samples and the number of

spectral dimensions (usually large) is small, which is

commonly known as Hughes phenomenon (Hughes,

1968).

To cope with the issues due to the high number of

dimensions, a number of feature extraction, selection,

and classification methods have been proposed in the

recent years (Ren et al., 2014; Ahmad et al., 2011; Liu

et al., 2018). These methods have yielded quite good

outcomes. However, their performance can be further

improved by addressing two main issues: 1) inaccu-

rate classification in the case of the Hughes pheno-

menon (Ahmad et al., 2018); 2) comparatively low

efficiency for processing high dimensional HSI data

(Ahmad et al., 2017a).

Extreme learning machine (ELM), as a single hid-

den layer feed-forward neural network, is an effective

and fast machine learning method and has received

a remarkable attention due to its high generalization

performance (Ding et al., 2015). In ELM, the hidden

layer parameters need to not be tuned once the num-

ber of hidden layer nodes is learned. Moreover, the

bias and weights between the hidden and input layers

are randomly assigned without taking into account the

training samples and applications (Zhou et al., 2015).

Due to its generalization capabilities, ELM has

been extensively studied for HSI classification pro-

blems, for instance in (Arguello and Heras, 2015;

Shen et al., 2016), extended morphological profiles

and bilateral filtering based methods were used for

feature extraction and ELM was used as a base clas-

sifier. In (Chen et al., 2014; Dora et al., 2014),

Gabor filter and watershed-based methods were em-

ployed for feature extraction and ELM was used as a

final classification method. Regardless of computati-

onal complexity and other issues, these methods have

achieved a remarkable performance for HSI classi-

fication. However, these methods ignore one very

important aspect in ELM: the randomly rendered in-

put bias and weights may cause ill-posed problems.

Based on this phenomenon, to handle such a pro-
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blem effectively and efficiently we intend to exploit

the multi-layer extreme learning machine-based au-

toencoder (MLELM-AE) method for HSI classifica-

tion when we do not need to extract the features ex-

plicitly, as mentioned in (Kasun et al., 2013), for di-

git classification problems. To the best of our know-

ledge, it is a first of its kind of work for HSI classifica-

tion. A similar criterion has been explored in the past

(Kasun et al., 2013). However, in our work, instead

of using the pipeline for traditional image classifica-

tion or recognition, we implemented and tested it on

hyperspectral image classification and segmentation

problem which is more complected then the traditio-

nal image classification.

The remainder of the paper is structured as fol-

lows. Section 2 presents the theoretical aspects of ex-

treme learning machine pipeline followed by a theo-

retical explanation of the extreme learning machine

learning based autoencoder. Section 3 discusses ex-

perimental setups and metrics. Section 4 discussed

the dataset, settings, and results. Finally, Section 5

summarizes the contributions and future research di-

rections.

2 EXTREME LEARNING

MACHINE

In ELM, the bias and weight vectors between the hid-

den and input layer are randomly assigned, while the

net values are obtained by the learning process. Once

the initial values are preserved, the hidden layer out-

put matrix persist unaltered in the learning process.

Let as assume, X = (x1,x2,x3, · · · ,xN) ∈ Rd×N

be the training data which has N number of pixels

and each pixel has d-dimensional feature. Let Y =
(y1,y2,y3, · · · ,yM) ∈ RM×N be a matrix representing

the class labels of the training samples in which M

is the number of classes in HSI data. Thus, the

ELM model with L hidden neurons and the activation

function H(x) can be expressed as;

N

∑
j=1

β jH(W T
J xi + b j) = yi; i = 1,2,3, · · ·N (1)

where H(W T
J xi + b j) represents the output of the jth

hidden neuron with respect to the input xi and β j, Wj,

and b j represents the weight vector between hidden

layer and output layer, and weight and bias between

hidden and input layer, respectively. The above ex-

pression can simply be written as;

HT β = YT (2)

where

β = [β1,β2,β3, · · · ,βM]L×M (3)

H = [H(x1),H(x2),H(x3), · · ·H(xn)]L×N (4)

and

H(xi)= [H1(xi),H2(xi),H3(xi), · · · ,HL(xi)]
T
L×1 (5)

Finally, β can be computed as;

β ≈ (HT )†YT (6)

where (.)† is the Moore Penrose generalized inverse

of a matrix.

The main goal of multi-layer extreme learning

machine-based autoencoder is to learn a useful fea-

ture representation in three different folds similar to

traditional autoencoders (Ahmad et al., 2019). Na-

mely, compressed representation - manifest input fe-

atures form high dimensional hyperspectral space to

a lower dimensional feature space, sparse representa-

tion - low dimensional input feature space to higher

dimensional hyperspectral feature space, and finally,

equal input/output dimensional representation - inter-

pret input space dimensions equal to feature space di-

mension.

According to (Kasun et al., 2013; Huang et al.,

2006), extreme learning machine is a universal ap-

proximator, therefore, MLELM-AE is also a univer-

sal approximator. In MLELM-AE the orthogonal

random biases and weights of the hidden nodes un-

dertaken the input samples to equal dimensional space

as shown in (Kasun et al., 2013; Huang et al., 2006;

Johnson and Lindenstrauss, 1984) and in below equa-

tion similar to the equation (1),

h ≈ g(a× x+ b) (7)

where aT
× a = I in which a = [a1,a2, · · ·aL], and

bT
× b = 1 in which b = [b1,b2, · · · ,bL] are the ort-

hogonal random weights and bias between input and

hidden nodes, respectively. Therefore, as shown in

(Kasun et al., 2013; Huang et al., 2006), the output

weights for compressed and sparse MLELM-AE re-

presentation can be obtained by incorporating the re-

gularization term to enhance the generalization per-

formance and robustness

β ≈

(

I

C
+HT H

)−1

HT X (8)

where C is the regularization term, X =
[x1,x2,x3, · · · ,xN ] are input and output data samples,

and H = [h1,h2,h3, · · · ,hN ] are the hidden layer

outputs of MLELM-AE. The output weights can also

be computed as;

β ≈ H−1X (9)
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where βT β = I to make the input and output equal.

Therefore, the singular value decomposition of re-

gularized output weights for compressed and sparse

MLELM-AE representation can be computed as in

(Kasun et al., 2013), i.e.

Hβ ≈

N

∑
i=1

ui
v2

i

v2
i +C

uT
i X (10)

where v represents the singular values of H and u re-

presents the eigenvectors of HHT . Since, H is the

projected feature space squashed via a liner or nonli-

near (sigmoid or any appropriate) activation function,

we speculate that the output weights β will be lear-

ning to represent the features of the input space via

singular value decomposition.

Furthermore, if the number of hidden nodes Lk in

kth hidden layer is equal to the number of hidden no-

des Lk−1 in the (k − 1)th hidden layer in which g is

chosen as linear activation function other way around

g will be chosen as nonlinear piece-wise activation

function. This way

Hk
≈ g((βk)T Hk−1) (11)

where Hk is the kth hidden layer output matrix. For

better intuition, the input after x can be identified as

the 0th hidden layer where k = 0. Finally, the out-

put of the connections among the last hidden layer

and the output node t is over-analytically computed

by employing regularized least squares, where t is the

output data.

3 EXPERIMENTAL METRICS

In this section, the performance of MLELM-AE is

evaluated using seven different well-known publicly

available AVIRIS, ROSIS, and NASA EO-1 satellite

Hyperion sensor based hyperspectral datasets. More

information about these datasets can be found in (Liu

et al., 2018; Ahmad et al., 2018; Ahmad et al., 2017b;

Li et al., 2013; He et al., 2018; Datasets, ).

Confusion matrix is generally used to evaluate the

performance of HSI classification in terms of over-

all, average accuracy, and kappa κ coefficient. In this

work, the overall accuracy for hyperspectral image

classification is computed by the following formula:

OA =
∑N

i=1 xii

∑M
j=1 ∑N

i=1 xi j

(12)

From the above equation, it can be seen that the

magnitude of the overall accuracy is only affected by

the diagonal elements. It is more likely affected by

classes that contain more elements so it is not suf-

ficient to comprehensively evaluate the classification

accuracy of all classes. A more comprehensive in-

dex of classification accuracy evaluation is the κ coef-

ficient utilizing all samples of the confusion matrix

thus reflecting the consistency between classification

results and ground truth. The κ coefficient is evalua-

ted by the formula (Ahmad et al., 2017b):

κ =
N ∑i ai −∑i bidi

N2 −∑i bidi
(13)

where N is the total number of samples (pixels in HSI

cube), ai is the number of correctly predicted samples

in the given class, ∑i ai is the sum of the number of

correctly predicted samples, bi is the actual number

of samples belonging to the given class and di is the

number of samples that have been correctly predicted

into the given class (Ahmad et al., 2018).

Furthermore, to evaluate the significance of

MLELM-AE, several statistical tests are conducted

e.g, F1-score, precision, and recall rate. The precision

maps the ratio of correctly identified positive samples

to the total predicted positive samples. High precision

value indicates lesser false positive rates referring to

the model ability to correctly identify the true posi-

tive samples. Whereas, recall accounts the ratio of

correctly predicted positive samples from the entire

positive samples as true. As similar to precision, the

higher recall rate the better the model is.

Likewise, F1-score is a weighted average of pre-

cision and recall rates. Therefore, F1-score takes both

false negatives and false positives into account. F1-

score is more useful then the other accuracy measures,

but intuitively not as easy to understand as accuracy,

particularly when we have unbalanced class distribu-

tion. Several accuracy measures works well if false

negatives and positives have similar cost, if in case

these are different, then better to consider both preci-

sion and recall rate to evaluate the model.

In this section, we will also evaluate the relevant

tuning parameters which include the number of neu-

rons in the hidden layers, the total number of layers,

and the appropriate value for regularization term C. In

our experiments, the regularization term is automa-

tically tuned by the 5-fold-cross-validation process.

The number of hidden layer neurons is systematically

set from the range [Total Number of Training Samples

- Total Number of Testing Samples], and the number

of layers is heuristically set in the range [1− 5] for

cross-validation process to find the optimum value of

regularization term from the interval [1e−1
− 1e14].
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4 EXPERIMENTAL RESULTS

AND DISCUSSION

In this section, we will briefly discuss the experimen-

tal results acquired by MLELM-AE pipeline on se-

ven different hyperspectral datasets. Prior to the ex-

periments, we performed the necessary normalization

between [0− 1]. All the experiments have been car-

ried out on a cluster using MATLAB (2017a) on In-

tel Core (TM) i7-7700K CPU 2.40GHz, 1962 MHz,

Ubuntu 16.01.5 LTS, Cude complation tools, realease

7.5, V7.5.17 with 65GB RAM.

The presented experiments shows the accuracy

analysis in terms of overall accuracy, average accu-

racy, and κ coefficient. Figures 1-7 shows the ground

truth maps for original test samples along with the

prediction of these samples in geographical maps.

Furthermore, these Figures also presented the

average, overall, and κ accuracy in multiclass form

along with the mean squared error of MLELM-AE

model in 10-fold-cross-validation along with the trai-

ning and testing time for each dataset. The training

and test time is significantly less than the traditional

back propagation based deep neural networks. Furt-

hermore, the plots shows higher generalization per-

formance with less amount of training samples.

To highlight the class-based classification results,

Tables 1-7 report the κ coefficient for each individual

class, providing insights on the number of training

versus estimated labels used in our experiments and

thus demonstrating clear advantages of using limited

samples for the learning MLELM-AE model. In most

cases, the proposed pipeline outperforms existing so-

lutions.

Experiments with Salinas Dataset

The Salinas dataset consists of 224 spectral bands

with a high spatial resolution of 3.7 m. Salinas full

scene was collected by AVIRIS sensor over Salinas

Valley California.

In Salinas scene some bands were water absorp-

tion and removed prior to the analyses. The removed

bands are 108−112, 154−167 and 224. The full Sa-

linas scene is covered with 512× 217 pixels per band

and contains vegetables, bare, soils and vineyard field.

Salinas ground truth contains 16 classes.

A sub-scene of Salinas dataset named Salinas-A

consists of 86× 83 samples per band and 6 classes.

The Salinas-A samples are located in the full Salinas

scene at 591− 676 and 158− 240. Dataset files and

description can be obtained from (Datasets, ).

The experimental results are shown in Tables 1

and 2 and Figures 1 and 2. From results, it can be cle-

arly seen that MLELM-AE pipeline greatly improved

the classification accuracies for Salinas and Salinas-A

datasets with acceptable generalization performance.

Furthermore, the detailed accuracy and time taken to

train and test the model is provided in the caption re-

spective Figures. In all these experiments the training

size is set as 1% samples from Salinas and Salinas-A

datasets, respectively.

Table 1: Classification accuracy (κ) analysis and statistical
measures for Salinas-A Dataset.

Class Names (Train, Test) κ Recall Precision F1-Score

Brocoli Green Weeds 1 (8, 375) 0.9316±0.0516 0.9948 0.9999 0.9973

Corn Senesced Green Weeds (27, 1289) 0.9695±0.0144 0.9795 0.9999 0.9896

Lettuce Romaine 4wk (13, 591) 0.9773±0.0212 0.9934 0.9772 0.9852

Lettuce Romaine 5wk (31, 1464) 0.9975±0.0022 0.9999 0.9973 0.9987

Lettuce Romaine 6wk (14, 647) 0.9947±0.0026 0.9969 0.9763 0.9865

Lettuce Romaine 7wk (16, 767) 0.9757±0.0125 0.9796 0.9783 0.9789

Table 2: Classification accuracy (κ) analysis and statistical
measures for Salinas Dataset.

Class Names (Train, Test) κ Recall Precision F1-Score

Brocoli Green Weeds 1 (61, 2009) 0.9982±0.0003 0.9979 1.0000 0.9989

Brocoli Green Weeds 2 (112, 3726) 0.9968±0.0004 0.9958 0.9991 0.9975

Fallow (60, 1976) 0.8404±0.0232 0.8721 0.9631 0.9153

Fallow Rough Plow (42, 1394) 0.9835±0.0033 0.9859 0.9925 0.9892

Fallow Smooth (81, 2678) 0.9883±0.0029 0.9795 0.9002 0.9382

Stubble (119, 3959) 0.9971±0.0005 0.9963 0.9994 0.9979

Celery (108, 3579) 0.9963±0.0007 0.9959 0.9945 0.9952

Grapes Untrained (339, 11271) 0.8891±0.0068 0.8795 0.7884 0.8314

Soil Vinyard Develop (187, 6203) 0.9909±0.0026 0.9960 0.9848 0.9904

Corn Senesced Green Weeds (99, 3278) 0.9348±0.0086 0.9465 0.9552 0.9508

Lettuce Romaine 4wk (33, 1068) 0.9539±0.0081 0.9748 0.9465 0.9605

Lettuce Romaine 5wk (58, 1927) 0.9999±0.0001 0.9994 0.9623 0.9806

Lettuce Romaine 6wk (28, 916) 0.9785±0.0018 0.9752 0.9569 0.9659

Lettuce Romaine 7wk (33, 1070) 0.9284±0.0083 0.9402 0.9587 0.9493

Vinyard Untrained (219, 7268) 0.6238±0.0105 0.6300 0.7857 0.6994

Vinyard Vertical Trellis (55, 1807) 0.9840±0.0020 0.9857 0.9976 0.9917

Test Test Prdict

Figure 1: True Testing Maps and predicted Test Maps
for Salinas-A dataset with 10-fold-cross-validation-based
Average Accuracy = 0.9744±0.0093, Overall Accuracy =
0.9797±0.0059, κ= 0.9746±0.0073, Mean-squared Error
= 0.2561± 0.0478, and Training Time = 0.0918± 0.0067
and Test Time = 0.2539±0.0141.

Experiments with Kennedy Space Center

Dataset

The NASA AVIRIS instrument acquired data over

the Kennedy Space Center (KSC) Florida on March

23, 1996. AVIRIS acquired data in 224 bands of

10 nm width with center wavelengths in the range

400 − 2500 nm, from an altitude of approximately

20 km with a spatial resolution of 18 m. After remo-

ving water absorption and low SNR bands, 176 bands

were used for the analysis.
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Test Test Prdict

Figure 2: True Testing Maps and predicted Test Maps
for Salinas dataset with 10-fold-cross-validation-based
Average Accuracy = 0.9428±0.0018, Overall Accuracy =
0.9106±0.0013, κ= 0.9002±0.0015, Mean-squared Error
= 1.9138±0.0087, and Training Time = 54.2526±2.0612
and Test Time = 105.7566±3.6922.

Training data were selected using land cover maps

derived from color infrared photography provided by

the KSC and Landsat Thematic Mapper (TM) ima-

gery. The vegetation classification scheme was deve-

loped by KSC personnel in an effort to define functio-

nal types that are discern-able at the spatial resolution

of Landsat and this AVIRIS dataset.

Discrimination of land cover for this environment

is difficult due to the similarity of spectral signatures

for certain vegetation types. For classification purpo-

ses, 13 classes representing the various land cover ty-

pes that occur in this environment were defined for the

site. Dataset files and description can be taken from

(Datasets, ). The experimental results are shown in

Table 3 and Figure 3. From results, one can conclude

that MLELM-AE greatly improved the classification

accuracies for more complicated Kennedy space cen-

ter AVIRIS sensor dataset with enhanced generaliza-

tion capabilities. Moreover, the detailed accuracy and

time taken to train and test the model is provided in

the caption.

Table 3: Classification accuracy (κ) analysis and statistical
measures for Kennedy Space Center Dataset.

Class Names (Train, Test) κ Recall Precision F1-Score

Scrub (229, 761) 0.9895±0.0018 0.9906 0.7877 0.8776

Willow Swamp (73, 243) 0.9541±0.0169 0.8941 0.7958 0.8421

CP/Oak (77, 252) 0.9240±0.0225 0.9162 0.6667 0.7718

CP hammock (76, 256) 0.4903±0.0388 0.5000 0.8073 0.6175

Slash Pine (49, 161) 0.6384±0.0253 0.6250 0.8434 0.7179

Oak/Broadleaf (69, 229) 0.2444±0.0192 0.2875 0.7541 0.4163

Hardwood Swamp (32, 105) 0.4603±0.0658 0.6575 0.7500 0.7007

Graminoid Marsh (130, 431) 0.8545±0.0133 0.8638 0.9629 0.9107

Spartina Marsh (156, 520) 0.9841±0.0039 0.9890 0.8933 0.9387

Cattail Marsh (122, 404) 0.9439±0.0089 0.9362 0.9778 0.9565

Salt Marsh (126, 419) 0.9785±0.0044 0.9659 0.9861 0.9759

Mud Flats (151, 503) 0.8773±0.0179 0.9233 0.9207 0.9219

Water (279, 927) 0.9852±0.0043 0.9784 0.9969 0.9875

Test Test Prdict

Figure 3: True Testing Maps and predicted Test Maps for
Kennedy Space Center (KSC) dataset with 10-fold-cross-
validation-based Average Accuracy = 0.7942 ± 0.0059,
Overall Accuracy = 0.8786±0.0034, κ= 0.8642±0.0038,
Mean-squared Error = 1.4954±0.0374, and Training Time
= 14.2984±0.5296 and Test Time = 0.7258±0.0662.

Experiments with Indian Pines Dataset

Indian Pines dataset is gathered by AVIRIS sensor

over the Indian Pines test site in north-western Indi-

ana and consists of 145×145 pixels and 224 bands in

the wavelength range 0.4− 2.5× 10−6 meters.

Indian Pines dataset contains 2/3 agriculture, and

1/3 forest or other natural perennial vegetation. There

are two major dual lane highways, a rail line, as well

as some low density housing, other build structures,

and small roads. Since Indian Pines dataset was taken

in June some of the crops present, corn, soybeans, are

in early stages of growth with less then 5% coverage.

The ground truth available is distinguished into six-

teen classes not all mutually exclusive.

We have also reduced the number of bands to 200

by removing bands covering the region of water ab-

sorption. The removed bands are 104-108, 150-163,

220. Dataset files and description can be obtained

from (Datasets, ). The experimental results are shown

in Table 4 and Figure 4. From results, one can con-

clude that MLELM-AE greatly improved the classifi-

cation accuracies with enhanced generalization capa-

bilities. Furthermore, the detailed accuracy analysis

and time taken to train and test the model is provided

in the caption.

Table 4: Classification accuracy (κ) analysis and statistical
measures for Indian Pines Dataset.

Class Names (Train, Test) κ Recall Precision F1-Score

Alfalfa (10, 46) 0.4556±0.0736 0.6944 0.8065 0.7464

Corn-notill (286, 1428) 0.8117±0.0070 0.8284 0.7472 0.7857

Corn-mintill (166, 830) 0.6048±0.0215 0.5768 0.7539 0.6536

Corn (48, 237) 0.3862±0.0385 0.3492 0.7952 0.4853

Grass-pasture (97, 483) 0.8943±0.0159 0.8834 0.9419 0.9118

Grass-trees (146, 730) 0.9829±0.0046 0.9846 0.9055 0.9434

Grass-pasture-mowed (6, 28) 0.5409±0.0469 0.5455 1.0000 0.7059

Hay-windrowed (96, 478) 0.9927±0.0038 0.9921 0.9595 0.9756

Oats (4, 20) 0.1625±0.0688 0.2500 0.8000 0.3809

Soybean-notill (195, 972) 0.6779±0.0137 0.7091 0.7527 0.7303

Soybean-mintill (491, 2455) 0.8457±0.0053 0.8432 0.7520 0.7951

Soybean-clean (119, 593) 0.7569±0.0172 0.8101 0.8571 0.8329

Wheat (41, 205) 0.9866±0.0043 0.9756 0.9639 0.9697

Woods (253, 1265) 0.9641±0.0047 0.9664 0.9297 0.9477

Buildings-Grass-Trees-Drives (78, 386) 0.6042±0.0159 0.6266 0.8143 0.7083

Stone-Steel-Towers (19, 93) 0.7284±0.0421 0.8108 1.0000 0.8956
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Figure 4: True Testing Maps and predicted Test Maps
for Indian Pines dataset with 10-fold-cross-validation-
based κ = 0.7839±0.0028, Average Accuracy = 0.7122±
0.0078, Overall Accuracy = 0.8122 ± 0.0024, Mean-
squared Error = 2.6312 ± 0.0359, and Training Time =
38.8711±0.7759 and Test Time = 3.2365±0.1330.

Experiments with Pavia University and

Pavia Center Datasets

The Pavia University (PU) dataset is acquired by the

ROSIS optical sensor during a flight campaign over

Pavia in northern Italy with geometric resolution of

1.3m. PU data consists of 102 spectral bands with

1096× 1096 samples per band.

Some of the samples in PU dataset contains no in-

formation and have to be discarded prior to the analy-

sis. PU scene ground-truths identified 9 classes. Da-

taset files and description can be obtained from (Da-

tasets, ).

The experimental results are shown in Tables 5

and 6 and Figures 5 and 6. From results, one can con-

clude that MLELM-AE greatly improved the classi-

fication accuracies with enhanced generalization ca-

pabilities for more complicated ROSIS sensor ba-

sed datasets. Evaluating ROSIS sensor datasets is

more challenging classification problem dominated

by complex urban classes and nested regions then

AVIRIS. The detailed accuracy analysis in terms of

average, overall, and kappa accuracies along with the

time taken to train and test the model is provided in

the caption.

Table 5: Classification accuracy (κ) analysis and statistical
measures for Pavia University Dataset.

Class Names (Train, Test) κ Recall Precision F1-Score

Asphalt (1285, 6631) 0.8105±0.0080 0.8091 0.8916 0.8485

Meadows (1980, 18649) 0.9725±0.0016 0.9694 0.8049 0.8795

Gravel (93, 2099) 0.6303±0.0133 0.6406 0.7374 0.6856

Trees (81, 3064) 0.8115±0.0048 0.8125 0.8199 0.8162

Painted metal sheets (198, 1345) 0.9947±0.0011 0.9926 0.9917 0.9923

Bare Soil (278, 5029) 0.2468±0.0078 0.2256 0.7964 0.3516

Bitumen (219, 1330) 0.6607±0.0116 0.6859 0.8857 0.7731

Self-Blocking Bricks (228, 3682) 0.8296±0.0096 0.8252 0.6421 0.7222

Shadows (86, 947) 0.8599±0.0140 0.8885 0.9299 0.9088

Test Test Prdict

Figure 5: True Testing Maps and predicted Test Maps
for Pavia University dataset with 10-fold-cross-validation-
based Overall Accuracy = 0.8099±0.0014, Average Accu-
racy = 0.7574 ± 0.0018, κ = 0.7386 ± 0.0019, Mean-
squared Error = 1.8703 ± 0.0100, and Training Time =
322.2472±2.6395 and Test Time = 70.9769±1.2438.

Table 6: Classification accuracy (κ) analysis and statistical
measures for Pavia Center Dataset.

Class Names (Train, Test) κ Recall Precision F1-Score

Water (25, 824) 0.9996±0.0001 0.9997 0.9976 0.9986

Trees (24, 820) 0.9473±0.0055 0.9499 0.8319 0.8870

Asphalt (23, 816) 0.5989±0.0211 0.5849 0.7904 0.6723

Self Blocking Bricks (21, 808) 0.6389±0.0175 0.6820 0.6612 0.6715

Bitumen (21, 808) 0.8887±0.0119 0.8727 0.8287 0.8501

Tiles (38, 1260) 0.8173±0.0051 0.8071 0.9364 0.8669

Shadows (15, 476) 0.8621±0.0091 0.8877 0.9412 0.9136

Meadows (25, 824) 0.9957±0.0002 0.9955 0.9778 0.9866

Bare Soil (24, 820) 0.8518±0.0123 0.8739 0.8519 0.8628

Test Test Prdict

Figure 6: True Testing Maps and predicted Test Maps
for Pavia Center dataset with 10-fold-cross-validation-
based κ = 0.9360±0.0008, Average Accuracy = 0.8445±
0.0027, Overall Accuracy = 0.9549 ± 0.0006, Mean-
squared Error = 0.5067 ± 0.0075, and Training Time =
355.3899±3.6140 and Test Time = 410.2014±7.97897.

Experiments with Botswana Dataset

The NASA EO-1 Satellite acquired a sequence of data

over the Okavango Delta, Botswana in 2001-2004.

The Hyperion sensor on EO-1 acquired data at 30 m,

pixels resolution over a 7.7 km strip in 242 bands co-

vering the 400− 2500 nm portion of the spectrum in

10 nm windows.
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Preprocessing of the data was performed by the

UT center for space research to mitigate the effects of

bad detectors, inter-detector mis-calibration, and in-

termittent anomalies. Uncalibrated and noisy bands

that cover water absorption features were removed,

and the remaining 145 bands were included as candi-

date features.

The removed features are 10-55, 82-97, 102-119,

134-164, and 187-220. The data analyzed in this

study have been acquired on May 31, 2001, and con-

sist of observations form 14 identified classes repre-

senting the land cover types in seasonal swamps, oc-

casional swamps, and drier woodlands located in the

distal portion of the Delta.Dataset files and descrip-

tion can be obtained from (Datasets, ).

The experimental results are shown in Table 7

and Figure 7. From results, one can conclude

that MLELM-AE greatly improved the classification

accuracies with enhanced generalization capabilities

for more complicated Hyperion sensor on EO-1 sen-

sor based datasets. Evaluating Hyperion sensor on

EO-1 sensor datasets is more challenging classifica-

tion problem dominated by complex urban classes

and nested regions then AVIRIS and ROSIS. The de-

tailed accuracy analysis in terms of average, overall,

and kappa accuracies along with the time taken to

train and test the model is provided in the caption.

Table 7: Classification accuracy (κ) analysis and statistical
measures for Botswana Dataset.

Class Names (Train, Test) κ Recall Precision F1-Score

Water (81, 270) 0.9989±0.0021 1.000 1.0000 1.0000

Hippo Grass (31, 101) 0.9757±0.0187 1.000 0.9859 0.9929

Floodplain Grasses1 (76, 251) 0.9897±0.0057 0.9943 0.9943 0.994285714

Floodplain Grasses1 (65, 215) 0.9953±0.0039 1.0000 0.9494 0.9740

Reeds1 (81, 269) 0.8787±0.0132 0.8829 0.8737 0.8783

Riparian (81, 269) 0.7011±0.0204 0.7128 0.8323 0.7679

Firescar 2 (78, 259) 0.9912±0.0040 0.9945 1.0000 0.9972

Island Interior (61, 203) 0.9796±0.0067 0.9859 0.9929 0.9894

Acacia Woodlands (95, 314) 0.9347±0.0135 0.9361 0.9031 0.9193

Acacia Shrublands (75, 248) 0.9006±0.0172 0.8671 0.9554 0.9091

Acacia Grasslands (92, 305) 0.9577±0.0124 0.9718 0.9039 0.9367

Short Mopane (55, 181) 0.9190±0.0187 0.9524 0.9302 0.9412

Mixed Mopane (81, 268) 0.9337±0.0145 0.9412 0.9072 0.9239

Exposed Soils (29, 95) 0.9682±0.0129 1.0000 1.0000 1.0000

In this section, we performed a set of experiments

to evaluate MLELM-AE using both ROSIS, AVIRIS,

and NASA EO-1 Satellite Hyperion EO-1 sensors da-

tasets. Evaluating ROSIS and Hyperion sensors data-

sets are more challenging classification problems do-

minated by complex urban classes and nested regions

then AVIRIS. Figures 1-7 and Tables 1-7 shows the

overall, average, and kappa (κ) accuracies along with

the training and test time taken as a function of the

number of labeled samples. The Figures 1-7 and Ta-

bles 1-7 are generated based on only selected sam-

ples in contrast to the entire population which reveal

clear advantages of using fewer labeled samples for

MLELM-AE pipeline.

Test Test Prdict

Figure 7: True Testing Maps and predicted Test Maps for
Botswana datasets with 10-fold-cross-validation-based κ =
0.9268 ± 0.0039, Average Accuracy = 0.9374 ± 0.0041,
Overall Accuracy = 0.9325±0.0036, Mean-squared Error
= 0.8309± 0.0413, and Training Time = 2.5815± 0.0895
and Test Time = 0.1872±0.0182.

5 CONCLUSIONS AND FUTURE

WORK

In this work we implemented a framework for hy-

perspectral image classification in computational ef-

ficient fashion using extreme learning machine-based

autoencoder (MLELM-AE). MLELM-AE is a spe-

cial case of traditional ELM where the input is equal

to output and randomly generated weights are cho-

sen to be orthogonal. The internal representation of

MLELM-AE provides an effective solution not only

for feed forward neural networks but also for multi-

layered feed forward neural networks. MLELM-AE

network provides better generalization performance

than traditional back propagation based deep neural

networks.

To further improve generalization in future work

we will focus on learning the dictionary of each class

in both the spectral and spatial domain. We will furt-

her look into the possible ways to decrease the com-

putational complexity of the model by employing the

resorting of spatial filtering (Hao et al., 2017) and

extended multi-attribute profiles-based (Mura et al.,

2010) methods.
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