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Abstract: Human action Recognition has been extensively addressed by deep learning. However, the problem is still
open and many deep learning architectures show some limits, such as extracting redundant spatio-temporal
informations, using hand-crafted features, and instability of proposed networks on different datasets. In this
paper, we present a general method of deep learning for the human action recognition. This model fits on any
type of database and we apply it on CAD-120 which is a complex dataset. Our model thus clearly improves
in two aspects. The first aspect is on the redundant informations and the second one is the generality and
the multi-functionality application of our deep architecture. Our model uses only raw data for human action
recognition and the approach achieves state-of-the-art action classification performance.

1 INTRODUCTION

The recognition of human actions has been a subject
of research since the early 1980s, because of its pro-
mise in many fields of application (Wang and Schmid,
2013), (Gan et al., 2015). We define gestures like the
basic components that describe the meaning of mo-
vements. “Raising an arm” and “shaking the sup-
ports” are movements in this category. So actions are
one-person activities that can be composed of several
gestures organized over time. “Walking”, “shaking”
and “drinking” are examples of simple actions. Then
activities are complex sequences of actions performed
by many people or objects. “Playing basketball” is an
example of activity consisting of actions such as run-
ning, shooting, dribbling and objects. Compared with
object recognition in images, human action recogni-
tion is much more difficult because action contains
spatio-temporal informations.

To recognize actions, there are some methods cal-
led traditional methods (Laptev, 2005) that consist in
three parts: feature extraction, feature coding to ge-
nerate video-level feature descriptor and the descrip-
tor classification. The main features for action recog-
nition using hand-crafted features are histogram of
oriented gradients (HOG), histograms of optical flow
(HOF), motion boundary histogram (MBH). Hand-
crafted features have achieved great success in the
task of action recognition. However, over the last
few years, deep convolutional neural networks (CNN)
has become the most popular method and achieved

the state-of-the-art performance on several datasets.
The CNNs offer us the possibility to extract the fea-
tures instead of the classical method commonly used
in computer vision problems. Impressive results have
been obtained using convolution networks which is
an extension of 2D CNN (LeCun et al., 1998) for the
recognition of human action in video. Precisely 3-
dimensional convolutional neural networks are used.
The usage of 3D convolutions allows to capture spa-
tial information in time from the video data stream by
taking consecutive video frames into account. There
is a lot of work for human action recognition using
3D CNNs as two-stream convolutional networks (Si-
monyan and Zisserman, 2014), stacked convolutional
independent subspace analysis (Le et al., 2011), stra-
tified pooling based deep convolutional neural net-
works (Yu et al., 2017), trajectory-pooled deep convo-
lutional descriptors (Wang et al., 2015), etc. In con-
trast to image classification, there are more aspects to
be consider when using video data. Firstly, the video-
based CNN weights must be trained on video data-
set from scratch while to image-based CNN can profit
from transfer learning. Secondly the semantic under-
standing becomes more complex for example when
the camera moves or when the background changes
in time. Thirdly, the network takes more time to train
depending on the architecture. The work in (Wang
et al., 2014) shows good results on the CAD-120 da-
taset but the model is not extensible on another da-
taset where they get relatively low score. Still in the
work (Zolfaghari et al., 2017), the authors use many
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inputs for their models but these inputs are someti-
mes using hand-crafted features. Theses methods can
have temporal informations but have an impact on the
overall performance. In practice, due to the difficulty
in data collection and annotation, publicly available
action recognition datasets (e.g. UCF101 (Soomro
et al., 2012), HMDB51 (Kuehne et al., 2011)) remain
limited, in both size and diversity.

To tackle the above problems, we study:

• How to design an effective and efficient video-
level framework for learning video representation
that is able to capture long-range temporal struc-
ture without using, in addition, hand-crafted fea-
tures;

• How to learn a model given limited training data;

• How to generalize a model to any databases.

Our proposition consists in a new deep architec-
ture for human actions recognition by video analy-
sis, precisely with RGB images. To achieve this task,
it is important to have both spatial and temporal in-
formations. We linearly segment our video to avoid
having a lot of redundant information. Our model
uses 3D convolutions layers and max pooling to per-
form operations through a stack of images, movement
can be captured in the resulting entities. In summary,
we build our method on top of the successful Tem-
poral Segment Networks (Wang et al., 2016) and Re-
configurable Convolutional Neural Networks (Wang
et al., 2014) while tackling the problems mentioned
above. Our method proposed a new deep architec-
ture for human action recognition which transforms
frame-level features to video-level feature descriptor.
Firstly, we extract short snippets over a long video se-
quence by linearly segmenting each video called cli-
que. Secondly, a clique is a part of our final archi-
tecture and contains 3D CNN which includes some
fully-connected layers to extract features. Thirdly, fe-
atures from each clique are concatenate to form a fi-
nal video-level feature descriptor. Finally, we use full
connection layers for action classification.

The main contributions in this study are summari-
zed as follows:

(i) The uniform temporal sampling method preser-
ves enough video information for action recog-
nition. Furthermore, the network does not need
hand-crafted features dataset during the training
process just raw data for each clique. Then we
obtain significant improvement on CAD-120 da-
tabase, which only contains 120 video clips.

(ii) The proposed method allows an arbitrary number
of cliques so any number of features to be aggre-
gated into video-level feature descriptor.

Figure 1: Pipeline for Human action recognition using tra-
ditional methods.

(iii) Our approach can be adapt to a large dataset and
can be generalized to apply on multi-channel vi-
deo frames.

The rest of the paper is structured as follows:
Section 2 introduce the state-of-the-art methods for
Human Action Recognition. Section 3 describes our
method for action recognition. In Section 4, we de-
monstrate the efficiency and practicality of the propo-
sed method on a public dataset which achieve state-
of-the-art action classification performance. Finally,
Section 5 concludes the paper.

2 RELATED WORKS

A batch of works on human action recognition mainly
focus on developing robust and descriptive features
(Scovanner et al., 2007; Xia and Aggarwal, 2013;
Ni et al., 2013). Typical examples of local feature
descriptors include histograms of oriented 3D spatio-
temporal gradients (HOG3D) (Laptev et al., 2008),
speeded up robust features (SURF) (Klaser et al.,
2008), dense trajectory (IDT) (Wang et al., 2013)
and motion boundary histogram (MBH) (Bay et al.,
2006). In order to transform local descriptors into vi-
deo feature descriptor most commonly used algorithm
is bag of word (see Figure 1 (Fei-Fei and Perona,
2005)). The hand-crafted features based action recog-
nition achieve good performance, but these features
are not optimized for visual representation and lack
discriminative capacity when encounter background
clutter, large intra-class variations videos for action
recognition and redundant informations.

More recently, impressive results have been obtai-
ned using convolution networks. Specifically, CNN
3D (Rahmani et al., 2018; Zhou et al., 2014) was used
to extract spatio-temporal features from raw sequence
data for action recognition. Through their hierarchi-
cal representation of entities, deep networks learn to
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capture localized features as well as temporal infor-
mation for 3D CNN as well as context index and
can exploit high-level information from large-scale
video datasets. Other work also focused on hand-
crafted features and combine with 3D CNNs (Hou
et al., 2018) to expect for increasing classification
accuracy. With these impressive results of deep lear-
ning, our work is naturally in this direction. Recent
research showed that most of these approaches are
not only computationally expensive, but they also fail
on capturing context, high-level information, spatial,
temporal, and interactions information. (Wang et al.,
2014) shows that learning a model with a sequence
of frames, can bring more temporal informations and
can reduce over-fitting during training phase. In the
work (Wang et al., 2016), the temporal segmentation
of each video without overlapping reduces redundant
information and results in solid feature for inference.
(Simonyan and Zisserman, 2014) proposed a model
with different inputs such as RGB, optical flow but
this can be complicated when running the algorithm
and takes a lot of time too. These methods, however,
remain unable to take into account a learning pattern
to model the temporal structure. Our proposed linear
segmentation, while underlining this principle, con-
stitutes the first framework of the temporal structure
without external information (such optical flow or si-
milar) that could be harmful during the training phase.
The performance of recognition depends on the fact
that the model pays attention to the region concer-
ned, but discriminative localization is a problem for
video. Also there is a lot of problems on the recogni-
tion of an inter-action object/human and background,
the position of the camera, etc. So our deep structu-
red model can be viewed as an extension and impro-
vement of these existing architectures composed of
many cliques that represent a part of our architecture
and a part of sampling informations. Also we replace
hand-crafted features to gray-scales images for inputs
of each clique.

3 THE PROPOSED
ARCHITECTURE

We will introduce the structure of our deep model and
explain how it can handle large intra-class variance.

3.1 3D CNNs Spatio-temporal

Motivated by (Wang et al., 2014), the deep learning
model that we present is like a spatio-temporal con-
volutional neural network, shown in Figure 2. We de-
fine a clique as a subpart of the network stacked up

Figure 2: Extraction of multiple features from frames. Mul-
tiple 3D convolutions can be applied to contiguous frames
to extract multiple features.

Figure 3: Illustration of a clique of our neural network. A
clique is a part of our architecture and each clique has, as
input, a short snippets from videos.

for several layers. Each clique extracts features from
one decomposed video segment and an illustration is
highlighted in Figure 3. Particularly, for each clique,
three 3D convolutional layers are first built upon the
raw input (i.e. gray-scale data), which is made up of at
most one video image. Note that a max-pooling ope-
rator is applied on each 3D convolutional layer ma-
king our model robust to local different changes and
noises. By the way, the convolution results generated
by different cliques are concatenated into a long vec-
tor of features, on which we build three full connected
layers to associate with the activity label. In the fol-
lowing, we introduce the detailed definitions for these
components of our model.

1. 3D Convolutional Layer

In 2D CNNs, convolutions are applied on the
2D feature maps to compute features from
the spatial dimensions only. When applied to
video analysis problems, it is better to capture
the motion information encoded in multiple
contiguous frame (Ji et al., 2013). We know
that w,h represent the width and height of each
frame and w′,h′,m′ respectively represents the
width, height and temporal length of the 3D
CNN. We can obtain a feature map via per-
forming 3D convolutions across the s-th to the
(s + m′ − 1)-th frames. The response for the
position (x,y) in the feature map can be repre-
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Figure 4: Example of our general deep architecture modified from (Wang et al., 2014)). Here we have three cliques (blue,
red, green). These cliques extract information and are concatenated during the final classification stage.

sented as
uxys =

tanh(b+
w′−1

∑
i=0

h′−1

∑
j=0

m′−1

∑
k=0

ωi jk ∗P(x+ i)(y+ j)(s+ k))

(1)

where p(x+ i)(y+ j)(s+ k) is the input pixel va-
lue at position (x+ i,y+ j) in the (s+k)-th frame,
ωi jk is the parameter for the convolutional kernel,
and b is the bias for the feature map. It results
in (m−m′ + 1) feature maps after the first 3D
CNN and for each set of feature maps, we succes-
sively further perform 3D convolutions and gene-
rate another set of feature maps on a deeper layer

2. Max-pooling Operator
A max-pooling is applied after each 3D convolu-
tion result in order to obtain deformation and shift
invariance (Yu et al., 2011). Given a set of fea-
ture maps, the max-pooling operator reduces its
dimensionality and allows for assumptions to be
made about features contained in the sub-regions.

3. Full Connection Layer
The different sets of feature maps from the M mo-
del cliques, are concatenated into a long feature
vector and then we apply three fully connected
layers. Note that the number of the output neu-
rons is K, which is the same as the number of ca-
tegories of activities. Each neuron represents the
probability of an activity hypothesis and to nor-
malize the probabilities of output labels, we apply
the softmax function on them.

3.2 Our Approach

We linearly segment each video (Wang et al., 2016)
to avoid repeated information so as to improve clas-
sification during the learning phase. The number of

Figure 5: Illustration of the different transformations for
data augmentation.

cliques is chosen according to the dataset which is im-
portant for the recognition of human action to main-
tain data consistently. The choice of number can also
be used to increase the size of data, in place of using
overlapping windows. We will demonstrate an exam-
ple of cliques in section 4 on the CAD-120 dataset.
The last fully connected layer is important because
it is also chosen according to the extracted charac-
teristics. More we want to have relevant informa-
tion, more the number of cliques is needed, and more
the fully connected layer is raised. Our work shows
that with a small dataset it is empirically sufficient to
choose a number of clique between 2 to 4. For a large
dataset the number of cliques can be increase to 8.
Once the different cliques have extracted the spatio-
temporal information (Zolfaghari et al., 2017), we
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need to concatenate these features then applied two
fully connected layers and the last one corresponds to
the layer related to the number of labels (actions). In
the Figure 4 we show an example of our architecture.

3.3 Inference

The inference task is to recognize the category of the
activity given a video X across all the labels y (1≤ y≤
K, K the number of classes). To do this, we divide the
video in N images sequences called clique. For each
clique Ci ∈ {C1,C2, . . . ,CN} the classifier gives a label
yi and an acceptance probability Fyi(Ci,ω) where ω

are the learned parameters of our deep architecture.
The final action label of the video is the label of the
clique with the highest acceptance probability (Eq. 2).

ŷ = argmax
yi

Fyi(Ci,ω) (2)

4 EXPERIMENTAL RESULTS

Following (Wang et al., 2014), we have conducted
three types of experiments using the CAD-120 acti-
vity dataset (Koppula et al., 2013). The CAD-120 da-
taset contains 120 RGB-D activity sequences of ten
categories. Some samples can be saw in Figure 6.
This dataset is frequently used in 3D human activity
recognition. These activities were done by four dif-
ferent subjects, and each activity was repeated three
times by the same actor. The insufficiency of RGB-D
data in human activities and the large variance in ob-
ject appearance, human pose, and viewpoint are com-
mon challenges in human action recognition. Most
papers on the human actions recognition using CAD-
120 work with depth images (Sung et al., 2012a;
Wang et al., 2014), but in our case we will just use
the RGB images to face with this challenge.

4.1 Architecture Implementation
Details

For the sake of reproducibility, we give here all the
details of our deep architecture.

We will not use the depth images so we do not
use the pose estimation for the recognition of human
action. Increasing the data is a solution we used to
fill the information gap that the dataset offers us and
to remedy the non-use of the depth images. We do a
data augmentation with well-known image processing
techniques like rotation, translation etc. (Figure 5).

In the first experiment, the number of decompo-
sed video segments (i.e. actions) is M = 4, and the
length of the maximum number of input frames of

each segment is m = 9. We scale the size of the in-
put frame to w = 80 and h = 60 in our experiments
and for each clique the number of the first 3D convo-
lutional kernels is 7 with a kernel size of 9× 7× 3,
where each number represents the width, height and
temporal length. In the second layer, the number of
3D kernels is 5, with the size 7× 7× 3. We apply
3× 3× 3 max-pooling operator over the 3D convo-
lutions. Then in the last 3D convolutional layer, the
number of kernels is 4 kernels with size of 1×6×4.
Hence we can obtain 700 features maps as the out-
put for each network clique, and we merge the feature
maps together into a vector of 700×4 = 2800 dimen-
sions. Each unit in this vector is linked firstly to a
fully-connected layer of 128 neurons, then to a fully-
connected 64 layer. The last layer is connected to the
output layer whose size is the number of the activity
labels. We can see our full deep Architecture used for
this work on CAD-120 in Figure 7. We have four en-
tries in our network because the length of our video is
quite short. If we continue on this logic we choose a
temporal length a little above the limit necessary for
a recognition of human action by deep learning. This
choice m = 9 (Simonyan and Zisserman, 2014) is due
to our dataset which contains different objects in the
same label. We have a kernel 1× 6× 4 in the last
layer of 3D CNN and it behaves like a 2D CNN be-
cause we need at this level more spatial information
than temporal ones.

4.2 Fine-tuning the CNN on the Target
Dataset

The architecture is based on the AlexNet deep mo-
del (Wang et al., 2014; Krizhevsky A, 2012). Ge-
nerally, a CNN configuration contains many parame-
ters. If the model is trained from scratch on video
dataset, it is easy to have an over-fitting phenomenon
and it needs several weeks to train depending on the
architecture (Yu et al., 2017). We introduce a pre-
training scheme to optimize our model. It means that
we train our model in a first step with the augmented
data, and we save the weights. We call these weig-
hts the latent variables (Niebles et al., 2010). Then,
we load the latent variables to initialize our deep ar-
chitecture by changing the objective function and the
hyper-parameters and train with the small set of data.

4.3 Inference

For inference, we train our network with the video of
three people and the video of the last person is used
as a test phase. It is important to note that the net-
work never sees the test data and is able to predict
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Figure 6: Example of samples extracted from (Wang et al., 2014). Several samples frames and depth maps are presented from
the same class.

the class. This strategy is called leave-one-person-out
cross-validation and it is commonly used for human
action recognition (Gao et al., 2010).

4.4 Results

Regarding experimentation, in a first test we trained
our network and in a second test we make a fine tu-
ning and transfer learning on our network. We apply
these methods because the weights and the bias are
initialized randomly and we apply these techniques
for a rather fast convergence. We studied the evolu-
tion of our network by learning firstly on three labels
and then four labels. We can notice how our model
scores well on three labels and even on four labels,
we can see it in Table 1, Table 2, and Table 3. Even if
mixing the order of the labels we always obtain excel-
lent results. If we train the network on all the labels of
our database we notice in the Table 4 that the overall
precision decreases but remains always better than the
best state-of-the-art methods. In the Table 4 we also
see that we have a higher result by using the methods
of fine tuning and transfer learning.

Table 1: Accuracy from label 0 to label 2.

Action Our method Our method +
Fine-tuning

arranging-objects 88.3% 95.8%
cleaning-objects 86.6% 96.3%

having-meal 85.2% 93.4%
Overall Accuracy 86.7% 95.1%

Table 2: Accuracy from label 3 to label 5.

Action Our method Our method +
Fine-tuning

making-cereal 91.8% 97.3%
microwaving-food 84.1% 96.5%

picking-objects 89.0% 90.1%
Overall Accuracy 88.3% 94.6%

Table 3: Accuracy from label 6 to label 9.

Action Our method Our method +
Fine-tuning

stacking-objects 90.9% 96.0%
taking-food 92.0% 92.3%

taking-medicine 97.2% 97.9%
unstacking-objects 87.7% 95.1%
Overall Accuracy 92.0% 93.8%

Table 4: Accuracy of our deep architecture on CAD-120
with all activities.

Method Accuracy
Our method 86.4%
Transfer learning 88.9%
Our method + Fine-tuning 93.6%

4.5 Comparison with State of Art

On this dataset, we adopt four state-of-the-art met-
hods for comparison (Sung et al., 2012b; Koppula
et al., 2013; Xia and Aggarwal, 2013; Ji et al., 2013).
As show in Table 5 our approach obtains the average
accuracy of 86.4%, distinctly superior than results ge-
nerated by the competing methods. With fine tuning,
our method is even higher. In Table 5, we report also
the detailed accuracies for each class, compared with
the method based on hand-crafted feature engineer-
ing (Xia and Aggarwal, 2013), and the deep archi-
tecture of convolutional neural networks (Wang et al.,
2014): in almost all cases we obtain the best results
even without fine tuning.

Table 6 summarize the average accuracy on CAD
120 dataset against the considered best four exis-
ting methods. It is important to highlight that these
methods use also information taken from depth ima-
ges. It appears that our model outperforms previous
works although we do not use depth images. This
is a great advantage because in practical applications,
depth images are almost never available. Remark that
for all methods we train the models using the same
data annotation and we use the same evaluation pro-
tocol. The main contribution of our model is the fact
it works directly on the raw data, i.e on the RGB ima-
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Figure 7: Our deep architecture used to train CAD-120. We have four cliques, 128 and 64-sized fully connected layers. Then
the last fully connected layer is 10 for all activities.

Table 5: Comparative table between our proposed method and other methods using the same dataset and using deep lear-
ning. Best scores (and second best scores) are filled in dark gray (light gray). Our approach achieves state-of-the-art action
classification performance.

Action (Xia and Aggarwal, 2013) (Wang et al., 2014) Our method Our method +
Fine-tuning

arranging-objects 75.0% 82.3% 85.2% 92.1%
cleaning-objects 68.3% 79.7% 80.1% 95.6%

having-meal 41.7% 71.0% 75.9% 91.9%
making-cereal 76.7% 91.5% 90.8% 96.5%

microwaving-food 36.7% 85.3% 85.6% 93.4%
picking-objects 75.0% 97.2% 90.9% 92.7%
stacking-objects 75.0% 61.0% 82.4% 90.1%

taking-food 83.3% 93.5% 95.0% 96.3%
taking-medicine 58.3% 96.8% 97.5% 97.2%

unstacking-objects 33.3% 54.0% 81.2% 90.6%
Overall Accuracy 62.3% 81.2% 86.4% 93.6%

Table 6: The average accuracy on the CAD-120 database.
Best score (and second best score) is filled in dark gray
(light gray).

Method Accuracy
(Scovanner et al., 2007) 59.8%
(Koppula et al., 2013) 80.2%
(Wu et al., 2013) 62.1%
(Ji et al., 2013) 64.3%
Ours 86.4%
Ours + Fine-tuning 93.6%

ges.
Our experiments are executed on a server with two

multi-core processors, 32GB RAM and two Nvidia
GTX 1080 Ti. For model learning, we set the learning
rate at 0.001 value, for applying the stochastic gra-
dient descent algorithm. The training times on CAD-
120 dataset takes 5 hours for all videos including data
augmentation. For inference, it only takes around 0.6
seconds to complete recognition on a given video.

5 CONCLUSIONS

We presented an extensible deep architecture ables to
model long-term temporal structure and practice it on
a complex dataset for human action recognition task.
The proposed architecture is able to outperform ex-
isting methods, even with less data, in particular not
using depth images and it is able to extract informa-
tion of the sub-actions related to a main action.

Our model can still be improved and for that, we
anticipate as future work to combine the descriptors
extracted with our approach in a more complex archi-
tecture to extract the semantic of an action.
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