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Abstract: The main objective of the paper is to develop an algorithm improving the situation with boundary effects at 

the numerical implementation of continuous wavelet transform, what makes it possible to hold down 

important information in the study of many nonstationary biological signals.  As a basis for the research, we 

propose the mathematical model of nonstationary signal (NS) with a complex amplitude variation in time. 

Such signals show peaks near the beginning and end of the observation period. The model leads to the 

analytical expression for continuous wavelet transform (CWT). Thus, we get to know how boundary effects 

relate to the finiteness in time of the mother wavelet function. To avoid boundary effects arising at the 

procedure of numerical wavelet transform, we develop the algorithm of signal time shift (STS). The results of 

analytical solution and numerical CWT calculation with and without the use of STS show the benefit of using 

STS in the processing of nonstationary signals. We have applied the technique to the study of nonstationary 

heart tachogram and discovered heart activity bursts in different spectral ranges, which appear and disappear 

at different time moments.   

1 INTRODUCTION 

The technique of CWT (continuous wavelet 

transform) allows us to develop a system of 

quantitative parameters for analysing nonstationary 

(NS) signals, with statistical and spectral properties 

changing in time (Mallat, 2008), (Cohen, 2003), 

(Advances in Wavelet, 2012), (Chui and Jiang, 2013), 

(Addison, 2017), (Hramov, 2015). The first important 

operation in the wavelet theory is the scaling 

procedure, in which we change the region of wavelet 

function localization in frequency. The second step is 

the shift operation, in which we change the 

localization of wavelet function in time. In this way, 

we can clearly reveal the amplitude-frequency 

properties of the signals under study. CWT represents 

three-dimensional surface  ,V t depending on    

frequency   and time t . Analytical CWT 

calculations using the Morlet mother wavelet 

function show that for harmonic signal 

0Z( ) cos(2 )t f t   ( 0f  is the frequency), the 

maximum of  ,V t  is reached at 0f  , and this 

maximal value does not depend on t . In the case of 

two infinite harmonic signals with frequencies 1f , 2f  

and the same amplitude, we observe the peaks of 

ridges with the same amplitude  ,V t  at points 

1f   and 2f   (Bozhokin, 2012), (Andreev et al., 

2014), (Bozhokin and Suslova, 2013), (Bozhokin and 

Suslova, 2015), (Bozhokin et al., 2017).  The majority 

of CWT studies use numerical calculations. In this 

case, the question arises of how accurately CWT 

reproduces the properties of ( )Z t  given in the finite 

interval [0, ]t T  (T  is the time of observation). The 

shortcoming of CWT is the finite temporal resolution 

of the mother wavelet function.  This causes boundary 

effects near the initial and final moments of time, 

where we can observe significant differences in the 

amplitude-frequency properties of the original signal 

( )Z t  and its CWT image  ,V t . To correct this 

drawback and improve the resolution of low 

frequency signal components in the case of short 

signal duration, the authors of (Tankanag and 

Chemeris, 2009), (Podtaev et.al.,2008), (Boltezar and 

Slavic, 2004), (Ulker-Kaustell and Karoumi, 2011) 

undertook a modification of CWT algorithm. The 

work (Cazelles et al.,2008) presents the discussion of 

boundary effects depending on the type of the mother 

wavelet function. The numerical estimation of 
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boundary effects at CWT for real experimental 

nonstationary signals was carried out in (Tankanag 

and Chemeris, 2009), (Podtaev et.al.,2008), (Boltezar 

and Slavic, 2004), (Ulker-Kaustell and Karoumi, 

2011).  

When analysing non-stationary signals in 

medicine, the development of quantitative parameters 

to describe heart rate variability is of great 

importance. Heart rate variability (HRV) inferred 

from the analysis of a tachogram—a series of RR 

intervals between heart contractions—is known as an 

important index in cardio-vascular system  

assessment (CVS) (Addison, 2017), (Baevskii et al, 

2002), (Anderson et al, 2018), (Bhavsar et al. 2018), 

(Hammad et al, 2018). However, the statistical 

parameters of HRV (RRNN, SDNN, RMSSD), the 

spectral characteristics of cardio intervals employing 

the Fourier transform (ULF, VLF, LF, HF), and the 

histogram methods given in the Standards can be used 

only in stationary situations. The condition of 

stationarity, meaning the repetition of statistical and 

spectral characteristics of the cardio signal taken 

arbitrarily over any time segment, is not fulfilled in 

the majority of cardiac situations.  In particular, it is 

true for the passive tilt test used for complex 

assessment of the cardiovascular system (CVS) to 

elucidate the mechanisms of its autonomous 

regulation. This test allows good standardization. The 

passive tilt test is performed on a special automated 

tilt table, which brings the body from the horizontal 

into the vertical position. There are two types of 

orthostatic tests, in which the human head rises  (HUT 

–head up table) and in which the human head falls 

(HDT –head down table). Tilt tests are used to 

determine the tolerance of the organism to abrupt 

changes of body position in occupational selection 

(pilots and cosmonauts), prescription of drugs that 

affect blood redistribution in diagnosing neuro-

circulatory disorders, and elucidation of the 

mechanisms of functional impairment of the 

autonomous system (ANS), in particular, detecting 

patients with neuro -cardiac fainting spells (syncope). 

The wavelet theory has been successfully applied 

in  HRV  studies (Addison, 2017), (Keissar at al. 

2009), (Ducla-Soares et al, 2007). Most HRV studies 

based on the wavelet theory use the models of 

amplitude-modulated signals, i.e., when the regular 

sampling interval ∆t coincides with the mean RR 

interval (∆t = RRNN). However, in many actual 

situations, where it is necessary to analyze accurately 

the cardiac arrhythmia, the time points of heartbeats 

are spaced very irregularly. Thus, developing of new 

models to study the transitional processes in the heart 

rhythm, which occur very often, for example, at tilt 

tests, remains a pressing problem. 

In the present paper, we develop an algorithm to 

eliminate boundary effects in the numerical 

implementation of the continuous wavelet transform. 

To solve this problem, we introduce the mathematical 

model of a signal with  complextime variation in the 

amplitude  A t . The model specifies the time 

behaviour of the amplitude, as well as the occurrence 

of peaks near the beginning and end of the 

observation period. This model allows us to obtain the 

analytical solution for the wavelet transform  ,V t  

and compare it with the given signal amplitude  A t

. To eliminate boundary effects arising at the 

numerical procedure of CWT, we propose the 

algorithm of signal time shift (STS). 

The aim of the work is to use the developed 

method STS together with the technique of CWT for 

the quantitative description of non-stationary heart 

rate variability. In the model we propose here, the 

HRV signal is a superposition of the Gaussian peaks 

of the same amplitude. The centers of heart beats 

separated by nRR  time intervals are located on a 

substantially irregular grid, which is characterized by  

time points nt , where  1n n nt t RR  , n = 1, 2, 3, 

…, N – 1, and 0 0t RR . These time points strictly 

correspond to the time points of the actual RR 

intervals. Our tachogram model considers frequency 

modulated signals and provides an analytical solution 

using CWT with the Morlet mother wavelet function. 

The maximal CWT value corresponds the value of 

local frequency function  maxF t  Applying  the 

second CWT (DCWT) for the signal  maxF t  allows 

us to study both aperiodic and oscillory movements 

of the local frequency in ULF,VLF, LF, as well as the 

HF spectral ranges (Bozhokin and Suslova, 2013), 

(Bozhokin and Suslova, 2014), (Bozhokin et al, 

2018). 

2 METHODS 

2.1 Mathematical Model of 
Nonstationary Signal 

We consider nonstationary signal ( )Z t  with the 

amplitude varying strongly in time. The characteristic 

feature of the proposed model is the complex 

behavior of the signal amplitude at time interval 

boundaries. We represent ( )Z t  as a superposition of 
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N elementary nonstationary signals (ENS) centered in 

the points Lt t  and determined by the system of L 

parameters: 
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ENS signal  L Lz t t in (1) has the shape of the 

Gaussian envelope of oscillating function (Bozhokin, 

2012) 

 

 
 

 
2

2
exp cos 2  .

2 4

LL
L L L L L

L L

t tb
z t t f t t

 
        
   

 

 

(2) 

 

Five parameters 
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(3) 

which determine the ENS, are: the amplitude Lb  

having the dimensions ( )volt second ; the frequency 

of oscillations Lf  in (Нz); the characteristic size L  of 

signal time localization in (s); the initial phase L  in 

radians. Hereinafter, we assume that the condition 

1L Lf    holds for all ENS considered in the present 

paper. This means that time interval L , which equals 

the characteristic scale of amplitude decreasing, covers 

many oscillation periods 1/L LT f . 

As an example, we consider the signal ( )Z t  (1) 

represented by four ENS (2) at L =0,1,2,3. Suppose 

the frequencies of all signals equal 2Lf  Hz, and their 

phases have zero values.  

Table 1 displays all other parameters of the ENS. 

The parameters in Table 1 are chosen in such a way 

that the total signal has the form  

 

 0( ) ( )cos 2 ,Z t B t f t   

 

(4) 

 

where 0f =2Hz. 

 

Table 1.  

The parameters  of four ENS in (1) 

  (s)   (s)  (s) 

0 –0.3 3 0.75 

1  25 5 

2  25 4.5 

3 –0.3 47 0.75 

The value of ( )B t can be represented in the form 

 

 
 
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Let us introduce the notations 

 

( ) ( )A t B t , ( ) / mA t A , 

 

(6) 

 

where mA is the maximal value of the amplitude. 

Fig.1 shows the proposed model (1) of the signal. It 

is essential that the signal has the points of zero 

amplitude. Besides, the graph shows two high peaks 

with narrow localization 0 =0.75 s and 3 = 0.75 s at 

the beginning 3t  s, and at the end 47t  s of the 

process.  

Fig.2 shows the behavior of ( ) / mA t A  within the 

interval 0 ( ) / 1mA t A  . 

 

Figure 1: Time dependence of the signal ( )Z t  (1) with the 

parameters given in Table 1.  

It is important to emphasize that the proposed model 

allows us to set the amplitude exactly. Hereupon, the 

model gives the analytical solution for CWT. 

 

Figure 2: Dependence of ( ) / mA t A  in time. 

L
Lb Lt L
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Further study will focus on computing CWT, 

formulating the criteria for determining how correctly 

CWT shows the time behavior of the amplitude ( )A t , 

and eliminating boundary effects in CWT 

implementation. 

2.2 Continuous Wavelet Transform 

The continuous wavelet transform  ,V t  (CWT) 

maps nonstationary signal  Z t  with varying time-

frequency structure on time-frequency plane 

(Addison, 2017), (Wavelet in Physics, 2004): 

      *, ,V t Z t t t dt





         
 

(7) 

 

where  x  is the mother wavelet function, and 

symbol * means complex conjugation. The mother 

wavelet  x should be localized near the point

0x  , have the unit norm value, and zero mean value 

calculated over the interval x  . The adaptive 

Morlet mother wavelet function (AWM), which we 

introduced in (Bozhokin et al. 2017), satisfies all 

these properties. The formulas for AMW and its 

Fourier image are 
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(10) 

 

The value m  in (8)-(10) plays the role of a control 

parameter, while 2m m   . The parameter of 

localization x , which indicates the extension of 

 x along  x-axis, and F , which corresponds to 

the extension of Fourier spectrum  F  (Mallat, 

2018), (Chui and Jiang, 2013) along the frequency 

axis, have the values / 2x m  , and 

1/ ( 8 ).F m   Their product is close to the lowest 

value 1/ (4 ).x F     The values of x  and F  

vary with the change in .m  Thus, we get the 

opportunity to vary the time and spectral resolution of 

the signals under study. At 1m   we obtain the 

formula for the ordinary Morlet mother wavelet 

function. If the characteristic length of  x  is 

/ 2x m  , the characteristic time moments, which 

make the main contribution to the integral (7), satisfy 

the relation  

.x xt t t
 

   
 

 
 

(11) 

 

Thus, AMW (8) behaves like a varying window 

depending on the control parameter. The window 

width automatically becomes large for small 

frequencies and small for the large ones. 

We note, that the wavelet transform (7) with the 

mother wavelet (8) for elementary nonstationary 

signals (2), with the amplitude varying in time and 

constant frequency, can be calculated analytically 

(Bozhokin et al, 2017). In this case, the maximum of 

 ,LV t  in frequency is achieved at the point, and the 

time behavior of  ,LV t  reproduces that of the 

signal amplitude. We can easily find the analytical 

expression of CWT for the superposition (1). The 

characteristic lengths 
(CWT)
t and 

(CWT)
  of  

 
2

,LV t  along the time and frequency axes have 

the values:  

(CWT) 2 2 21 / (2 ),t L L Lm f      
(12) 

 

(CWT) 2 2 21 2 / / (4 ).L L Lf m      
(13) 

 

 

It is easy to derive two limiting cases of these 

formulas ( L Lm f   and   L Lm f  ). 

2.3 Wavelet Analysis of Mathematical 
Model of Nonstationary Signal 

After applying CWT with 1m   to (1), we can 

observe that at Lf   the time behavior 

     2 2 2, exp / 2L L L LV f t t t    
  

exactly reproduces 

the time behavior of  2A t . If the control parameter

L Lm f  , then the behavior of  
2

,L LV t t   

exactly repeats the behavior of power spectrum

   
2

LP z   , and 
( )CWT
  exactly coincides 

with 
(0)
 , which characterizes the width of ENS (2) 

power spectrum, i.e. 
(CWT) (0) 1/ (4 )L      . 

Fig.3 shows the complex amplitude and frequency 

properties of the signal.  
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Figure 3: Analytical dependence of  ,V t on frequency

( )Hz   and time ( )t s  for the signal ( )Z t . 

At Lt =3s ( L =0) and Lt =47s ( L =3) corresponding 

to the sharp peaks, we have wide frequency 

distribution. It is due to the fact that the length L

=0.75s of these peaks ( L =0, L =3) is much smaller 

than the lengths of two other peaks L =5s ( L =1) and

L =4.5s ( L =2). To find out how  ,V t  

reproduces the behavior of the signal amplitude   ,A t  

we make a cross-section of the surface at 0f   

along the time axis. Fig.4 shows the cross-section of 

 0 ,V f t  in comparison with  A t . 

 

Figure 4: Comparison of time behavior for  A t  (thin line) 

and cross section of  0 ,V f t  (bold line) at 1m  . 

In Fig. 4 we can see that the curves diverge only in a 

close neighborhood of peaks Lt  =3s ( L =0) and Lt

=47s ( L =3). It is because these two peaks are located 

at the beginning and at the end of the interval [0, ]T , 

where the condition 1L Lf    is violated ( 0f =2Hz; 

0 = 3 =0.75s). The curves nearly coincide at all 

other points of the interval [0, ]T , where T =50s. We 

conclude that for 1L Lf   , the curves  A t and

 0 ,V f t are similar. To characterize the deviation of 

 0 ,V f t from  A t , we introduce the parameter of 

mean square deviation by the formula 

   
2

02

0

;1
,

T

t
m m

V f tA t
dt

T A V

 
   

  
  

 

 

(14) 

 

where mV  is the maximal value of  0 ,V f t  within 

the interval [0, ]T . Thus, CWT with 1m   is well 

suited to describe the time variation of amplitude 

 A t  for some specific moments, in which  A t =0 

(Fig.2). 

3 RESULTS 

3.1 Boundary Effects in the Analysis of 
Spectral Properties 

The foregoing results are based on the analytical 

expressions for  ,V t  and  A t  for the proposed 

mathematical model of nonstationary signal. For real 

signals, we are to carry out numerical calculations to 

find  ,V t . In this case, we face the problem of 

boundary effects. Let us determine the influence of 

boundary effects in calculating  ,V t (Bozhokin 

and Suslova, 2013). Boundary effects can appear at 

both the left (0 )offt t  and the right 

( )offT t t T    ends of the observation interval T

. The value of offt  will be determined later. The 

reason is the finite value of wavelet’s length x , 

which leads to significant errors in numerical CWT 

calculation. To eliminate the errors, we take the 

values of  ,V t  in these intervals equal to zero. 

Naturally, we lose the valuable information on the 

time-frequency behavior of the signal within these 

intervals. How can you keep this information?  

Let us formulate the problem of  finding the 

minimal value min  of frequency that will allow us 

to determine CWT correctly. Analyzing (11), we 

conclude that in the initial interval [0, ]offt , the  
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min

2
.x

offt





 

 

(15) 

 

A similar formula can be obtained near the right-

hand boundary ;offT t T  
of the signal. To 

determine min  correctly, we need n  ( 1n  ) 

periods of frequency oscillations with the duration of 

min1/   that can be placed within the remaining time 

interval [ 2 offT t ]. The observation interval T 

consists of two boundary sections with the lengths

min4 /x   and min/n   (the interval to determine 

CWT  correctly). Then we have 

 

min

4
.xn

T

 
   

 

(16) 

 

Taking into account the boundary effects leads to the 

value of min  approximately 4 xn   times 

largerthan min 1/f T  used in the Fourier analysis. 

After determining min  (16), we can calculate the 

value of offt  (15). 

To eliminate boundary effects, we propose an 

algorithm, which we call Signal Time Shift (STS). 

Knowing the value min  (16), we can extend the 

interval of signal observation from T  to 1T . The 

beginning of the interval T  ( 0t  ) is transferred 

into the point mint , and the initial interval  min0;t , 

which enters a new time period 1T , should be filled 

with the initial constant values of the signal  

 0 .Z t  We are to choose the value of mint larger 

than the initial section, where we can observe the 

boundary effects, i.e.  min min2.5 /xt    . This value 

is larger than offt  ( min 1.25 offt t ). We also fill the 

new finite interval  1 min 1;T t T  with the constant 

values  Z t T  of the signal. The central interval 

min 1 min[ ; ]t T t  at 1T T has the duration .T  It 

exactly repeats all the values of the investigated 

signal. Thus, the values of  Z t  are located in the 

central part of the new interval 1T  outside the 

boundary effect zone.  

The primary interval T  is shown in the upper part of 

Fig.5. This interval consists of two boundary sections 

(in black) with the duration min2 4 /off xt     plus 

the section with the duration min/n  . The lower  

 

Figure 5: The upper drawing corresponds to the interval T
with two boundary sections marked in black; the lower 

drawing corresponds to 1T . 

drawing in Fig.5 shows the enlarged interval 1T , 

which consists of the central section T with all values 

of  Z t  (in grey) and two sections of total duration 

min min2 5 /xt     with the boundary values of 

 Z t . We make equal the minimum frequency values 

   min min 1T T    for T  and 1 min5 /xT T   

. In this case, the number of periods  n T  and  1 1n T  

for correct determination of the frequency min  are 

related to each other as    1 1 5 xn T n T   . The 

next step in STS algorithm is numerical calculations 

of CWT in the interval 1[0, ]T . Then, we eliminate all 

the values of  ,V t  located at the beginning of 

 min0;t  and at the end of min 1 min[ ; ]t T t . The 

subsequent shift of start timing from point mint t  to 

the point t =0 restores the initial observation interval 

 0;t T , and allows us to compare the values of 

 ,V t  with the true behavior of the signal  Z t  

taking into account the boundary effects.  

Let us compare the analytical behavior of  A t  

(Fig.2) with that of  0 ,V f t  (CWT) (Fig.4), 

numerical implementation  (num)
0 ,V f t  of CWT 

without the procedure of signal time shift (STS), and 

the numerical implementation  ( )
0 ,stsV f t  of CWT 

with the use of STS. All calculations are carried out 

for the model (1)-(2) and the parameters given in 

Table 1. Numerical calculations are made for the 

Morlet wavelet with 1m  , the characteristic length 

x =1, the number of oscillation periods 10n  . In 
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this case, T =50s, min =0.28Hz, offt =7.14s, mint

=8.93s, 1T  =61.76s. 

Fig.6 represents a small fragment of the signal near 

the beginning to demonstrate the boundary effects. 

The duration is 5s. In Fig.6 the dash-dot line shows 

CWT calculated numerically  (num)
0 ,V f t , in 

which the boundary effects appear. For the 

frequencies   1 Hz, the cut-off time is offt  2s. We 

observe strong differences between  (num)
0 ,V f t  

and  A t  at times 0 offt t  . This requires us to take 

as zeros the wrong values of  (num)
0 ,V f t  in the 

interval 0 2t s  . The dot line represents the result 

 ( )
0 ,stsV f t  of applying STS method. This line 

reproduces the analytical behavior of  0 ,V f t quite 

well. 

 

Figure 6: Thin line ‒  A t ; bold line – analytical 

 0 ,V f t ; dash-dot line – numerical  (num)
0 ,V f t , 

which takes zero values at small times; dot line – numerical  

with the use of signal time shift. 

Thus, the numerical implementation together with 

STS method allows us to save the important 

information about the amplitude–frequency behavior 

of the signal near the beginning and the end of the 

observation interval. The signal time shift allows us 

to consider all the time points of the signal under 

study.  

3.2 STS Algorithm in the Analysis of 
Heart Tachоgram 

The method of eliminating boundary effects (STS), 

developed in the previous section, can be applied in 

the study of non-stationary signal representing the 

heart tachogram. 

In contrast to the traditional approach of simulating 

the tachogram as an amplitude modulated signal with 

the points equidistant in time, we consider it as a 

frequency-modulated signal (Bozhokin and Suslova, 

2013). We represent the heart tachogram signal as a 

set of identical Gaussian peaks, whose centers nt  are 

located on an uneven grid of times, and coincide in 

time with the true moments of heart beats: 

1n n nt t RR  , n = 1, 2, 3, …, N – 1, and 0 0t RR . 

The width 0 20   ms of each Gaussian peak is equal 

to the width of the QRS complex.  
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(17) 

 

Such a model makes it possible to obtain the 

analytic expression for  ,V t  (7). Fig.7 shows 

human heart tachogram registered during Head Down 

Tilt Test. It consists of three stages: A,B,C. 

 

Figure 7: Dependence of heart bear interval nRR  on time

( )t ms . 

Stages A,C correspond to the horizontal position of 

the table. Stage B is the lowering of the table with a 

turn of 30 , which leads to the transients in the 

frequency of heart beats.   

Let us consider the experimental tachogram 

(Fig.7) registered during head-down tilt test (HDT) 

The duration of intervals nRR  between the centers of 

heartbeats changes. Stage B, when the HDT takes 

place, lasts 300 s ( 600 900t  s). For the proposed 

model of tachogram (17), the  Gaussian peaks (17) are 

centered at the times nt  when heartbeats occur:

1n n nt t RR  , n = 1, 2, 3, .. N –1, and 0 0t RR  . 
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Substituting these nt  into (17), we obtain the 

frequency-modulated tachogram signal  Z t . The 

analytical expressions for the signal (17) and the 

mother wavelet function  x  (8) allow us to find 

the analytical expression for CWT (7). The value 

 maxF t shown in Fig. 8 corresponds to the 

maximum value of  ,V t  for each point in time t . 

The function  maxF t  varies in the range

 max0.4 2.5Hz F t Hz  . 

The study of  maxF t  during HDT (stage B, 

600s t   900s) shows the appearance of low-

frequency oscillations. The characteristic period Ft   

of such oscillations approximately equals 100 s. In 

Fig.7 the graph for  nRR t  shows two heartbeats at 

the time 600t  s separated by the interval 

  650nRR t  ms. Therefore, at the same moment 

600t  s, the value of  maxF t   1.54 Hz (Fig. 8). 

Thus, for the frequency-modulated signal (17) 

simulation, we can calculate the maximum local 

frequency  maxF t  at any time t . 

Another wavelet transform applied to 

 maxF t (double continuous wavelet transform 

DCWT [9]) makes it possible to study transients in the 

variation of frequency. Applying double continuous 

wavelet transform to the signal  maxF t  allows us to 

detect both aperiodic and oscillatory movements of 

the local frequency relative to the trend. 

 

Figure 8: Dependence  maxF t  on time ( )t ms . 

Fig.9 displays the result of DCWT with the 

procedure of STS, which shows a sharp change in the 

spectral structure of the signal at stage B.  

 

Figure 9: Dependence of double wavelet transform

 DCWTV t  on frequency ( )Hz  and time ( )t ms . 

Fig. 9 shows that the tachogram is an alternation 

of bursts of spectral activity in different spectral 

ranges: 

ULF = ( min ;0.015 Hz); (VLF = (0.015; 0.04 Hz); 

LF = (0.04; 0.15 Hz); HF =(0.15; 0.4 Hz).  

The value of min  is determined by the equation 

(16), with the number of periods 5n  ,  2x  . 

To analyze heart tachogram during nonstationary 

functional tests, we introduced quantitative 

characteristics describing the dynamics of changes in 

spectral properties of the signal  maxF t . Such 

characteristics are the instantaneous spectral integrals

 E t , and the mean values of the spectral integrals 

 E S   at the stages  , ,S A B C  in different 

spectral ranges  , ; ;ULF VLF LF HF  .  

To study the appearance and disappearance of 

low-frequency oscillations  maxF t , we can calculate 

the skeletons of DCWT showing the extreme line of 

 DCWTV t  on the plane    and  t . The value 

 , t   illustrates instantaneous frequency 

distribution of the signal energy (local density of 

energy spectrum of the signal) 

 
 

2
,2

,
DCWTV t

t
C


 



  (18) 

The constant C  for the Morlet mother wavelet 

(8) is approximately 1.013 ( 1m  ). The dynamics of 

time variation for different frequencies is determined 

by spectral integral  E t :  
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Spectral integral  E t  represents the average  

value of the local density of the signal energy  

spectrum  integrated  over  a  certain frequency  range  

[ / 2; / 2]         , where    

denotes  the middle of the interval,   –  its  width. 

The  time-variation of  E t performs a kind of 

signal  filtration  summing  the  contributions  from  

the  local  density of the spectrum  , t   only  in  a  

certain  range of frequencies  ={ULF, VLF, LF, 

HF}. By studying DCWT of the  signal and 

calculating  E t  in  -range one can follow the  

dynamics  of  appearance and disappearance of low-

frequency  spectral components   maxF t . 

The quantitative characteristics that describe the 

average dynamics of the spectral properties of a 

tachogram during nonstationary test have average 

values of the spectral integrals at the stages 

S={A,B,C} in the ranges μ. Assuming that stage S 

starts at  It S   and  ends at   Ft S , the average 

spectral integrals are equal at  stage S and are 
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(20) 

 

We introduce the function 
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(21) 

which shows the instantaneous value of the spectral  

integral in     range at the arbitrary time point t  as 

compared to its   average value at rest (Stage A). In 

addition, we introduce the function  /d t  : 

 

 
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E t E A
d t

E t E A

 
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 

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, (22) 

 

which shows how the instantaneous ratio 

   /E t E t   varies over the ratio of average 

spectral integrals    /E A E A    

calculated at the stage of rest (Stage A). The functions 

 d t   and  /d t   represent the variation of 

spectral characteristics during the total tachogram 

period as compared with the respective average 

values observed at Stage A (  ={ULF, VLF, LF, 

HF};   ={ULF, VLF, LF, HF} ) 

We determine the heart rhythm assimilation 

coefficient in the spectral range     as 
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(23) 

It reports the fold increase in the average spectral 

integral  E B   for the  -range at Stage B 

relative to the average value  E A  of spectral 

integral for the same  -range at rest (Stage A). 

The detailed calculations of  E t  and 

 E S   are given in (Bozhokin and Suslova, 

2013), (Bozhokin et al., 2017). Fig. 10-13 represent 

the results of DCWT analysis of nonstationary heart 

rhythm using the STS technique. 

 

Figure 10: Spectral interval   ULFE t  divided by the 

average value in the stage A  ULFE A .  

Fig.10 gives the plot of time behavior for 

 ULFd t  (21). The heart rhythm assimilation 

coefficient  /ULFD B A (23) in the ULF   

spectral range is 1.92. The coefficient  ULFd t (21) 

reaches the maximal value 3.8  at 900t  s. This 

means that the instantaneous value of  ULFE t  at 

Stage B (test phase) is approximately 3.8 times 

greater than the average value of  ULFE A at Stage 

A (at rest). In this spectral range (ULF) during the 
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time period 600 900t  s a strong trend in 

 maxF t  is noticeable (Fig.8).  

After the completion of HDT ( 900t  s), there 

occurs a slow relaxation of the heart rate to the 

equilibrium state, which takes about 300 s. The 

characteristic time of frequency changes is equal to 

100 s. 

 

Figure 11: Spectral integral   VLFE t  divided by its 

average value  VLFE A at the stage A. 

Fig.11 shows the behavior of  VLFd t  (21). The 

heart rhythm assimilation coefficient  /VLFD B A  

in the VLF   spectral range equals 2.32  (23). 

The maximum of    7.4ULFd t   (21) takes place at 

600t   s. Fig.11 shows rapid VLF rhythm activation 

at Stage B ( 600 900t   s) in comparison to Stage 

A ( 0 600t   s). 
 

 

Figure 12: Spectral interval   LFE t  divided by its 

average value  VLFE A at the stage A.  

Fig.12 represents the coefficient  LFd t  as a 

function of time. Note that at Stage B in the range

LF  , the rhythm is also noticeably higher than at 

stage A. The heart rhythm assimilation coefficient

 / 1.15LFD B A  . Considering the oscillatory 

motion of the maximal frequency  maxF t , we detect 

flashes of vibrational activity in this spectral range LF 

= (0.04; 0.15 Hz). For such flashes, the magnitudes of 

spectral integrals can many times exceed the 

background signal activity. 

 

Figure 13: Spectral interval   HFE t  divided by its 

average value  HFE A at the stage A .  

In the range HF = (0.15; 0.4 Hz), we can also 

observe short flashes of activity in spectral integrals. 

The maximum of  HFd t  is approximately 14 times 

greater than the background, but

 / 0.67HFD B A  . This means that the average 

activity at Stage B is less than the average activity at Stage 

A. 

 

Figure 14: Temporal dependence of  /LF HFd t . 

Fig.14 demonstrates the temporal behavior of

 /LF HFd t , which characterizes the instantaneous 

ratio of    /LF HFE t E t  to the average value 

   /LF HFE A E A      calculated at stage A. 

The graph shows that at some time points the 

instantaneous value  /LF HFd t  becomes 

significantly large. This indicates the moments of 

tension in the physiological state of the patient and 

can be used for diagnostic purposes. 
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4 CONCLUSION 

The algorithm developed in the article, which allows 

eliminating boundary effects in the numerical 

implementation of CWT, becomes especially 

important in the case of signals with the predominant 

influence of low frequencies, when the observation 

period for such signals is not too large. If the signal 

shows significant variations, the information on the 

behavior of the signal at the initial and final 

observation stages becomes very important for the 

correct conclusion about its amplitude-frequency 

properties.  

We believe that as biological signals are strongly 

nonstationary, special technique is necessary to detect 

variations in frequency and temporal structure. Using 

CWT and DCWT with the STS procedure of boundary 

effect correction helps to solve the problem. The 

effectiveness of the technique is demonstrated in 

application to the record of human heart tachogram 

during functional test (HDT – head down).  

The calculations were made based on the frequency-

modulated tachogram model proposed by the authors.  

The technique of double continuous wavelet 

transformation leads to the conclusion that 

nonstationary tachogram can be represented as a 

combination of activity flashes in different spectral 

ranges. Such flashes may appear and disappear at 

certain points in time and in different spectral ranges. 

The quantitative characteristics of nonstationary 

tachogram estimate the increased heart activity in the 

period of changing the position of the body during the 

HDT. 

The method of studying the restructuring spectral 

activity in the cardiac rhythm during the transitional 

processes, which is suggested in this article, makes it 

possible to reveal the dynamics of interaction 

between parasympathetic and sympathetic parts of 

the human autonomic nervous system. The proposed 

quantitative parameters allow us to get an objective 

assessment of the adaptive capabilities of the human 

organism during various physical, orthostatic, 

respiratory, psycho-emotional and medicated tests.  

The proposed techniques help to reveal and 

analyze important information, which can be used in 

diagnostics. 
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