
Solving the Social Golfers Problems by Constraint Programming in
Sequential and Parallel

Ke Liu a, Sven Löffler and Petra Hofstedt
Brandenburg University of Technology Cottbus-Senftenberg, Germany

Department of Mathematics and Computer Science, MINT,
Konrad-Wachsmann-Allee 5, 03044 Cottbus, Germany

Keywords: Constraint Programming, Constraint Satisfaction, Parallel Constraint Solving, Sports Scheduling, Social
Golfer Problem.

Abstract: The social golfer problem (SGP) has received plenty of attention in constraint satisfaction problem (CSP)
research as a standard benchmark for symmetry breaking. However, the constraint satisfaction approach has
stagnated for solving larger SGP instances over the last decade. We improve the existing model of the SGP
by introducing more constraints that effectively reduce the search space, particularly for instances of special
form. Furthermore, we present a search space splitting method to solve the SGP in parallel through data-level
parallelism. Our implementation of the presented techniques allows us to attain solutions for eight instances
with maximized weeks, in which six of them were open instances for the constraint satisfaction approach, and
two of them are computed for the first time. Besides, super-linear speedups are observed for all the instances
solved in parallel.

1 INTRODUCTION

The social golfer problem (SGP), i.e., 010 problem
in CSPLib (Harvey, 2002), is a typical combinatorial
optimization problem that has attracted significant at-
tention from the constraint programming community
due to its highly symmetrical and combinatorial na-
ture. The computational complexity of the SGP is
yet unknown. However, determining whether a par-
tial assignment can be extended to a solution is NP-
complete (Colbourn, 1984). The problem consists of
scheduling n=g ∗ s golfers into g groups of s golfers
for w weeks so that any two golfers are assigned to
the same group at most once in w weeks. By the con-
vention, an instance of the SGP is denoted by a triple
g-s-w, where g is the number of groups, s is the num-
ber of golfers within a group, and w is the number of
weeks in the schedule.

The SGP can be viewed as an optimization pro-
blem which seeks a schedule (solution) for a given
g and s with the maximum number w∗ weeks (w∗ ≤
n−1
s−1). Obviously, a solution for an instance g-s-w∗ im-
plies the solutions for all instances g-s-w with w<w∗.
In light of this, this paper considers only solving the g-
s-w∗ instances with maximized weeks, which we call

a https://orcid.org/0000-0002-5256-9253

the full instance. For example, Table 1 depicts one
solution for the full instance 7-3-10 social golfer pro-
blem.

The SGP is a simple-sounding question, and it
can be modeled by several common constraints de-
rived from the problem definition. The constraint sa-
tisfaction approach, however, still has enormous dif-
ficulties in obtaining the solution even for some small
instances (e.g. 8-4-10, 9-3-13), which are mainly cau-
sed by the following two reasons (difficulties):
• The inherent highly symmetrical nature of the

SGP cannot be entirely known before solving pro-
cess. Despite the symmetries, which are caused
by interchangeable players inside groups (s!), in-
terchangeable groups inside weeks (g!), and ar-
bitrarily ordered weeks (w!), can be removed
through model reformulation and static symme-
try breaking constraints, it is difficult to eliminate
all symmetries among golfers caused by renum-
bering n golfers (n!).1 Consequently, the unneces-
sary symmetrical search space is explored redun-
dantly (Barnier and Brisset, 2002).

1For example, if golfers [16,17,18,19,20,21] in Table 1
replace with [19,20,21,16,17,18] in turn, an isomorphism of
the solution depicted in Table 1 will be generated even if the
first row of the solution is fixed with [1,2,3, ...,19,20,21].

Liu, K., Löffler, S. and Hofstedt, P.
Solving the Social Golfers Problems by Constraint Programming in Sequential and Parallel.
DOI: 10.5220/0007252300290039
In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), pages 29-39
ISBN: 978-989-758-350-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

29

Table 1: A solution for 7-3-10 (transformed from the solution depicted in Table 2.). The text in bold indicates that the values
have been initialized before the search.

Week
Group 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
2 1 4 7 2 10 13 3 16 19 5 8 17 6 11 14 9 12 20 15 18 21
3 1 10 14 2 4 17 3 9 11 5 7 21 6 12 16 8 15 19 13 18 20
4 1 17 21 2 6 19 3 4 12 5 10 20 7 15 16 8 11 13 9 14 18
5 1 8 12 2 5 16 3 7 13 4 14 21 6 9 15 11 17 20 10 18 19
6 1 9 16 2 11 15 3 10 21 4 8 20 5 14 19 6 13 17 7 12 18
7 1 13 19 2 9 21 3 6 20 4 11 18 5 12 15 8 10 16 7 14 17
8 1 5 11 2 8 18 3 15 17 4 9 19 6 7 10 14 16 20 12 13 21
9 1 6 18 2 7 20 3 8 14 4 10 15 5 9 13 11 16 21 12 17 19
10 1 15 20 2 12 14 3 5 18 4 13 16 6 8 21 9 10 17 7 11 19

• A large proportion of partial assignments that can-
not lead to a solution is likely to cause the back-
track search to trap in a sizeable fruitless subspace
and therefore waste valuable computation time.
More importantly, it is often hard to determine the
usefulness of a partial assignment until almost all
variables are instantiated.

The research on the SGP is meaningful not only
in itself but also for other constraint satisfaction pro-
blems (CSPs), such as balanced incomplete block de-
sign (BIBD) (Prestwich, 2001) and steel mill slab de-
sign (Miguel, 2012), etc. The reason is that we are
likely to face the same difficulties as the SGP when
solving other CSPs through the constraint satisfaction
approach.

In this paper, we first classify the researches on the
SGP by how they resolve the two difficulties mentio-
ned above and also survey the studies related to the
SGP outside the context of constraint programming
(Section 2). Next, Section 3 present a modeling ap-
proach improved on the model proposed by Barnier
and Brisset (2002). Then, some instance-specific con-
straints are introduced in Section 4. After that, we ela-
borate on how to employ Embarrassingly Parallel Se-
arch (EPS) (Régin et al., 2013) to solve the SGP in
Section 5. Finally, we conclude in Section 6. The
contributions of this paper are twofold. First, the per-
formance of the CP approach on the SGP is impro-
ved by the introduction of additional problem-specific
constraints. Second, it shows that the two-stage mo-
dels with static partitioning are well-suited for solving
the SGP in parallel since the instances which are un-
solvable for a single model can be solved in parallel.

2 RELATED WORK

There is a considerable body of work available on
symmetry breaking for the SGP from the constraint
programming community, including model reformu-
lation, static symmetry breaking constraints, and dy-
namic symmetry breaking.

Smith (2001) presented the integer set model with
extra auxiliary variables that automatically eliminates
the symmetries inside of groups. Moreover, Symme-
try Breaking During Search (SBDS) with symmetry
breaking constraints is employed to break renaming
symmetry but not entirely, where SBDS is essentially
a search space reduction technique by adding con-
straints to remove symmetrical search space during
the search. Law and Lee (2004) introduced the Pre-
cedence constraint to break the symmetries of groups
inside of weeks for the integer model and the sym-
metries caused by renaming golfers for the set mo-
del. Symmetry Breaking via Dominance Detection
(SBDD), another dynamic symmetry breaking techni-
que, was developed separately by Focacci and Milano
(2001) and by Fahle et al. (2001); Rossi et al. (2006).
SBDD utilizes no-good learning to avoid exploring
search space that is symmetrical of previously explo-
red nodes recorded on the no-goods. As with SBDD,
Fahle & Milano discovered 7 non-symmetric soluti-
ons for the 5-3-7 instance in less than 2 hours on a
computer with an UltraSparc-II 400 MHz processor.

Barnier and Brisset (2002) proposed SBDD+ for
the SGP, which computes isomorphism not only for
leaves of the search tree but also on current non-
leaves node. The experimental results showed that
SBDD+ only takes around 8 seconds to compute all 7
non-symmetric solutions for 5-3-7, which is a signifi-
cant improvement compared with (Fahle et al., 2001).
However, they also point out that SBDD+ has to
tackle the explosion of node store and the time over-
head due to nodes dominance checking if one wants
to apply SBDD+ to a larger instance and we also be-
lieve this is the common problem for other dynamic
symmetry breaking techniques, including SBDS. Pu-
get (2005) combined SBDD with Symmetry Breaking
Using Stabilizers (STAB) to obtain a solution of the
instance 5-5-6 in 38 seconds on a laptop with a Pen-
tium M 1.4 GHz processor, where STAB is a vari-
ant of SBDS that adds symmetry breaking constraints
without changing the specified partial assignment. To
tackle the second difficulty, Sellmann and Harvey
(2002) developed the Vertical constraints and Hori-

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

30

zontal constraints for propagation, which can check
whether a given partial assignment is extensible to a
solution. They obtained all unique solutions of the
5-3-7 instance in 393.96 seconds on a computer with
Pentium III 933 MHz processor by imposing verti-
cal constraints and horizontal constraints on the deci-
sion variables. But the constraints are developed for
the original naive model, and no efficient algorithm
for finding the golfers who have conflicting residual
graphs is given.

Despite its elegant and sophisticated search space
reduction techniques such as SBDS, SBDD, etc., the
CP approach, a systematic search method, cannot
compete with metaheuristic approaches on the SGP if
the goal is to obtain one solution instead of all non-
symmetric solutions. Please note that the problem
grows much faster even from 5-3-7 to 6-3-8 than the
performance boost out of the processors. Dotú and
Van Hentenryck (2005) employed tabu search with
a constructive seeding heuristic and good starting
points to achieve significant results on the instances of
the form prime-prime-(prime+1) (e.g. 43-43-44, 47-
47-48). They also found a solution 9-9-10 and 6-3-8
by using tabu search with a good starting point in 0.01
second and 51.93 seconds on a Pentium IV 3.06 GHz
processor (Dotú and Van Hentenryck, 2007). Besi-
des, Cotta et al. (2006) used an evolutionary appro-
ach to solve 6-3-8 on a computer with a Pentium IV
3.06 GHz processor (no CPU time is given). Triska
and Musliu (2012a) are the only computer scientists
who successfully solved the 8-4-10 instance publis-
hed so far. They employed a greedy heuristic for tabu
search with the well-designed greedy initial configu-
ration to solve the instances 8-4-10 in 11 minutes on
a computer with an Intel Core 2 Duo 2.16 processor.
Besides, they also explored a SAT encoding for the
SGP (Triska and Musliu, 2012b). Unfortunately, their
SAT encoding is not competitive with other approa-
ches.

In addition to these approaches mentioned above
which address the SGP head-on, Harvey and Winte-
rer (2005) used the Mutually Orthogonal Latin Rec-
tangle (MOLR) solutions found to construct solutions
to the SGP. The most notable instance they solved is
20-16-6, which indicates that this is probably the most
efficient method so far. However, no full instance g-
s-w∗ was resolved since this method relies heavily on
the construction of MOLR.

Finally, some instances which have not been sol-
ved by computer at present have already been con-
structed by combinatorics (e.g., 7-4-9, 9-3-13). For
a detailed introduction, please refer to (de Resmini,
1981; Rees and Wallis, 2003).

3 THE BASIC MODEL

There are various ways to model the SGP, which
is one of the reasons why the problem is so com-
pelling. We use a model improved on the model
presented in (Barnier and Brisset, 2002), and more
constraints are added into the model to tackle lar-
ger instances piece by piece. The present paper invol-
ves the use of several types of constraints, including
the GCC, AllDifferent, Count, Table, and Arithme-
tic constraints (Beldiceanu et al., 2012).

The decision variables in our model is a w×n ma-
trix G, where the first row (week) and first s columns
(golfers) of the matrix are fixed (cf. Table 2). An
element Gi, j of the matrix G stands for golfer j is as-
signed to group Gi, j in week i. The domain of the
decision variable Gi, j is a set of integers consisting of
{1..g}, where 0 ≤ i < w, 0 ≤ j < n. (In the present
paper, the index of each subscript of a matrix starts
from 0.) The main advantage of the decision vari-
ables used in this model is the range of the variables
reduced from {1..n} to {1..g} and the number of deci-
sion variables is unchanged, compared with the naive
model that derived from the problem definition. In
addition to this, the elements of the first row and first
s columns without the first element are initialized to:

0≤ j < n, G0, j = j/s+1 (1)
0 < i < w, 0≤ j < s, Gi, j = j+1 (2)

Equation 1 produces a sequence of integers from 1
to g in non-descending order, and each integer repe-
ats exactly s times. Freezing the first row by this se-
quence of integers in our model can partially mitigate
the symmetries caused by renumbering the golfers.
Applying Equation 2 amounts to assigning the first s
golfers to the first s groups after the first week, which
can significantly reduce the search space, as well as a
part of symmetries caused by interchangeable groups
inside of weeks (cf. Table 1 and 2).

Since each group is composed of s number of gol-
fers in every week, the constraint imposed on each
row of the matrix G can be stated as:

0 < i < w, V = {1..g}, O = [s, ..,s],
GCC(Gi,∗,V,O)

(3)

where GCC is an acronym for the Global Cardina-
lity Constraint and the length of the list of variables
O is g. The constraints ensure that each value in the
set {1..g} must occur exactly s times in each row of
the matrix G. In other words, there are the n distinct
golfers divided into g groups in each week via these
constraints. The restriction, which says that no golfer
meets the same golfer more than once, can be inter-
preted as no two columns of the matrix G have the

Solving the Social Golfers Problems by Constraint Programming in Sequential and Parallel

31

Table 2: A solution is obtained by our model for 7-3-10 instance, and it is equivalent to the solution depicted in Table 1. The
text in bold indicates that the values have been initialized before the search.

Week
Golfers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7
2 1 2 3 1 4 5 1 4 6 2 5 6 2 5 7 3 4 7 3 6 7
3 1 2 3 2 4 5 4 6 3 1 3 5 7 1 6 5 2 7 6 7 4
4 1 2 3 3 4 2 5 6 7 4 6 3 6 7 5 5 1 7 2 4 1
5 1 2 3 4 2 5 3 1 5 7 6 1 3 4 5 2 6 7 7 6 4
6 1 2 3 4 5 6 7 4 1 3 2 7 6 5 2 1 6 7 5 4 3
7 1 2 3 4 5 3 7 6 2 6 4 5 1 7 5 6 7 4 1 3 2
8 1 2 3 4 1 5 5 2 4 5 1 7 7 6 3 6 3 2 4 6 7
9 1 2 3 4 5 1 2 3 5 4 6 7 5 3 4 6 7 1 7 2 6

10 1 2 3 4 3 5 7 5 6 6 7 2 4 2 1 4 6 3 7 1 5

same value at the same row more than once, which
can be expressed as:

0≤ j1 < j2 < n, ∑
0≤i<w

| Gi, j1 −Gi, j2 = 0 |≤ 1 (4)

Constraints 3 and 4 are the only two constraints that
are the same as the model presented in (Barnier and
Brisset, 2002). In particular, unlike Barnier and Bris-
set (2002), we realize the Constraint 4 in a different
way to avoid using the Reified constraints because
these constraints slow down the resolution speed.
Specifically, the need for the Reified constraints can
be replaced by introducing a w×m matrix C, where
m =

(n
2

)
. We subtract each column from all other co-

lumns in the matrix G and the differences between
two columns of the matrix G are assigned to a column
of the matrix C. Simply put, the two matrices are lin-
ked by the Arithmetic constraints, which is given by:

0≤ i < w, 0≤ j1 < j2 < n, 0≤ j3 <
(

n
2

)
,

∀ j1∀ j2, Gi, j1 −Gi, j2 =Ci, j3

(5)

Then, we realize the restriction defined by Con-
straint 4 by imposing the Count constraint on each
column of the matrix C, which can be stated as:

0≤ j < m, occ = {0,1}, count(C∗, j, occ, 0) (6)

where occ is an integer variable whose domain is
{0,1}. Constraint 6 restricts the number of occurren-
ces of value 0 on each column is no more than once.

Until now, the constraints presented have already
stated all the restrictions defined by the SGP and can
be used to solve some small instances (e.g., 3-3-4, 5-
3-7). However, we can further shrink the search space
by placing implied constraints, which do not change
the set of solutions, and hence are logically redun-
dant (Smith, 2006). As we mentioned earlier, the first
row of the matrix G is fixed with a sequence of inte-
gers by Equation 1, which implies that those golfers
who have met in the first week cannot be assigned
to the same group in the subsequent weeks. Thus,
the AllDifferent constraint can be used to enforce the

group numbers of these golfers are pairwise distinct
after the first week, given by:

∀0 < i < w,∀ j 6= j′∧ j/s = j′/s,Gi, j 6= Gi, j′ (7)

In summary, the basic model is composed of Con-
straints 1, 2, 3, 5, 6, and 7. Nevertheless, the perfor-
mance of this model can be greatly improved by the
introduction of additional constraints, such as sym-
metry breaking constraints, and the constraints deri-
ved by instance-specific information. On the basis of
this model, in the subsequent sections, we will pre-
sent the additional constraints dedicated to different
instances and how to solve these instances in parallel
if the instance cannot be solved sequentially.

4 INSTANCES SOLVED
SEQUENTIALLY

For a given number of groups g and a group size s,
our goal is to compute the first solution for a full in-
stance g-s-w∗, where w∗ maximizes the number of
weeks. In this section, we consider a particular type
of instance s− s− (s+1), which means that the num-
ber of groups in each week is equal to the number of
golfers in the groups within each week, and the num-
ber of weeks is maximized because s2−1

s−1 = s+1. The
exclusive properties of the instances of the form s-s-
(s+1) enable us to discover the instance-specific con-
straints. Furthermore, we utilize the observed pattern
from the relatively small instances to deduce more
instance-specific constraints for the instances of the
form odd-odd-(odd+1) (o-o-(o+1)) and prime-prime-
(prime+1) (p-p-(p+1)). We also give our experimen-
tal results of the models executed sequentially.

4.1 7-7-8

Since s ∗ s-1 is divisible by s-1, every golfer must
play with every other exactly once. Thus, golfers
whose number is greater than s must meet every gol-
fer whose number is less than or equal to s exactly

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

32

once in every week except the first week because the
first s golfers have played together in the first week
since Equation 1 freezes the first week.

Based on the above analysis, we can place the fol-
lowing constraints on the columns of the matrix G:

0 < i < i′, s≤ j, ∀i∀i′∀ j, Gi, j 6= Gi′, j (8)

Constraint 8 states that starting with s-th column,
every column in the matrix G except its first element
must be pairwise different, which can be implemented
by the AllDifferent constraint. For the sake of illus-
tration, we solved the instance 5-5-6 as an example.
Begin with the sixth golfer, each column of Table 3
is a permutation of the 5-element array [1,2,3,4,5].
Therefore, apart from the first s columns, all the pos-
sible values of columns (column space) of the matrix
G is reduced from ss to s! by introducing the Con-
straint 8, which is a significant search space reduction.

In Section 3 we have presented Constraint 1 to fix
the first row of the Matrix G. We can also fix the se-
cond row of the instances of the form s− s− (s+ 1)
for the following reason. The s number of golfers as-
signed in the same group cannot meet again in the
subsequent weeks, and the domain of these golfers
is the set of integers {1..s}, which implies that the
possible values assigned to these s golfers must be
a permutation of s-element array [1,2, ..,s]. More-
over, arbitrary swapping two columns that have the
same first elements leads to an isomorphism when the
first row is fixed by the Constraint 1; hence, to avoid
exploring the isomorphisms, we can choose a fixed
column ordering. Therefore, for the instances of the
form s− s− (s+1), we can initialize the variables re-
presenting the golfers who have met in the first week
with the array [1,2, ..,s] in the second week (cf. the
second row of Table 3), which can be expressed as:2

s≤ j < n, G1, j = j%s+1 (9)

The symmetries caused by renumbering the golfers in
the second row can be eliminated by imposing Con-
straint 9. Summary: The constraints of the basic mo-
del and the Constraints 8 and 9 forms the model used
to tackle 5-5-6, 6-6-7, and 7-7-8.

4.2 9-9-10

The additional constraints for 7-7-8 are insufficient to
solve 9-9-10 in an appropriate time since the size of
the problem grows significantly. One possible way
to tackle the larger instance is to shrink the overall

2The % (modulo) operator yields the remainder from the
division of the first operand by the second.

search space by imposing more instance-specific con-
straints.

Before introducing the constraints, we first de-
fine the submatrix GS of the decision variables ma-
trix G. In the present paper, a submatrix GS of G is
a (w− 1)×s matrix formed by deleting the first row
of G and selecting columns [j, ..,(j+ s−1)], where j
must be divisible by s. Hence, G has exactly s number
of such submatrices with w− 1 rows and s columns,
and the i-th submatrix of G is denoted by GSi, where
1≤ i≤ s (Table 3).

We observe the solutions of the 4-4-5, 5-5-6, and
7-7-8 instances; and discover that GS2 is always a
symmetric matrix, namely GS2 = GST

2 . Hence, we
conjecture that 9-9-10 also has a symmetric subma-
trix and then impose the following constraints on the
decision variables G:

0 < i < w, s≤ j < 2∗ s, Gi, j = G(j−s),(i+s) (10)

Constraint 10 states that the entries of GS2 are sym-
metric with respect to the main diagonal. Besides, the
main diagonal of the sub-matrix GS2 is pairwise dis-
tinct for 5-5-6 and 7-7-8, given by:

0 < i < w, s≤ j < 2s, ∀i∀ j, Gi, j 6= G(i+1),(j+1) (11)

Apart from the fixed pattern of GS2, there is also
a fixed pattern among the sub-matrices of G. Because
the second row has already been fixed by Constraint 9,
we can impose the AllDifferent constraints on the
subsequent rows for those golfers who have played
together in the second week since any two columns
of G can only have identical values in exactly one
row (e.g. AllDifferent(G3,5,G3,10,G3,15,G3,20) in Ta-
ble 3). These constraints are implied constraints and
can be expressed as:

1 < i < w, s≤ j < j′ < n, j%s = j′%s,

∀i∀ j∀ j′, Gi, j 6= Gi, j′
(12)

We notice that for 5-5-6 and 7-7-8, there is always
a type solution in which the second row of GS2 is
fixed by the array [2,s,1,3,4, ..,s− 1] (cf. the third
row of Table 3). We therefore assume that 9-9-10
also exists such solution, and use it to solve 9-9-
10. In conclusion, we solve 9-9-10 by adding Con-
straints 10, 11, and 12 to the model of 7-7-8, as well
as the fixed values for the second row of GS2.

4.3 13-13-14 etc.

We have discovered some common features of the in-
stances of the form s-s-(s+1), particularly the instan-
ces of the form o-o-(o+1), for the solution expressed
by the number of groups; and these common features
are mostly focused on the second submatrix GS2 of

Solving the Social Golfers Problems by Constraint Programming in Sequential and Parallel

33

Table 3: A solution of 5-5-6 expressed by the number of groups. It can be converted to the solution expressed by the number
of golfers easily; we don’t provide it due to lack of space. The submatrices GS2 and GS3 are surrounded in the dotted line.

Week
Golfers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
2 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
3 1 2 3 4 5 2 5 1 3 4 3 1 4 5 2 4 3 5 2 1 5 4 2 1 3
4 1 2 3 4 5 3 1 4 5 2 2 5 1 3 4 5 4 2 1 3 4 3 5 2 1
5 1 2 3 4 5 4 3 5 2 1 5 4 2 1 3 3 1 4 5 2 2 5 1 3 4
6 1 2 3 4 5 5 4 2 1 3 4 3 5 2 1 2 5 1 3 4 3 1 4 5 2

G. It is also interesting to observe that the submatrix
GSi, 2 < i ≤ s, consists of s number of s-tuples that
are derived from the second submatrix GS2 on the 5-
5-6 and 7-7-9 but 9-9-10 (cf. Table 3). Simply put,
the rest of submatrices can be obtained by interchan-
ging rows of GS2 on these instances. Note that we
do not consider GS1 since it is fixed by Constraint 2.
Thus, we can solve larger instances of the form p-p-
(p+1) by restricting row space of the submatrix GSi,
2 < i≤ s, to the rows of the submatrix GS2. Formally:

PT = {(Gi, j,Gi, j+1, ...,Gi, j+s−1)|
s≤ j < 2∗ s, 2≤ i < w} (13)

2≤ i < w, 2∗ s≤ j < n, j%s = 0,
(Gi, j,Gi, j+1, ...,Gi, j+s−1) ∈ PT (14)

where Constraint 13 defines the potential combination
of values of columns of GS2 as PT. Then we can limit
the row space of the submatrices except GS1 and GS2
to PT by Constraint 14, which can be realized through
the Table constraint. Hence, the problem is transfer-
red to finding the GS2 that can lead to a solution of
the instance.

To find the correct GS2, we create a separate
model defined on a s×s matrix (s must be a prime
number), which consists of Constraints 10 and 11,
and the Alldifferent constraint imposing on each row
and each column of the matrix. We also fix the
first row and the second row with [1,2, ...,s] and
[2,s,1,3,4, ..,s− 1] respectively, as we did for the 9-
9-10 instance. Moreover, the last row (i = s−1) star-
ting with the third element (j = 2) to the last element
is fixed with the array [2,1,3,4,5, ...,s− 2], and the
element at the tail of the array is removed with the
row number decrementing (i--) and the starting po-
sition of the first element of the array incrementing
(j++) until the array is reduced to containing exactly
one element {2}, as illustrated in Table 4.

Having this observed pattern and aforementioned
separated model, we can obtain exactly one GS2 for
the instance of the form p-p-(p+1), and then utilize it
as an input for Constraint 14 with the model of 7-7-8
to solve 11-11-12 and 13-13-14. Note that since GS2
has already initialized before the solving process, we
do not use the model of 9-9-10 because it is unne-

Table 4: The second matrix GS2 for the instance 13-13-14.
1 2 3 4 5 6 7 8 9 10 11 12 13
2 13 1 3 4 5 6 7 8 9 10 11 12
3 1 4 5 6 7 8 9 10 11 12 13 2
4 3 5 6 7 8 9 10 11 12 13 2 1
5 4 6 7 8 9 10 11 12 13 2 1 3
6 5 7 8 9 10 11 12 13 2 1 3 4
7 6 8 9 10 11 12 13 2 1 3 4 5
8 7 9 10 11 12 13 2 1 3 4 5 6
9 8 10 11 12 13 2 1 3 4 5 6 7

10 9 11 12 13 2 1 3 4 5 6 7 8
11 10 12 13 2 1 3 4 5 6 7 8 9
12 11 13 2 1 3 4 5 6 7 8 9 10
13 12 2 1 3 4 5 6 7 8 9 10 11

cessary to impose Constraints 10, 11, and 12 on the
model.

All the instances we have introduced so far con-
form to the form of o-o-(o+1); now we consider the
form of instances even-even-(even+1), we solved 8-
8-9 by the following conjectures derived from 4-4-5
with the model for 7-7-8:

0 < i < w, Gi,(i+s−1) = 1 (15)

0 < i < i′ < w, 2∗ s≤ j < j′ < n,
∀ j/s = j′/s∧ j%s+1 = i∧ j′%s+1 = i′

Gi, j 6= Gi′, j′ (16)

Constraint 15 states that the main diagonal of the ma-
trix GS2 contains the fixed values [1,1,...,1]; and the
rest of submatrices have the main diagonal whose va-
riables must be pairwise distinct (Constraint 16).

Table 5: The second matrix GS2 for a solution the instance
8-8-9.

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
7 8 5 6 3 4 1 2
8 7 6 5 4 3 2 1

Table 5 depicts the submatrix GS2 of the solution
of 8-8-9 we solved. It is interesting to observe that
the GS2 matrix of 4-4-5 and 8-8-9 are composed of
four symmetric matrices. Moreover, we discover that
their solutions also satisfy the Constraints 13 and 14.
Unfortunately, we could not take advantage of these
features to solve 10-10-11 and 12-12-13, and it is still
unclear whether or not the 16-16-17 instance shares
these common features with 4-4-5 and 8-8-9.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

34

4.4 Experimental Results

To confirm our theoretical discussion and the conjec-
ture for the instances of 9-9-10 and 11-11-12 etc., we
implemented the model as described in this section
via the Choco Solver 4.0.6 (Prud’homme et al., 2017)
with JDK version 10.0.1. All experiments were per-
formed on a laptop with an Intel i7-3720QM CPU,
2.60GHz with 4 physical and 8 logical cores, and 8
GB DDR3 memory running Linux Mint 18.3. Table 6
shows the experimental results of above mentioned
instances.

Table 6: Results on the s− s− (s + 1) Instances. A su-
perscript ”c” means that the instance was open for constraint
satisfaction approach; ”dom” and ”min” denote the predefi-
ned search strategies domOverWDegSearch and minDom-
LBSearch in Choco Solver, respectively.

Instance Time(s) Nodes Backtracks Fails Strategy
5-3-7 0.095 111 179 94 dom
5-5-6 0.069 7 1 0 min
6-6-7c 25 1.38e5 2.77e5 1.38e5 min
7-7-8c 111 3.62e5 723e5 3.62e5 min
8-8-9c 12 15,370 30,680 15,350 min

9-9-10c 2559 2.08e6 4.16e6 2.08e6 min
11-11-12c 62 3,150 6,279 3,144 min
13-13-14c 2563 5.80e4 1.16e5 5.79e4 min

Using the models presented in this section, we
were able to prove 6-6-7 has no solution and sol-
ved 6 open instances for constraint satisfaction ap-
proach (but not for metaheuristic approach (Dotú and
Van Hentenryck, 2005)). It is interesting to relate
no solution for 6-6-7 to no Mutually Orthogonal La-
tin Squares (MOLS) of order 6 Benadé et al. (2013).
The results also show that more instance-specific con-
straints can shorten the execution time even if the size
of instances increases. For example, 11-11-12 took
much less time than 9-9-10 since more constraints are
posted.

5 INSTANCES SOLVED IN
PARALLEL

In the previous section, we have presented the in-
stances that can be solved sequentially via our mo-
deling approach. We now turn to more difficult in-
stances which must deal with through parallel proces-
sing to obtain one solution. The term difficult refers
to no fixed pattern discovered so far, which implies
no instance-specific constraints to shrink search space
for these instances and hence there are large search
spaces even for relatively small size.

Our idea is to partition the search tree of the SGP
into independent subtrees; then each worker that is
associated with a thread works on distinct subtrees

using the same CP model. Thus, this approach can
be classified as data-level parallelism based on the
taxonomy for parallelism in applications from Hen-
nessy and Patterson (2011). Moreover, since no com-
munication is required during the solving process, to
some extent, our parallel approach can also be seen as
Embarrassingly Parallel Search (EPS) (Régin et al.,
2013). Régin et al. defines that the EPS assigns the
task to worker dynamically (Palmieri et al., 2016).
Our parallel approach differs from the EPS due to the
use of a separate model that is used to generate the
sub-problems instead of Depth-bounded Depth First
Search. The generic procedure can be summarized as
follows:

1. A subset of the decision variables of the model is
selected.

2. All the partial assignments over selected variables
in the subset are generated by a separate model
before the search process.

3. The partial assignments are mapped to the wor-
kers so that each worker can work on its own inde-
pendent search space by using its own constraint
solver.

4. Once a solution is found, the worker that finds the
solution notifies other workers to stop.

Step 1 is crucial to the search space splitting be-
cause it determines the subtrees explored by each
worker. We adhere to the following principles when
selecting the subset of the decision variables: first,
they should be easy to generate by a separate model.
Second, each worker should not be assigned too many
partial assignments because one partial assignment
might take a long time to evaluate for a large instance.
Because of the usage of the separate model, the partial
assignments are consistent with the propagation (i.e.,
running the propagation mechanism on them does not
detect any inconsistency). Besides, the number of so-
lutions of the separate model can help us decide the
workload of each worker and workload distribution.

In the following section, we will gradually des-
cribe CP models for generating partial assignments
for search-space splitting and the constraints imposed
on the basic model for the 6-3-8, 6-4-7, and 7-3-10
instances in detail.

5.1 6-3-8

The 6-3-8 instance is a representative example to il-
lustrate the effectiveness of our parallel approach for
the SGP. As shown in Section 4, the 5-3-7 instance
can be solved in less than one second using con-
straint satisfaction approach, but 6-3-8 was open for

Solving the Social Golfers Problems by Constraint Programming in Sequential and Parallel

35

sequential constraint solving. For our modeling ap-
proach, the number of decision variables grows from
5∗3∗7 = 105 to 6∗3∗8 = 144, and the domain size
of each variable is increased by one, which implies
the overall underlying search space greatly increased
when the target instance switches from 5-3-7 to 6-3-8
(5105 to 6144).

Thus, we freeze a part of the decision variables
so that the size of the sub-problem is shrunk to sol-
vable, hence the original problem is likely to be sol-
ved. For 6-3-8, since the first row is always fixed in
our modeling approach, we select the second row for
the search space splitting and use a separate model to
generate them, which is composed of the following
constraints:

0≤ j < s, Fj = j+1 (17)
V = {1..g}, O = [s..s], GCC(F,V,O) (18)

∀ j 6= j′∧ j/s = j′/s, Fj 6= Fj′ (19)
∀ j%s = 0, Fj ≤ F(j+s) (20)

∀ j/s = (j+1)/s, Fj ≤ F(j+1) (21)

where F is an array of decision variables, and
the domain of each variable is also {1..g}. Con-
straints 17, 18, and 19 are identical to Constraints 2,
3, and 7 stated in the basic model respectively. Con-
straints 20 and 21, which are not included in the ba-
sic model, are static symmetry breaking constraints.
Constraint 20 breaks the symmetries caused by inter-
changeable submatrices GSi, 1 ≤ i ≤ s. We remove
these symmetries by arranging the elements in the
first column of the first row of all submatrices of G
in non-decreasing order. Additionally, interchanging
any two columns of a submatrix GSi generates a solu-
tion symmetrical with the original one, which entails
Constraint 21 to remove these symmetries.

Apart from the constraints of the separate model
we also place the constraints to break the symmetries
caused by interchangeable weeks partially.

0≤ i < w−1, Gi,s ≤ G(i+1),s (22)

Constraint 22 cannot fully remove the symmetries
among weeks because there are still symmetries whe-
never Gi,s = G(i+1),s. For example in Table 2, inter-
changing the 5th week with 9th week results in a sym-
metrical solution.

Finally, the results of the above model are equally
distributed to each worker that runs the basic model.

5.2 6-4-7

The separate model for 6-3-8 produces 424 solutions
for the second row, while it produces 351 for the se-
cond row of 6-4-7. Nonetheless, we amend the sepa-

rate model for 6-3-8 to produce less number of solu-
tions for the second row of 6-4-7. The separate mo-
del for 6-4-7 is formed by adding the following con-
straints to the separate model of 6-3-8:

0≤ j < n, j%s = 0,
j = (s−1)∗ s⇒ j+ s 6= s∗ s,

∀ j(Fj+1 ≤ Fj+s+1) (23)
∀ j(Fj+1 = Fj+s+1⇒ Fj+2 ≤ Fj+s+2) (24)
∀ j(Fj+1 = Fj+s+1∧Fj+2 = Fj+s+2

⇒ Fj+3 ≤ Fj+s+3) (25)

In short, Constraints (23-25) ensure that the ele-
ments occupying the same position in the first row
of the first s submatrices (GS1,GS2,GS3,GS2) and
the latter two submatrices (GS5,GS6) are in non-
decreasing order respectively (Table 7). These additi-
onal constraints also reduce search space by removing
symmetries. For example, if we do not impose Con-
straint 23 on the separate model, a second row such
like [1 2 3 4 1 4 5 6 1 2 3 4 1 4 5 6 2 3 5 6 2 3 5
6] would be generated. In that case, we would require
more workers to work on these fruitless search trees
due to symmetries.

As with the 6-3-8 instance, we map the solutions
of the separate model to different workers before the
solving process. Moreover, we add the following con-
straints to the basic model:

s≤ j < 3s, 0 < ∗< w,
V = {1..s}, O = {1..1},

GCC(G∗, j,V,O)

(26)

where G∗, j denotes the columns from the sth column
to the (3s-1)th column of the matrix G, each of which
deletes its first element. For the 6-4-7 instance, this
constraint guarantees that every column without the
first element indexed between s to 3 ∗ s− 1 contains
every value in the set {1,2,3,4} exactly once (Table 7).
We impose Constraint 26 on only 2∗ s number of co-
lumns because (24− 1)%(4− 1) = 2, which implies
that each golfer only plays with other 21 golfers; thus
not every column contains the set {1,2,3,4}. Though
the columns imposed Constraint 26 do not include
all columns containing the values {1,2,3,4}, it redu-
ces much search space; experiments show we cannot
solve 6-4-7 without these constraints.

5.3 7-3-10

The problem size of 7-3-10 is much larger than 6-4-
7 and 6-3-8, we must harness more instance-specific
constraints. Just as we imposed many constraints on

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

36

Table 7: A solution of 6-4-7. The numbers with the same superscript are in non-decreasing order in the second row.

Week
Golfers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
2 1a 2b 3c 4d 1a 2b 3c 4d 1a 4b 5c 6d 1a 4b 5c 6d 2e 3f 5g 6h 2e 3f 5g 6h

3 1 2 3 4 2 4 6 5 5 3 6 1 6 2 4 5 3 4 1 2 5 1 3 6
4 1 2 3 4 3 6 4 5 4 2 1 3 6 1 5 2 5 1 2 6 3 6 4 5
5 1 2 3 4 4 6 1 2 3 5 2 6 5 6 3 1 1 5 4 3 5 2 6 4
6 1 2 3 4 6 3 5 1 2 6 3 4 4 5 6 3 4 2 5 1 5 6 1 2
7 1 2 3 4 6 1 2 3 5 1 4 2 3 5 2 6 5 6 3 4 4 5 6 1

GS2 for 13-13-14 etc., we impose the following con-
straints on the model for 7-3-10:

0 < i≤ s , Gi,s = i+1 (27)
s+1 < i < w , Gi,s = s+1 (28)

V = {1,2,3,6,7}, O = [1,1,1,0,0],
0 < ∗< w, GCC(G∗,(s+1),V,O) (29)
V = {1,2,3,6}, O = [1,1,1,0],
0 < ∗< w, GCC(G∗,(s+2),V,O) (30)

s+ s≤ j < n, V = {1..s}, O = [1..1],
0 < ∗< w, GCC(G∗, j,V,O) (31)

We strictly limit the positions of golfer 4 so that
he/she will never be assigned to group 5 and 6. The
reason is that golfer 4 is always the smallest gol-
fer in a group after week 4 (Table 1) and golfer 4
also must be less than the smallest golfer in other
groups except the first s groups. Therefore, Con-
straint 27 and 28 remove the symmetries caused by
swapping the group containing golfer 4 with other
groups after week 4. Since golfer 4 cannot appear
in group 5, 6 and 7, golfer 5 is impossible to be as-
signed to group 6 and 7, because then there would
be no golfer assigned in group 5. Similarly, golfer
6 cannot appear in group 7 and can only appear in
group 6 once. Thus, we use Constraints 29 and 30
to limit the number of occurrences of values 6 and 7.
Furthermore, because (21−1)%(3−1)= 0, each gol-
fer must play with other golfers exactly once. Hence,
we guarantee every golfer other than the first s gol-
fers meet the first s golfers once, which are ensu-
red by Constaints 29, 30, and 31. Incidentally, Con-
straint 31 can be applied to any full instance that sa-
tisfies (n−1)%(s−1) = 0 in our modeling approach
(e.g. 7-4-9).

In the concrete implementation of parallelism for
7-3-10, we also use the same separate model as the
model for 6-4-7 to generate solutions of the second
row and distribute them to the workers. Moreover, we
combine the search space splitting with the portfolio,
where a partial assignment is distributed to several
different workers, and these workers use the same
model with different search strategies, including fail-
first (Rossi et al., 2006) and dom/wdeg (Boussemart
et al., 2004). Since we employ two different parallel

constraint approaches including search space splitting
and portfolio, our parallel approach for 7-3-10 can be
viewed as a hybrid parallel constraint solving.

5.4 Experimental Results

To validate our parallel approach for the SGP, we
switch to a computer with 250 GB DDR3 1066 me-
mory and 4 Intel Xeon CPU E7-4830 2.13GHz pro-
cessors running on Linux with kernel release 2.6.32-
431.17.1.el6.x86 64, where each processor has 8 phy-
sical cores. The versions of Choco Solver and the
JDK are unchanged.

Table 8: Results on the Instances solved in parallel. A su-
perscript ”f” means that the instance is solved by computer
for the first time. A ”-” sign means the program was still
running after a time span which equals to the number of
workers multiplied by the execution time in parallel.

Instance Workers Time(s) Nodes Backtracks Fails Strategy

6-3-8c
1 2.95e4 2.91e8 5.83e8 2.91e8 min
8 50.2 2.09e5 4.18e5 2.09e5 min

16 2.62e4 2.50e8 5.13e8 2.31e8 min

6-4-7f 1 - - - - min
48 8.59e3 1.66e7 3.32e7 1.66e7 min

7-3-10f 1 - - - - dom
32 7.61e4 1.86e8 3.73e8 1.86e8 dom

Table 8 reports the experimental results for com-
paring parallel and sequential execution when using
the same model to solve the same instance. For paral-
lel execution, the number of workers we used varies
from instance to instance. For 6-3-8, we specified 8,
16 and 32 workers to execute in parallel, but super-
liner speedup was only observed when using 8 wor-
kers, because the partial assignment that can extend
to a solution does not happen to be evaluated first ot-
herwise.

Then, for 6-4-7, we use 48 workers because there
are only 48 solutions generated by the separate model.
Finally, the result of 7-3-8 is given by selecting the
first 8 solutions of the separate model, and every solu-
tion is allocated to 4 different workers, each of which
employs their respective search strategies that are
predefined in Choco Solver, including minDomUB-
Search, minDomLBSearch, defaultSearch and domO-
verWDegSearch. Besides, we also performed three
more experiments in which the separate model was
specified with above mentioned search strategies. As

Solving the Social Golfers Problems by Constraint Programming in Sequential and Parallel

37

a consequence, the first 8 solutions are different from
the first experiment, and we obtained three more non-
isomorphic solutions for the 7-3-10 instance.

The experimental results show that parallel con-
straint solving through search space splitting is a very
effective means to prevent backtrack search getting
stuck into the fruitless search area; without surprise,
the super-linear speedup was observed since only one
invalid partial assignment is enough to cause instan-
ces such as 6-4-7 unable to be solved when solving
sequentially. In other words, super-linear speedups in
parallel implementations are not in contradiction with
Amdahl’s law because workers can evaluate the par-
tial solutions that can lead to a solution in early reso-
lution process.

6 CONCLUSION AND FUTURE
WORK

In this paper, we have presented a combination of
techniques which allows us to find solutions for eight
open instances, where six of these instances are sol-
ved sequentially, and three of these instances are sol-
ved in parallel. In particular, we have shown the
constraints derived from the relatively small instances
can be used to solve larger instances which are in the
same form as the smaller ones. Besides, we have also
shown that it is not uncommon for solving the SGP
in parallel via search space splitting or with portfo-
lio to gain super-linear speedups and parallel solving
the SGP can be an effective method to address the
instances that cannot be solved serially. The results
show that our method is much more successful, even
if we consider that the computers used for the other
methods are up to 10 times slower than ours. As a re-
ference point, the individual core performance of i7-
3720QM and E7-4830 is around three and two times
faster than Pentium IV 3.06, respectively.3

Unlike the earlier researches on the SGP which
mainly focus on dynamic symmetry breaking, we at-
tribute the effectiveness of the instance-specific con-
straints and parallelism to mitigating the two pro-
blems mentioned in the Introduction. Specifically,
the instance-specific constraints imposed on the se-
cond sub-matrix of the matrix of the decision vari-
ables prune a large number of the sub-search trees
near the root, including some symmetries. And since
many partial assignments are extended simultane-
ously, fruitless partial assignments have no impact
on overall execution time. Besides, we also remove

3http://cpu.userbenchmark.com/, Accessed: August
2018

the symmetries of the second row when generating
the partial assignments, which is helpful because no-
des near the root contain much more symmetries than
the nodes near the leaves of the search tree (Puget,
2005). Not only that, but search space splitting can
result in the partial assignments that can extend to a
solution to be proceeded much earlier than serial se-
arch. Therefore, with the trend of integrating more
and more cores on a single chip, we regard the pa-
rallel constraint solving via search space splitting as
an excellent alternative to fast restart policies (Perron,
2003) and discrepancy search (Shaw, 1998) for con-
straint solving. Moreover, as we emphasized before,
research on the SGP is not restricted to the problem
itself, we believe the parallel approach can be gene-
ralized to deal with other combinatorial optimization
problems.

Indeed, there is still a lot of potential to improve
the performance of our approach. In particular, we
have not removed the symmetries among weeks af-
ter week s, though we employ Constraints 22 when
solving 6-3-8, 6-4-7, and 7-3-10. In fact, we have
resolved it by enforcing the indices of the first ”1”
of all the weeks in ascending order, which means
that the second golfers assigned in the first group
are in ascending order. But the performance is not
satisfactory. Future work should figure out whet-
her the performance degradation is due to the use
of the IfThen constraints or removal of symmetries
which also simultaneously removes solutions. Besi-
des, despite better than using the Reified constraints,
Constraints 5 and 6 introduce too many auxiliary vari-
ables; thus, we have also implemented our dedicated
constraint to replace them. However, our constraint
increases the difficulty of variable-selection since the
constraint requires an additional variable to shift the
equality relationship from row to row of the matrix
C. We would also like to resolve this problem in the
future work. To solve larger instances, in addition to
using more processors and discovering more instance-
specific constraints, we would like to investigate com-
bining the dynamic symmetry breaking and parallel
constraint solving for the SGP.

And finally, we must regretfully admit that even if
we have made some progress, some interesting instan-
ces are are still open (e.g. 7-4-9, 8-3-11, 9-3-13, 10-
10-11, and 12-12-13); notably, the original SGP 8-4-
10 (Harvey, 2002) is still unsolved for constraint satis-
faction approach, despite many efforts from the con-
straint programming community. Constraint techno-
logy should be amenable to solve these instances to
demonstrate itself as the first choice for solving com-
binatorial problems.

ICAART 2019 - 11th International Conference on Agents and Artificial Intelligence

38

REFERENCES

Barnier, N. and Brisset, P. (2002). Solving the kirkmans
schoolgirl problem in a few seconds. In Internatio-
nal Conference on Principles and Practice of Constraint
Programming, pages 477–491. Springer.

Beldiceanu, N., Carlsson, M., and Rampon, J.-X. (2012).
Global constraint catalog, (revision a).

Benadé, J., Burger, A., and van Vuuren, J. (2013). The enu-
meration of k-sets of mutually orthogonal latin squares.
In Proceedings of the 42th Conference of the Operati-
ons Research Society of South Africa, Stellenbosch, pa-
ges 40–49.

Boussemart, F., Hemery, F., Lecoutre, C., and Sais, L.
(2004). Boosting systematic search by weighting con-
straints. In Proceedings of the 16th Eureopean Con-
ference on Artificial Intelligence, ECAI’2004, including
Prestigious Applicants of Intelligent Systems, PAIS 2004,
Valencia, Spain, August 22-27, 2004, pages 146–150.

Colbourn, C. J. (1984). The complexity of completing
partial latin squares. Discrete Applied Mathematics,
8(1):25–30.

Cotta, C., Dotú, I., Fernández, A. J., and Van Hentenryck,
P. (2006). Scheduling social golfers with memetic evo-
lutionary programming. In International Workshop on
Hybrid Metaheuristics, pages 150–161. Springer.

de Resmini, M. J. (1981). There exist at least three
non-isomorphic s (2, 4, 28)’s. Journal of Geometry,
16(1):148–151.

Dotú, I. and Van Hentenryck, P. (2005). Scheduling social
golfers locally. In International Conference on Integra-
tion of Artificial Intelligence (AI) and Operations Rese-
arch (OR) Techniques in Constraint Programming, pages
155–167. Springer.

Dotú, I. and Van Hentenryck, P. (2007). Scheduling social
tournaments locally. AI Communications, 20(3):151–
162.

Fahle, T., Schamberger, S., and Sellmann, M. (2001). Sym-
metry breaking. In International Conference on Prin-
ciples and Practice of Constraint Programming, pages
93–107. Springer.

Focacci, F. and Milano, M. (2001). Global cut framework
for removing symmetries. In International Conference
on Principles and Practice of Constraint Programming,
pages 77–92. Springer.

Harvey, W. (2002). CSPLib problem 010: Social golfers
problem. http://www.csplib.org/Problems/prob010.

Harvey, W. and Winterer, T. (2005). Solving the molr and
social golfers problems. In International Conference on
Principles and Practice of Constraint Programming, pa-
ges 286–300. Springer.

Hennessy, J. L. and Patterson, D. A. (2011). Computer ar-
chitecture: a quantitative approach. Morgan Kaufmann.

Law, Y. C. and Lee, J. H. (2004). Global constraints for in-
teger and set value precedence. In International Confe-
rence on Principles and Practice of Constraint Program-
ming, pages 362–376. Springer.

Miguel, I. (2012). CSPLib problem 038: Steel mill slab
design. http://www.csplib.org/Problems/prob038.

Palmieri, A., Régin, J.-C., and Schaus, P. (2016). Paral-
lel strategies selection. In International Conference on
Principles and Practice of Constraint Programming, pa-
ges 388–404. Springer.

Perron, L. (2003). Fast restart policies and large neighbor-
hood search. Principles and Practice of Constraint Pro-
gramming at CP, 2833.

Prestwich, S. (2001). CSPLib problem
028: Balanced incomplete block designs.
http://www.csplib.org/Problems/prob028.

Prud’homme, C., Fages, J.-G., and Lorca, X. (2017). Choco
Documentation. TASC - LS2N CNRS UMR 6241, COS-
LING S.A.S.

Puget, J.-F. (2005). Symmetry breaking revisited. Con-
straints, 10(1):23–46.

Rees, R. S. and Wallis, W. (2003). Kirkman triple systems
and their generalizations: A survey. In Designs 2002,
pages 317–368. Springer.

Régin, J.-C., Rezgui, M., and Malapert, A. (2013). Em-
barrassingly parallel search. In International Conference
on Principles and Practice of Constraint Programming.
Lecture Notes in Computer Science, volume 8124, pages
596–610. Springer, Berlin, Heidelberg.

Rossi, F., van Beek, P., and Walsh, T., editors (2006). Hand-
book of Constraint Programming, volume 2 of Foundati-
ons of Artificial Intelligence. Elsevier.

Sellmann, M. and Harvey, W. (2002). Heuristic constraint
propagation–using local search for incomplete pruning
and domain filtering of redundant constraints for the so-
cial golfer problem. In CPAIOR’02. Citeseer.

Shaw, P. (1998). Using constraint programming and local
search methods to solve vehicle routing problems. In In-
ternational conference on principles and practice of con-
straint programming, pages 417–431. Springer.

Smith, B. M. (2006). Modelling. In Foundations of Artifi-
cial Intelligence, volume 2, pages 377–406. Elsevier.

Smith, B. M. (April 2001). Reducing symmetry in a combi-
natorial design problem. In CPAIOR’01, pages 351–359.
http://www.icparc.ic.ac.uk/cpAIOR01.

Triska, M. and Musliu, N. (2012a). An effective greedy heu-
ristic for the social golfer problem. Annals of Operations
Research, 194(1):413–425.

Triska, M. and Musliu, N. (2012b). An improved sat formu-
lation for the social golfer problem. Annals of Operations
Research, 194(1):427–438.

Solving the Social Golfers Problems by Constraint Programming in Sequential and Parallel

39

