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Abstract: Web application security has become a major concern in recent years, as more and more content and services

are available online. A useful method for identifying security vulnerabilities is black-box testing, which relies

on an automated crawling of web applications. However, crawling Rich Internet Applications (RIAs) is a very

challenging task. One of the key obstacles crawlers face is the state similarity problem: how to determine if

two client-side states are equivalent. As current methods do not completely solve this problem, a successful

scan of many real-world RIAs is still not possible. We present a novel approach to detect redundant content for

security testing purposes. The algorithm applies locality-sensitive hashing using MinHash sketches in order

to analyze the Document Object Model (DOM) structure of web pages, and to efficiently estimate similarity

between them. Our experimental results show that this approach allows a successful scan of RIAs that cannot

be crawled otherwise.

1 INTRODUCTION

The information era has turned the Internet into a cen-

tral part of modern life. Growing amounts of data and

services are available today, making web application

development an important skill for both enterprises

and individuals. The heavier the reliance on web ap-

plications, the higher the motivation of attackers to

exploit security vulnerabilities. Unfortunately, such

vulnerabilities are very common (Gordeychik et al.,

2010), leading to an increasing need to detect and re-

mediate them.

Black-box security scanners address the problem

of ensuring secured web applications. They simulate

the behavior of a user crawling an application wit-

hout access to the source code. When discovering

new pages and new content, the scanner performs a

series of automated security tests, based on a data-

base of known vulnerabilities. This way, the appli-

cation can be easily and thoroughly analyzed from a

security point of view. See (Bau et al., 2010; Doupé

et al., 2010) for surveys on available scanners.

It is clear that a comprehensive security scan re-

quires, among other factors, both high coverage and

efficiency. If the crawler cannot reach significant parts

of the application in a reasonable time, then the secu-

rity assessment of the application will be incomplete.

In particular, a web crawler should refrain from was-

ting time and memory resources on scanning pages

that are similar to previously visited ones. The defini-

tion of redundant pages depends on the crawling pur-

pose. For traditional web indexing purposes, different

contents imply different pages. However, for security

testing purposes, different sets of vulnerabilities im-

ply different pages, regardless of the exact content of

the pages.

While the problem of page similarity (or state si-

milarity) is a fundamental challenge for all web cra-

wlers (Pomikálek, 2011), it has become even more

significant since the emergence of a new generation

of web applications, often called Rich Internet Appli-

cations (RIAs).

RIAs make extensive usage in technologies such

as AJAX (Asynchronous JavaScript and XML) (Gar-

rett et al., 2005), which enable client-side processing

of data that is asynchronously sent to and from the

server. Thus, the content of a web page changes dy-

namically without even reloading the page. New data

from the server can be reflected to the user by mo-

difying the DOM (Nicol et al., 2001) of the page

through UI events, albeit no change was done to the

URL itself. Although such technologies increase the

responsiveness of web applications and make them

more user-friendly, they also pose a great difficulty on
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modern web crawlers. While traditional crawlers fo-

cused on visiting all possible URLs, current-day cra-

wlers should examine every client state that can be ge-

nerated via an execution of a series of HTML events.

The exponentially large number of possible sta-

tes emphasizes the need to efficiently detect similarity

between different application states. Failing to solve

the state similarity problem results in a poor scan qua-

lity. If the algorithm is too strict in deciding whether

two states are similar, then too many redundant sta-

tes would be crawled, yielding long or even endless

scans. On the other hand, if the resemblance relation

is too lax, the crawler might mistakenly deem new

states as near-duplicates of previously-seen states, re-

sulting in an incomplete coverage.

As stated before, every URL of a RIA is actually

a dynamic application, in which states are accessed

through UI events. Consequently, eliminating dupli-

cate content cannot rely solely on URL analysis, such

as in (Bar-Yossef et al., 2009). Instead, a common

method that black-box scanners use in order to de-

cide whether two pages are similar, is to analyze their

DOM structure and properties, without taking the text

content into account. This is a useful approach for se-

curity oriented crawling, since often the text content

of a page is irrelevant to the security assessment. As

opposed to the content, the elements and logic that al-

low user interaction are more relevant for a security

analysis. For example, consider a commercial web

application with a catalog section, containing thou-

sands of pages. The catalog pages share the same

template, yet every one of them is dedicated to a dif-

ferent product. While the variety of products may be

of interest for search engines like Google or Yahoo, it

is of no great importance to black-box security scan-

ners, as all pages probably share the same set of se-

curity vulnerabilities. Therefore, an analysis of the

DOM structures of the pages might suggest that they

are near-duplicates of each other.

In the past decade, several methods have been pro-

posed to determine similarity between DOMs (see

section 2). Most of the methods include DOM nor-

malization techniques, possibly followed by applying

simple hash functions. While these methods were

proven to be successful in scanning several RIAs,

they are often too strict, leading to a state explosion

problem and very long scans. Moreover, since hash

functions used in this context so far have, to the best

of our knowledge, no special properties, minor dif-

ferences between two canonical DOM forms might

result in two completely different hash values. The-

refore, many complex applications still cannot be cra-

wled in a reasonable time. Approaches involving dis-

tance measures, such as (Mesbah and Van Deursen,

2008), are not scalable and require computing distan-

ces between all-pairs of DOMs.

In this paper we present a different approach for

the state similarity problem for security oriented cra-

wling. Our approach is based on locality-sensitive

hashing (LSH) (Indyk and Motwani, 1998), and on

MinHash sketches in particular (Broder, 1997; Bro-

der et al., 2000). A locality-sensitive hash function

satisfies the property that the probability of collision,

or at least close numerical hash values, is much higher

for similar objects than for other objects. LSH sche-

mes have already been used in the context of detecting

duplicate textual content (see (Pomikálek, 2011) for a

survey). Recently, MinHash sketches have also be-

come an efficient solution for bioinformatic challen-

ges, where large amounts of biological sequence data

require efficient computational methods. As such,

they can be used to detect inexact matches between

genomic sequences (Berlin et al., 2015; Popic and

Batzoglou, 2016). However, LSH techniques have not

yet been used by black-box security scanners. The

flexibility of MinHash sketches enables detecting du-

plicate states if two DOMs differ in a small number

of DOM elements, regardless of their type. The LSH

technique that we use makes the algorithm scalable

for large RIAs as well. Combined together, our met-

hod makes exploring industrial RIAs feasible.

2 RELATED WORK

A common approach for an efficient detection of du-

plicate states in AJAX applications is to apply sim-

ple hash functions on the DOM string representation.

The authors of (Duda et al., 2009) and (Frey, 2007)

compute hash values according to the structure and

content of the state. However, although these met-

hods can remove redundant copies of the same state,

they are too strict for the purpose of detecting near-

duplicate pages.

CRAWLJAX (Mesbah and Van Deursen, 2008) is

a crawler for AJAX applications that decides whet-

her two states are similar according to the Levensh-

tein distance (Levenshtein, 1966) between the DOM

trees. Using this method, however, for computing

distances between all-pairs of possible states is infe-

asible in large RIAs. In a later work (Roest et al.,

2010), the state equivalence mechanism of the algo-

rithm is improved by first applying an Oracle Compa-

rator Pipelining (OCP) before hash values are com-

puted. Each comparator is targeted to strip the DOM

string from an irrelevant substring, which might cause

meaningless differences between two states, e.g., time

stamps, advertisement banners. CRAWLJAX is the-
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refore less strict in comparing application states, but

the comparator pipeline requires manual configura-

tion and adjustment for every scan. FEEDEX (Fard

and Mesbah, 2013), which is built on top of CRAWL-

JAX, uses tree edit distance (Tai, 1979) to compare

two DOM trees.

The notion of Jaccard similarity is used in

jÄk (Pellegrino et al., 2015). In this paper, the authors

consider two pages as similar if they share the same

normalized URL and their Jaccard index is above a

certain threshold. A normalized URL is obtained af-

ter stripping the query values and sorting the query

parameters lexicographically. The Jaccard similarity

is computed between sets of JavaScript event, links

and HTML forms that appear in the web pages.

Two techniques to improve any DOM based state

equivalence mechanism are presented in (Choudhary

et al., 2012). The first aims to discover unnecessary

dynamic content by loading and reloading a page.

The second identifies session parameters and ignores

differences in requests and responses due to them.

The DOM uniqueness tool described in (Ayoub

et al., 2013) identifies pages with similar DOM struc-

ture by detecting repeating patterns and reducing

them to a canonical DOM representation, which is

then hashed into a single numerical value. The user

can configure the algorithm and determine which

HTML tags are included in the canonical represen-

tation, and whether to include their text content. This

method captures structural changes, such as additions

or deletions of rows in a table. It is also not affected

by elements shuffling, since it involves sorting the ele-

ments in every DOM subtree. However, modifications

that are not recognized as part of a structural pattern

lead to a false separation between two near-duplicate

states. The method in (Moosavi et al., 2014) further

extends this algorithm by splitting a DOM tree into

multiple subtrees, each corresponding to an indepen-

dent application component, e.g., widgets. The DOM

uniqueness algorithm is applied on every component

independently, thus avoiding explosion in the number

of possible states when the same data is being dis-

played in different combinations.

The structure of a page is also the key for cluste-

ring similar pages in (Doupé et al., 2012), in which a

model of the web application’s state machine is built.

The authors model a page using its links (anchors

and forms), and store this information in a prefix tree.

These trees are vectorized and then stored in another

prefix tree, called the Abstract Page Tree (APT). Si-

milar pages are found by analyzing subtrees of the

APT.

A different approach for clustering application

states into different equivalence clusters appears in

software tools that model and test RIAs using execu-

tion traces, such as RE-RIA (Amalfitano et al., 2008),

CrawlRIA (Amalfitano et al., 2010b), and CreRIA

(Amalfitano et al., 2010a). The clustering is done by

evaluating several equivalence criteria, which depend

on the DOM set of elements, event listeners and event

handlers. Two DOMs are considered equivalent if one

set contains the other as a subset. This method has a

high memory consumption and computation time.

Research efforts have been made during the years

in detecting near-duplicate text, especially in the con-

text of the Web. As the general problem of duplicate

content detection was not the focus of this paper, we

refer the readers to a detailed survey for more infor-

mation on the subject (Pomikálek, 2011).

3 MinHash SKETCHES

MinHash is an efficient technique to estimate the Jac-

card similarity between two sets. Given two sets, A

and B, the Jaccard similarity (Jaccard, 1901) of the

sets, J(A,B), is a measure of how similar the sets are:

J(A,B) =
|A∩B|
|A∪B| (1)

The Jaccard similarity value ranges between 0

(disjoint sets) and 1 (equal sets). However, direct

computation of this ratio requires iterating over all

the elements of A and B. MinHash (Broder, 1997)

is an efficient method to estimate the Jaccard simila-

rity of two sets, without explicitly constructing their

intersection and union. The efficiency of the method

comes from reducing every set to a small number of

fingerprints.

Let S be a set, and let h be a hash function whose

domain includes the elements of S. We define hmin(S)
as the element a of S, which is mapped to the mini-

mum value, among all the elements of S:

hmin(S) = argmina∈Sh(a) (2)

We consider again two sets of elements, A and B.

One can easily verify that:

Pr[hmin(A) = hmin(B)] = J(A,B) (3)

Eq. 3 implies that if we define a random variable

RA,B as follows:

RA,B =

{

1 if hmin(A) = hmin(B)
0 if otherwise

(4)

then RA,B is an indicator variable which satisfies

E[RA,B] = J(A,B). However, RA,B is either 0 or 1, so it
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is not useful as an estimator of the Jaccard similarity

of A and B. As it is done in many estimation techni-

ques, it is possible to reduce the variance of RA,B by

using multiple hash functions and computing the ra-

tio of the hash functions, for which the minimum ele-

ment is the same. In other words, assume now a set

of ℓ hash functions, h1, . . . ,hℓ. For each 1 ≤ i≤ ℓ we

define R
(i)
A,B as in Eq. 4, replacing h with hi. The im-

proved estimator for the Jaccard similarity of A and B,

T (A,B), is now given by:

T (A,B) =
∑ℓ

i=1 R
(i)
A,B

ℓ
(5)

By Chernoff bound, it can be shown that the ex-

pected error is O( 1√
ℓ
).

The compressed representation

〈h1
min(S), . . . ,h

ℓ
min(S)〉 of a set S is defined as its

MinHash sketch. Since ℓ is significantly smaller than

the size of S, the estimation of the Jaccard similarity

is efficient in both time and memory.

4 METHOD

In this section we present the complete algorithm for

detecting duplicate content during a black-box secu-

rity scan. The first step is transforming a web page,

given as an HTTP response string, into a set of shing-

les, or k-mers. In the second step, the algorithm uses

MinHash sketches in order to efficiently compute si-

milarity between pages. However, the method descri-

bed in section 3 still requires that we compute the si-

milarity between all possible pairs of states. Instead,

we use an efficient LSH approach that focuses only

on pairs that are potentially similar. We outline the

complete algorithm at the end of this section.

4.1 Set Representation of Web Pages

As stated in section 1, the text content of a web page

is usually irrelevant for the state similarity problem in

the context of security scans. Therefore, we rely on

the DOM representation of the page. The algorithm

extracts the DOM tree from the HTTP response, and

serializes it to a string. The relevant information for

the state similarity task includes the DOM elements

and their structure, the events and the event handlers

that are associated with the elements, as well as some

of their attributes. Yet, for simplicity reasons, in this

paper we only consider the names of the elements and

the structure of the DOM.

Since we are interested in using MinHash, there is

a need to transform the string representation of the

DOM into a set of elements. For the sake of this

purpose, we use the notion of shingles, or k-mers,

which are sequences of any k consecutive words. In

this case, since the DOM elements are the building

blocks of the DOM tree, we consider every element

as a word. The algorithm can filter out part of the

DOM elements, if they are marked as irrelevant.

A key factor in the performance of the algorithm

is the choice of the value of k. If k is too small, then

many k-mers will appear in all web pages, and most

of the pages will be similar to each other. Alternati-

vely, as the value of k becomes too high, the compa-

rison of states is too strict. So, k should have a large

enough value, such that the probability of different

states sharing the same k-mer, is low.

4.2 Efficient LSH for MinHash Sketches

To accelerate the process of detecting duplicate con-

tent, we use a hash table indexing approach, which

rearranges the sketches in a way that similar states

are more likely to be stored closely in our data struc-

ture. Dissimilar states, on the other hand, are not sto-

red together, or are rarely stored in proximity. Such an

approach is also used in other domains, e.g., genome

assembly (Berlin et al., 2015).

The algorithm constructs a data structure of ℓ
hash tables, each corresponding to a different hash

function. In the i-th hash table, we map every hash va-

lue v, which was computed by the i-th hash function,

to a set of DOM IDs, which correspond to DOMs that

are hashed to this value. So, if we denote the set of all

DOMs by P , and for every set-representation P ∈ P

we denote its ID by ID(P), then the i-th table is a

mapping of the following form:

v 7→
{

ID(P) | P ∈ P ∧hi
min(P) = v

}

(6)

Using Eq. 3, we can see that the higher the Jac-

card similarity of two DOMs is, the higher the proba-

bility of their IDs being in the same set (or bucket).

Given two DOM representations, P and P′, we get

by Eq. 5 that an estimator for the Jaccard similarity

J(P,P′) can be computed according to the number of

hash tables, for which ID(P) and ID(P′) are in the

same bucket. This follows directly from the fact that

for every 1≤ i≤ ℓ, if the i-th hash table contains both

ID(P) and ID(P′) in the same bucket, then it holds

that hi
min(P) = hi

min(P
′). So, we can derive an esti-

mator, T ∗, for this particular LSH scheme, which is

based on Eq. 5. Let us denote the i-th hash table by

gi, 1≤ i≤ ℓ, and let us mark the bucket which is map-

ped to hash value v in the i-th table, by gi(v). We then

have:
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T ∗(P,P′) =

∣

∣

{

i | ∃v.ID(P), ID(P′)⊆ gi(v)
}∣

∣

ℓ
(7)

Following Eq. 7, there is no need to compare

every DOM to all other DOMs. For every pair of

DOM representations, which share no common buc-

ket, the estimated value of their Jaccard similarity is

0.

4.3 The Complete Algorithm

We now combine the shingling process and the LSH

technique, and describe the complete algorithm for

detecting duplicate content, during a black-box secu-

rity scan. For simplicity, we assume a given set of

application states, S . With this assumption in mind,

we can discard the part of parsing web pages and ex-

tracting links and JavaScript actions. A pseudo-code

of the algorithm is given in Algorithm 1.

In an initialization phase (lines 1-3), the code ge-

nerates ℓ hash functions, out of a family H of hash

functions. For each hash function, hi, a correspon-

ding hash table, gi, is allocated in an array of hash

tables. The rest of the code (lines 4-20) describes the

crawling process and the creation of an index of non-

duplicate pages.

For each application state, s, the algorithm crea-

tes its DOM set representation, P, using the method

Shingle(s,k). The method extracts the DOM tree of

the web page of state s, filters out all text and irrele-

vant elements, and converts the list of DOM elements

into a set of overlapping k-consecutive elements. We

omit the description of this method from the pseudo-

code.

lines 6-13 analyze the DOM set representation, P.

A MinHash sketch of the set of shingles is computed

by evaluating all hash functions. While doing so, we

maintain a count of how many times every DOM ID

shares the same bucket with the currently analyzed

DOM, P. This is done using a mapping, f , which is

implemented as a hash table as well, with a constant-

time insertion and lookup (on average). The highest

estimated Jaccard similarity score is then found (line

14). If this score is lower than the minimum threshold,

τ, then application state s is considered to have new

content for the purpose of the scan. In such a case, it

is added to the index, and the data set of hash values

is updated by adding the MinHash sketch of the new

state. Otherwise, it is discarded as duplicate content.

The state equivalence mechanism described here

is not an equivalence relation, since it is not transitive.

This fact implies that the order in which we analyze

the states can influence the number of unique states

found. For example, for every τ and every odd integer

Algorithm 1: Removing duplicate web application states.

Input: S : set of web application states
H : family of hash functions
k: shingle size
ℓ: MinHash sketch size
τ: Jaccard similarity threshold

Output: set of states with no near-duplicates

1: 〈h1, . . . ,hℓ〉 ← sample ℓ functions from H

2: [g1, . . . ,gℓ]← array of ℓ hash tables
3: index← /0
4: for s ∈ S do

5: P← Shingle(s,k)
6: f ← mapping of type N→ N

+

7: for i in range 1, . . . , ℓ do

8: v← hi
min(P)

9: for docId in gi(v) do

10: if docId ∈ f then

11: f (docId)← f (docId) + 1
12: else

13: f (docId)← 1

14: score← max j∈ f f ( j)
15: if score < τℓ then

16: for i in range 1, . . . , ℓ do

17: v← hi
min(P)

18: if v /∈ gi then gi(v)← /0
19: gi(v)← gi(v) ∪ {ID(s)}
20: index← index ∪ {s}
21: return index

m, we can construct a series of application states

s1, . . . ,sm, such that J(si,si+1) ≥ τ for every 1 ≤ i ≤
m−1, but J(si,s j)< τ for every 1≤ i, j≤m such that

|i− j| ≥ 2. Algorithm 1 outputs either ⌊m
2
⌋ or ⌈m

2
⌉

unique states, depending on the scan order. Although

theoretically possible, we argue that web applications

rarely exhibit such a problematic scenario.

4.4 MinHash Generalization Properties

It is clear that the MinHash algorithm generalizes

naı̈ve methods that directly apply hash functions on

the entire string representation of the DOM, such

as (Duda et al., 2009) and (Frey, 2007). By generali-

zation we mean that for any given pair of states, s1 and

s2, and any given hash function h, if h(s1) = h(s2),
then applying our LSH scheme also yields an equa-

lity between the states. Therefore, any pair of pages

that are considered the same state by a naı̈ve hashing

algorithm, will also be treated as such by the method

we propose.

More interesting is the fact that our algorithm is

also a generalization of a more complex method. The

algorithm in (Ayoub et al., 2013) identifies repeating

patterns that should be ignored when detecting dupli-

cate content. Denote by d1 and d2 two DOM strings

that differ in the number of times that a repeating pat-

tern occurs in them. More precisely, let d1 = ARRB
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and d2 =ARRR..RRRB be two DOM strings, where A,

B, and R are substrings of DOM elements. Let us as-

sume that the method in (Ayoub et al., 2013) identifies

the repeating patterns and obtains the same canonical

form for both d1 and d2, which is ARB. This way,

d1 and d2 are identified as duplicates by (Ayoub et al.,

2013). It is easy to see then that if k < 2 |R|, where the

length of a DOM substring is defined as the number of

DOM elements in it, then the MinHash approach will

also mark these two DOM strings as duplicates, since

there is no k-mer that is included in d2 and not in d1,

and vice versa. This proof does not hold for the case

of d1 = ARB. However, our approach will also mark

d1 and d2 in this case as near-duplicate content with

high probability if k is relatively small comparing to

the lengths of A, B, and R.

5 PERFORMANCE EVALUATION

In this section we present the evaluation process of

the LSH based approach for detecting similar states.

We report the results of this method when applied to

real-world applications, and compare it to four other

state equivalence heuristics.

5.1 Experimental Setup

We implemented a prototype of the LSH mechanism

for MinHash sketches as part of IBM R© Security App-

Scan R© tool (IBM Security AppScan, 2016). AppS-

can uses a different notion for crawling than most ot-

her scanners. It is not a request-based crawler, but

rather an action-based one. The crawler utilizes a

browser to perform actions, instead of manipulating

HTTP requests and directly executing code via a Ja-

vaScript engine. While processing a new page, all

possible actions, e.g., clicking on a link, submitting

a form, inputting a text, are extracted and added to a

queue of unexplored actions. Every action is executed

after replaying the sequence of actions that resulted in

the state from which it was originated. The crawling

strategy is a mixture of BFS and DFS. As a result, the

crawler can go deeper into the application, while still

avoid focusing on only one part of it.

The MinHash algorithm can be combined with

any crawling mechanism. The algorithm marks re-

dundant pages, and their content is ignored. Offline

detection of duplicate content is not feasible for mo-

dern, complex applications with an enormous amount

of pages, since one cannot first construct the entire set

of possible pages. In fact, this set can be infinite, as

content might be dynamically generated.

We performed security scans on seven real-world

web applications and compared the efficiency of

our method with other DOM state equivalence algo-

rithms. The first three applications are simple RIAs,

which can be manually analyzed in order to obtain

a true set of all possible application states. We were

given access to two IBM-internal applications for ma-

naging security scans on the cloud: Ops Lead and

User Site. As a third simple RIA we chose a pu-

blic web-based file manager called elFinder (elFin-

der, 2016). We chose applications that are used in

practice, without any limitations on the web techno-

logies they are implemented with.

In order to assess the performance of a state equi-

valence algorithm, it must also be tested on com-

plex applications with a significant number of near-

duplicate pages. Otherwise, inefficient mechanisms

to detect similar states might be considered success-

ful in crawling web applications. Therefore, we also

conducted scans on four complex online applications:

Facebook, the famous social networking website (Fa-

cebook, 2004); Fandango, a movie ticketing applica-

tion (Fandango, 2000); GitHub, a leading develop-

ment platform for version control and collaboration

(GitHub, 2008); and Netflix, a known service for wa-

tching TV episodes and movies (Netflix, 1997), in

which we crawled only the media subdomain. These

applications were chosen due to their high complex-

ity and extensive usage of modern web technologies,

which pose a great challenge to web application secu-

rity scanners. In addition, they contain a considerable

amount of near-duplicate content, which is not always

the case when it comes to offline versions of real-

world web applications. We analyzed the results of

scanning the four complex applications without com-

paring them to a manually-constructed list of applica-

tion states.

Since a full process of crawling a complex RIA

can take several hours or even days, a time limit was

set for every scan. Such a limit also enables to test

how fast the crawler can find new content, which is

an important aspect of a black-box security scanner.

We report the number of non-redundant states

found in the scans, along with their duration times.

However, the number of discovered states does not

necessarily reflect the quality of the scan: a state equi-

valence algorithm might consider two different states

as one (false merge), or treat two views of the same

state as two different states (false split). Furthermore,

the scan may not even reach all possible application

states. In order to give a measure of how many false

splits occur during a scan, we compute the scan ef-

ficiency. The efficiency of a scan is defined as the

fraction of the scan results which contains new con-
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tent. In other words, this is the ratio between the real

number of unique states found and the number of uni-

que states reported during the scan. A too-strict state

equivalence relation implies more duplicate content

and a lower scan efficiency. The coverage of the scan

is defined as the ratio between the number of truly

unique states found and the real number of unique

states that exist in the application. If the relation is

too lax, then too many false merges occur, leading

to a lower scan coverage. Inefficient scans can have

low coverage as well, if the scan time is consumed al-

most entirely in exploring duplicate content. As the

scan coverage computation requires knowing the en-

tire set of application states, we computed it only for

the three simple applications. The scan efficiency is

reported for all scanned applications.

This paper suggests a new approach for the state

similarity problem. Hence we chose evaluation cri-

teria that are directly related to how well the scan-

ner explored the tested applications. We do not as-

sess the quality of the explore through indirect metrics

such as the number of security issues found during

the scans. In addition, during the test phase AppS-

can sends thousands of custom test requests that were

created during the explore stage. Such amount of re-

quests could overload the application server or even

affect its state, and we clearly could not do that for

applications like Facebook or GitHub. For these rea-

sons we do not report how many security vulnerabili-

ties were detected in each scan. Another metric that is

not applicable for online applications is the code co-

verage, i.e., the number of lines of code executed by

the scanner. This metric cannot be computed as we

only have limited access to the code of these complex

online applications. However, it is clear that scans

that are more efficient and have a higher coverage rate

can detect more security vulnerabilities.

Our proposed method, MinHash, was compared

to four other approaches: two hash-based algorithms,

and two additional security scanners that apply non

hash-based techniques to detect similar states. The

Simple Hash strategy hashes every page according

to the list of DOM elements it contains (order pre-

served). The second hash-based method, the DOM

Uniqueness technique (Ayoub et al., 2013), identi-

fies similar states by reducing repeating patterns in

the DOM structure and then applying a simple hash

function on the reduced DOMs. As a third approach

we used jÄk (Pellegrino et al., 2015), which solves

the state similarity algorithm by computing the Jac-

card similarity between pages with the same normali-

zed URL. Another non hash-based approach was eva-

luated by using CRAWLJAX (Mesbah and Van Deur-

sen, 2008). The crawler component of the latter tool

uses the Levenshtein edit distance to compute simila-

rity between pages. We used the default configuration

of these scanners. Section 2 provides more details on

the approaches we compared our tool with.

We scanned the tested applications three times,

each time using a different DOM state equivalence

strategy. All scans were limited to a running time of

30 minutes. In the MinHash implementation we set

the value of k to 12, the number of hash functions, ℓ,
to 200, and the minimum similarity threshold, τ, was

set to 0.85. The values of k and τ were determined

by performing a grid search and choosing the values

which gave optimal results on two of the tested appli-

cations. The number of hash functions, ℓ, was com-

puted using Chernoff bound, so the expected error in

estimating the Jaccard similarity of two pages is at

most 7%.

5.2 Results for Simple RIAs

Table 1 lists the results of the experimental scans we

conducted on three simple RIAs. The results show

that using MinHash as the DOM state equivalence

scheme yields fast and efficient security scans, with

a negligible impact on the coverage, if any. Scan-

ning simple applications with jÄk also produces high-

quality results. The rest of the approaches were less

efficient, overestimating the number of unique sta-

tes. Some of the scans involving the other hash-based

techniques were even terminated due to scan time li-

mit. However, since the tested applications were very

limited in their size, these approaches usually had

high coverage rates.

5.2.1 MinHash Results

The MinHash scans were very fast and produced con-

cise application models. They quickly revealed the

structure of the applications, leading to efficient scans

also in terms of memory requirements. The propo-

sed algorithm managed to overcome multiple types of

changes between pages that belong to the same state.

This way, pages with additional charts, banners, or

any other random DOM element, were usually consi-

dered as duplicates (see Figure 1). Similar pages that

differ in the order of their components were also cor-

rectly identified as duplicate content, since the LSH

scheme is almost indifferent to a component reorde-

ring. This property holds since a component reorde-

ring introduces new k-mers only when new combi-

nations of consecutive components are created. As

the number of reordered components is usually sig-

nificantly smaller than their size, the probability of

a change in the MinHash sketch is low. In addition,
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Table 1: Results of security scans on three simple real-world web applications using five different strategies for DOM state
equivalence: jÄk (JK), CRAWLJAX (CJ), Simple Hash (SH), DOM Uniqueness (DU), and MinHash (MH). The first row
shows the real number of unique states in the application, whereas the second row contains the number of non-redundant
states reported in each scan. The next two lines provide the coverage and efficiency rates of the scans. In the last row, a
runtime of thirty minutes corresponds to reaching the time limit.

elFinder User Site Ops Lead
JK CJ SH DU MH JK CJ SH DU MH JK CJ SH DU MH

App states 7 18 27

Scan states 7 12 38 34 7 18 20 31 21 18 31 33 42 41 25

Coverage (%) 100 100 100 100 100 100 100 100 100 94 100 100 93 89 89

Efficiency (%) 100 58 18 21 100 100 90 58 86 94 87 82 60 59 96

Time (m) 8 7 30 30 10 2 2 4 3 2 9 10 30 23 12

Figure 1: Successful merge of two views with the same
functionality using the MinHash algorithm. (a) Upper part:
a list view of a directory. (b) Lower part: the same view
with a textual popup.

multiple views of the same state that differ in a repea-

ting pattern were also detected. This is in correspon-

dence with section 4.4, which shows that our method

is a generalization of the DOM Uniqueness approach.

There were, however, cases where different sta-

tes were considered the same, and this led to some

content being missed. The missing states were very

similar to states that had already been reported in the

model. See section 6 for a discussion on this matter.

5.2.2 Results of other Hash-based Approaches

The scans produced by the other hash-based methods

had high coverage rate. However, they were someti-

mes very long, and the number of reported states was

very high (up to a factor of five compared to the cor-

rect number of states). Some were even terminated

due to time limit. The stringency of the equivalence

relations led to inefficient results and to unclear appli-

cation models. Such models will also result in a lon-

ger test phase, as the black-box scan is about to send

hundreds and thousands of redundant custom test re-

quests.

As expected, the naı̈ve approach of simple hashing

was very inefficient. The DOM Uniqueness method

had better results in two out of the three tested appli-

cations. However, relevant scans were still long and

inefficient (as low as 21% efficiency rate). Although

the algorithm in (Ayoub et al., 2013) detects similar

pages by reducing repeating patterns in the DOM, it

cannot detect similar pages that differ in other parts

of the DOM. Consider, for example, two similar pa-

ges where only one of them contains a textual popup.

Such a pair of pages was mistakenly deemed as two

different states (see Figure 1). A similar case occurred

when the repeating pattern was not exact, e.g., a table

in which every row had a different DOM structure).

5.2.3 Results of Non Hash-based Tools

The scans obtained using jÄk and CRAWLJAX were

also very fast and with perfect coverage. However,

they were not always as efficient as the MinHash-

based scans. The relatively small number of pages

and states in the tested applications enabled short run-

ning times, although these non hash-based methods

perform a high number of comparisons between sta-

tes. Among the two methods, jÄk was more efficient

than CRAWLJAX.

5.3 Results for Complex RIAs

The results shown in Table 2 emphasize that an accu-

rate and efficient state equivalence algorithm is cru-

cial for a successful scan of complex applications.

The MinHash algorithm enabled scanning these ap-

plications, while the naı̈ve approach and the DOM

uniqueness algorithm completely failed in doing so

in some cases. CRAWLJAX and jÄk had reasonable

results; however, their efficiency rates were not high.

5.3.1 MinHash Results

The MinHash-based scans efficiently reported dozens

of application states, with approximately 80% of the

states being truly unique. In addition, the number of
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Table 2: Results of security scans on four complex real-world web applications using five different strategies for DOM state
equivalence. The first column for every application contains the number of non-redundant states reported in each scan. The
second column provides the efficiency rate (%). Scans that did not reach the time limit and crashed due to memory or other
problems - are marked with asterisk.

Facebook Fandango GitHub Netflix

States Efficiency States Efficiency States Efficiency States Efficiency

jÄk 1* 100 54 37 26 34 47 32

CRAWLJAX 68 38 32 50 184 30 40 40

Simple Hash 694* 2 493 4 306 22 206 7

DOM Uniq. 692* 3 468 5 266 30 133 17

MinHash 200 83 34 82 108 81 27 78

Figure 2: Successful merge of two different states using
MinHash sketches. (a) Upper part: movie overview page
(b) Lower part: an overview page of a different movie.

false merges was very low. The algorithm success-

fully identified different pages that belong to the same

application state. For example, pages that describe

different past activities of Facebook users were consi-

dered as duplicate content. This is, indeed, correct, as

these pages contain the same set of possible user inte-

ractions and the same set of possible security vulne-

rabilities. A typical case in which the MinHash algo-

rithm outperforms other methods can also be found in

the projects view of GitHub. A GitHub user has a list

of starred (tracked) projects. Two GitHub users may

have completely different lists, but these two views

are equivalent, security-wise. Figure 2 depicts anot-

her example of a successful merge of states.

At the same time, the algorithm detected state

changes even when most of the content had not been

changed. For instance, a state change occurs when the

Fandango application is provided with information on

the user’s location. Prior to this, the user is asked

about her location via a form. When this form is fil-

led and sent, the application state is changed, and ge-

otargeted information is presented instead. This may

affect the security vulnerabilities in a page; hence the

need to consider these two states as different.

A successful split can also be found in the results

of the Facebook scan. The privacy settings state is al-

tered if an additional menu is open, and this change

was detected by our method (see Figure 3). Such a

case frequently occurs in complex online applicati-

ons, where there are several actions that are common

to many views, e.g., opening menus or enabling a chat

sidebar. Therefore, the number of possible states can

be high. However, almost every combination differs

from the others, so they are usually considered diffe-

rent states. We discuss a method to safely reduce the

number of reported states in section 6.

There were also cases where the MinHash algo-

rithm incorrectly split or merged states. One such

case was during the Facebook scan, when analyzing

two states that are accessed through the security set-

tings page. One state allows choosing trusted friends,

and the other enables a password change. Despite

their similarity, there are different actions that can be

done in each of these states. Hence, they should be

counted as two different states, and were mistakenly

merged into one. In the opposite direction, some sta-

tes were split during the scan into multiple groups be-

cause of insignificant changes between different re-

sponses. Section 6 suggests several explanations for

these incorrect results.

5.3.2 Results of other Hash-based Approaches

As was pointed in (Benjamin et al., 2010), when the

equivalence relation is too stringent, the scan might

suffer from a state explosion scenario, which requi-

res a significant amount of time and memory. This

observation accurately describes the scans involving

the other two hashing methods, which often resulted

in a state explosion scenario. Even when they in-

cluded most of the states reported by the MinHash

scans, they also contained hundreds of redundant sta-
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tes. This is due to the fact that the crawler exhausti-

vely enumerated variations of a very limited number

of states. The Facebook and Fandango scans reported

hundreds of states, with more than 95% of the sta-

tes being duplicate content. Moreover, since the Fa-

cebook application is very complex and diverse, the

state explosion scenario caused these scans to termi-

nate due to memory problems.

It is interesting to analyze the performance of the

naı̈ve approach and the DOM Uniqueness algorithm

when crawling the list of starred (tracked) projects of

GitHub users. While it is clear that the naı̈ve appro-

ach failed to merge two views with different number

of starred projects, it is surprising to see that the DOM

uniqueness algorithm also did not completely succeed

in doing so. The reason for that is because the items of

the list do not necessarily have the same DOM struc-

ture. Therefore, there is not always a common repea-

ting pattern between different lists, and the lists were

not always reduced to the same DOM canonical form.

5.3.3 Results of Non Hash-based Tools

The efficiency of the non hash-based scanners drop-

ped significantly comparing to their performance on

simple RIAs. This is due to the fact that complex

online applications pose challenges that are still not

well-addressed in these crawlers. CRAWLJAX re-

quires manual configuration of tailored comparators

to perform better on certain applications. Moreover,

CRAWLJAX is less scalable due to its all-pairs com-

parison approach.

The efficiency rates of the jÄk scans were not

high, as the assumption that similar states must share

the same normalized URL is not always true. In

the Fandango application, for example, pages provi-

ding movie overviews contain the movie name as a

path parameter, and thus are not identified as similar.

The same problem also occurred when jÄk scanned

Netflix. Multiple pages of this website offer the same

content and the same set of possible user interactions,

albeit they are written in different languages.

The crawling components of jÄk and CRAWL-

JAX could not login to the Facebook application pro-

perly, so a fair comparison is not possible in that case.

6 CONCLUSIONS

In this paper we present a locality-sensitive hashing

scheme for detecting duplicate content in the domain

of web application security scanning. The method is

based on MinHash sketches that are stored in a way

that allows an efficient and robust duplicate content

Figure 3: Successful split of two nearly similar states using
the MinHash algorithm. (a) Upper part: account setting
view of a Facebook user. (b) Lower part: the same view
with an additional menu open, adding a new functionality
to the previous state.

detection.

The method is theoretically proven to be less strin-

gent than existing DOM state equivalence strategies,

and can therefore outperform them. This was also

empirically verified in a series of experimental scans,

in which other methods, whether hash-based or not,

either completely failed to scan real-world applica-

tions, or constructed large models that did not cap-

ture their structure. As opposed to that, the MinHash

scheme enabled successful and efficient scans. Being

able to better detect similar content prevents the Min-

Hash algorithm from exploring the same application

state over and over. This way, the scans constantly re-

vealed new content, instead of exploring more views

of the same state. The MinHash scans got beyond the

first layers of the application, and did not consume all

the scan time on the first few states encountered.

Reducing the scan time and the complexity of the

constructed application model does not always come

without a price. The cost of using an LSH approach

might be an increase in the number of different states

being merged into one, and this could lead to an in-

complete coverage of the application. However, the

risk of a more strict equivalence strategy is to spend

both time and memory resources on duplicate content,

and thus to achieve poor coverage.

This risk can be mitigated by better optimizing pa-

rameter values. The value of k, the shingle length, can

be optimized to the scanned application. One can take

factors such as the average length of a DOM state, or

the variance in the number of different elements per

page, when setting the value of k for a given scan.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

202



Tuning the similarity threshold per application may

decrease the number of errors as well. Of course, the

probabilistic nature of the method also accounts for

some of the incorrect results, as the Jaccard similarity

estimations are not always accurate. Increasing the

number of hash functions can reduce this inaccuracy.

The LSH scheme can be applied to any web ap-

plication. However, there are applications in which

its impact is more substantial. Black-box security

scanners are likely to face difficulties when scanning

complex applications. Such applications often hea-

vily rely on technologies such as AJAX, offer dozens

of possible user interactions per page, and contain a

great amount of near-duplicate content. The Min-

Hash algorithm can dramatically improve the qua-

lity of these scans, as was the case with Facebook or

Fandango. For applications with less variance in the

structure of pages that belong to the same application

state, such as Netflix, the DOM uniqueness state equi-

valence mechanism can still perform reasonably. But

even in these cases, the MinHash algorithm reaches

the same coverage more efficiently.

A locality-sensitive hashing function helps in a

better detection of similarity between states. Howe-

ver, if a state is actually a container of a number of

components, each having its own sub-state, then the

number of states in the application can grow exponen-

tially. It seems reasonable that applying our algorithm

on every component separately would give better re-

sults. In this context, the component-based crawling

(Moosavi et al., 2014) could be a solution for decom-

posing a state into several building blocks, which will

all be analyzed using the MinHash algorithm.

The tested implementation of the MinHash

scheme is very basic. There is a need to take more

information into consideration when constructing the

DOM string representation of a response. For exam-

ple, one can mark part of the elements as more rele-

vant for security oriented scans, or use the value of

the attributes as well. Theoretically, two pages can

have a very similar DOM and differ only in the event

handlers that are associated with their elements. Alt-

hough this usually do not occur in complex applica-

tions, there were some rare cases where different sta-

tes were mistakenly merged into one state due to that

reason. Another potential improvement is to detect

which parts of the DOM response are more relevant

than others. By doing so we can mark changes in ele-

ments that are part of a navigation bar as less signifi-

cant than those occurring in a more central part of the

application.

We believe that incorporating these optimizations

in the MinHash scheme would make this approach

even more robust and accurate. Combined with more

sophisticated crawling methods such as component-

based crawling, security scans can be further impro-

ved and provide useful information for their users.
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Pellegrino, G., Tschürtz, C., Bodden, E., and Rossow, C.
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