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Keywords: SDN Security, Transport Layer Security, ID-based Cryptography, ID-TLS.

Abstract: In this work, we implement an identity-based Transport Layer Security (ID-TLS) protocol and integrate it on
scalable multiprocessor system-on-chip (MPSoC), namely Cloud-of-Chips (CoC), in order to secure the SDN
communication on this platform. We select two identity-based encryption schemes that are more likely to meet
the performance and resource constraints on the target platform. The schemes are Sakai-Kasahara’s identity-
based encryption (SK-IBE) and the optimized identity-based encryption (OIBE) for lightweight devices by
Guo et al.. The results assert that both the schemes have their computation vs storage trade-off. The SK-
IBE algorithm is significantly more computationally efficient than its OIBE counterpart while SK-IBE uses
around 30 percent more memory than OIBE. However, the performance results of ID-TLS favor SK-IBE over
OIBE. Finally, ID-TLS is integrated in the existing OpenFlow switch and controller implementations. This
brings us to a fully functional and secure ID-TLS implementation on CoC, keeping the platform constraints in
consideration.

1 INTRODUCTION

The technology landscape of today is dominated by
new paradigms, such as internet-of-things (IoT) and
internet-of-everything (IoE) which will grow expo-
nentially over the coming years. A wide variety of
applications and therefore, extremely versatile hard-
ware solutions are needed to satisfy mobile to high-
performance computing requirements. The traditional
system-on-chips (SoCs) are no longer capable to sup-
port all these applications and hence, a new solution
is needed to provide dynamic reconfigurability dur-
ing run-time and to support a wide variety of use
cases. In a recently presented architecture Cloud-of-
Chips (Ellinidou et al., 2018; Bousdras et al., 2018),
a combination of multiple integrated circuits (ICs)
and IC building blocks are interconnected together
with different communication speeds and hierarchy
levels. The CoC platform contains a printed circuit
board (PCB) of multiple ICs where each IC contains
scalable processing clusters (PCs). Each PC com-
prises a combination of high performance and low
power cores and thus enable a heterogeneous system
architecture. For handling on-chip data communica-
tion, network-on-chip (NoC) is installed. The figure
1 below illustrates the CoC architecture. In order to
achieve secure communication among PCs and ICs,
we propose to implement software defined network-

ing (SDN) paradigm. The traditional routing mech-
anism employs NoC hardware routers to manage the
routes among PCs. However, recent SDN based strat-
egy implements a network manager/controller with
global view, which controls the routing in an adaptive
manner (Berestizshevsky et al., 2017).

The main idea of the SDN paradigm is to separate
the control plane and data plane. OpenFlow (OF) is
a common communication protocol used in SDN. OF
establishes a unicast communication channel between
each individual switch and the controller. It allows the
controller to discover OF-compatible switches, cre-
ates rules for the switching hardware and also col-
lects statistics. In CoC, the network is separated in
two levels: IC and PCB. On the IC level, the hard-
ware routers on network on chip (NoC) are treated
as SDN switches and the routing on individual IC
is managed by an IC level controller. For the inter
IC communication, an SDN switch is placed at the
boundary of each IC and is connected to a PCB level
controller (Ellinidou et al., 2018). Unfortunately,
the SDN paradigm is susceptible to several security
breaches (Samociuk, 2015). However, in this paper,
we are mainly addressing the communication secu-
rity among SDN switches (on each IC) and controller.
The SDN security requirements are listed in detail in
the next section. In addition to the switch-controller
unicast communication, multicast communication is
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Figure 1: CoC architecture.

also needed to address the issue of secure transfer of
routing updates to all/some of the swicthes (Sharma
et al., 2018; Sharma et al., 2017).
The existing security solution such as the Transport
Layer Security (TLS) protocol, is not well enforced
in the current version of the OF standard (Version,
2015). Indeed, the specification reads “the switch ini-
tiates a standard TLS or TCP connection to the con-
troller” which means, using TLS is completely op-
tional. Moreover, the public key infrastructure (PKI)
overhead includes generation and signing of digital
certificates for switches and controller. This makes
PKI based solution less acceptable for CoC platform.
Therefore, we propose a more suitable solution that
fits to unique characteristics of the CoC architecture.

1.1 Our Motivation and Contribution

The deployment of TLS uses complex certificate
management which includes certificate validation,
certificate lookup and its revocation (Li et al., 2011;
Gorantla et al., 2005). A switch would have to store
the certificate of controller but also the certificate of
other switches (in the case of inter-switch commu-
nication), which seems inappropriate from the com-
putation and storage perspective, especially in CoC
where these switches are lightweight embedded com-
ponents on each IC. More precisely, the cost of TLS

handshake is our major concern while the TLS Record
is very efficient and interesting for our system, since
it uses an efficient symmetric encryption (e.g. AES)
for communication. In order to use TLS in the CoC
context, TLS handshake needs to be modified without
compromising the security of authentication and key
exchange process. The alternative should not rely on
PKI based approach. The main contributions in this
research are following:

• We review the IBE literature and select two con-
trasting approaches well suited to CoC require-
ments.

• We also propose a practical approach to authenti-
cate the entities participating in the CoC system.

• We implement a modified version of TLS employ-
ing two identity-based encryption (IBE) schemes.
Furthermore, we compare the performance of ID-
TLS to the original TLS protocol using traditional
public key schemes and compare the performance
in the view of running time and memory con-
sumption.

• Finally, we propose a practical way of integrat-
ing this modified version of TLS in existing OF
switches and controllers, using “crypto-proxies”.
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Rest of the paper is organized as follows: in Sec-
tion 2, we present TLS Handshake and Record proto-
col, security requirements for CoC and existing ver-
sion of modified TLS using IBE. The related work to
IBE is presented in Section 3, where it covers most
notable IBE contributions. Afterwards the implemen-
tation details are presented in Section 4, followed by
the results in Section 5. Lastly we summarize our re-
search in the Section 6.

2 BACKGROUND AND
SECURITY REQUIREMENTS

In this section, we present TLS protocol, generic
modified version of TLS and review security require-
ments for CoC.

2.1 Transport Layer Security Protocol

The benefits of symmetric and public-key cryptosys-
tems are combined in the Transport Layer Security
(TLS) protocol, which can be used to establish an
authenticated secure channel between a client and a
server. TLS, successor of the well known SSL, has
been proposed in the Internet Engineering Task Force
(IETF) standard as an improvement of SSL 3.0 in
1999. Over the years, many TLS versions came out,
to arrive to the current version of TLS 1.2 in march
2011 (Dierks, 2008). TLS 1.3 is still a draft in 2018,
during the writing of this work. TLS is composed of
two protocols:

• TLS Handshake Protocol

• TLS Record Protocol

2.1.1 TLS Handshake Protocol

The TLS Handshake protocol’s first purpose is to au-
thenticate the server and the client. To that end, PKC
schemes such as RSA or DSA can be used. The sec-
ond purpose is to negotiate different parameters, such
as the key to be used for the communication, secured
by symmetric encryption. For the key exchange, mul-
tiple algorithms are also available such as RSA and
Diffie-Hellman. The TLS Handshake is generally ini-
tiated by a client request to the server, where the client
proposes a list of supported ciphers and hash func-
tions. The server, having received the list, chooses
among the options the best cipher and hash function
available and sends it back to the client along with its
certificate. TLS uses a X.509 digital certificate which
implies the use of CAs and the Public Key Infrastruc-
ture (PKI). When a PKC like RSA is used to secure

the TLS Handhsake, the procedure continues as fol-
lows. After the client verifies the server’s certificate,
the client and the server exchange Rc and Rs. Rc and
Rs are two numbers generated randomly and their pur-
pose is to add protection against replay attacks. The
client then chooses a random series of bits, called the
premaster secret (PMS). It encrypts the PMS using the
public key of the server and sends it to the server. The
server can decrypt the PMS using its private key. Fi-
nally, the client and the server, using the PMS, Rc and
Rs generate the master secret MS. This version of the
TLS Handshake can be resumed as follows (Roschke
et al., 2010):

1. Encryption and hashing functions negotiation be-
tween client and server. Generation of random
numbers Rc and Rs

2. Transmission and verification of the server certifi-
cate including its public key Ks pub

3. Exchange of Rc and Rs

4. Client encrypts and transmits PMS:
E(PMS,Ks pub)

5. Generation of the master secret MS:
genkey(Rc,Rs,PMS)

2.1.2 TLS Record Protocol

The TLS Record protocol aims to provide confiden-
tiality through symmetric encryption, using the en-
cryption algorithm negotiated during the TLS Hand-
shake (for example AES, triple DES, etc.) and the
master secret MS as calculated during the handshake.
TLS Record also provides integrity checks of en-
crypted messages by using hash functions such as
HMAC-MD5 or HMAC-SHA.

2.2 Security Requirements

The CoC system is originally comprised of a number
of switches and the controller. In order to manage IBE
framework for secure communication, the private key
generator (PKG, a trusted party) is also a principal
component. The overall communication of the sys-
tem can be separated into two phases. During the first
phase, all switches and the controller contact the PKG
to get their system parameters and private keys. In the
second phase, a switch establishes a secure channel
with controller via TLS, to protect the flow of appli-
cation data, such as OF messages.

2.2.1 Phase 1

Most IBE descriptions specify that the private key
must be sent from the PKG to the nodes (the switches

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

46



and the controller) using a secure channel but they do
not specify exactly what this channel could be and its
security requirements. The possible threats and solu-
tions are:

• In order to ensure that the only legitimate nodes
can receive identity ID and private key, node au-
thentication must be performed by the PKG.

• A counterfeit PKG with different master key gen-
erates private keys and IDs for the nodes. This
PKG is able to decrypt all the traffic between
nodes and controller. In this case, authentication
of the PKG by the nodes is also needed.

• An attacker can eavesdrop the response of the
PKG and steal the private key of a node. A so-
lution must be there to ensure the confidentiality
of communication between a node and the PKG.

• An attacker can sniff the packets exchanged be-
tween a node and the PKG and replay them later
to obtain a private key.

• An attacker can manage to compromise the in-
tegrity of the packets between node and PKG.

2.2.2 Phase 2

This phase refers to switch controller communication
where we adopted ID-TLS protocol. The main focus
is on the SDN related threats that an ID-TLS could
protect against. Following the data flow and interac-
tion among SDN components, Microsoft presents a
threat model, STRIDE to meet security requirements
CIANNA (confidentiality, integrity, authentication,
non-repudiation, availability, authorization). STRIDE
stands for Spoofing, Tampering, Repudiation, Infor-
mation disclosure, Denial of service and Elevation of
privileges. In particular, the ID-TLS security solu-
tion will address properties such as confidentiality, in-
tegrity, authentication and non-repudiation. The other
attacks are still applicable and need to counter sepa-
rately.

2.3 A Modified TLS Protocol Using IBE

A generic modified TLS Protocol for IBE se-
cured communication was introduced by Roschke et
al. (Roschke et al., 2010). In the case of a client-server
communication, the client derives the public key us-
ing server’s identity, which can be its IP address or its
URL. Then, the client could directly encrypt the pre-
master key (PMS) with the server’s public key. The
modified TLS handshake steps can be followed from
(Roschke et al., 2010). The basic steps are as follows:

1. Exchange of Rc and Rs and algorithm negotiation

2. Client generates the IBE public key of the server
Ks pub based on the identity IDs of the server:
Ks pub = genkey(IDs)

3. Encryption of the pre-master key PMS using the
public key of the server Ks pub: E(PMS,Ks pub)
and transmission to the server

4. Both client and server generate the master se-
cret MS using Rc, Rs and PMS: MS =
genkey(Rc,Rs,PMS)

After the completion of this modified TLS handshake,
the client and server can securely communicate with
each other using symmetric encryption where master
secret is the encryption key.

3 RELATED WORK

The construction of ID-based encryption schemes
is generally achieved in one of three ways:
prime/composite order pairing or without pairing (re-
fer (Boneh and Franklin, 2001) for standard bilinear
pairing definition).

Some notable IBE constructions using prime-
order pairing are (Boneh and Franklin, 2001; Sakai
and Kasahara, 2003; Boneh and Boyen, 2004;
Waters, 2005) and (Gentry, 2006). The first fully
functional prime-order pairing based IBE scheme
was introduced by Boneh and Franklin (Boneh
and Franklin, 2001). In the following text, we
will refer this construction as BF-IBE. In 2003,
Sakai and Kasahara proposed a new IBE scheme
with potentially improved performance (Sakai and
Kasahara, 2003). Their scheme SK-IBE is also based
on bilinear pairings, however unlike BF-IBE, they
use asymmetric pairing and a novel key extraction
approach. Boneh and Boyen (Boneh and Boyen,
2004) presented an IBE construction without random
oracle. In 2005, Waters (Waters, 2005) presented
the first fully secure IBE without random oracle but
the scheme is clearly not designed for lightweight
devices, as the encryption algorithm requires one
multiplication in GT , three exponentiations (two in
G1 and one in GT ) and an average of n/2 (and at
most n) multiplications in G1 where n is the length of
the plaintext. Gentry (Gentry, 2006) also proposed a
fully secure IBE without random oracle. The authors
claimed smaller system parameters and tight security
reduction but the key extraction algorithm is quite
complex.

Recently, in 2017, Guo et al. (Guo et al., 2017)
proposed an optimized IBE (OIBE) especially for
lightweight devices. Their encryption algorithm has
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Table 1: Performance Comparison of Encryption Schemes.

Schemes Tool Required operation(s) Number of operation(s)
G1 GT e MtP Hash Multiplication Expo.

Boneh-Franklin Pairing X X X X 4 1 1
Sakai-Kasahara X X X X 4 2 1
Boneh-Boyen X X X X 1 2 4
Waters X X X X 1 +- n/2 3
Gentry X X X X 1 5 6
OIBE (l=24) X X X X l×2 l×4 l×7
Paterson-Srinivasan Trapdoor X X X X 2 0 2

three flavors: single/k/multi bit encryption. Their
multi-bit encryption scheme is based on the single and
k-bit encryption schemes. The idea is to encrypt a L-
bit message where L = l× k, which means that if we
have a message of 48 bytes (e.g, the pre-master key
length in TLS) and k = 16 bits then we have to call the
k-bit encryption l=24 times. They compared the hard-
ware cost and computational efficiency of their en-
cryption with the Sakai-Kasahara scheme (Sakai and
Kasahara, 2003). The OIBE scheme is computation-
ally less efficient than the SK-IBE or other IBE coun-
terparts. Typically, for the L-bit message encryption,
the OIBE algorithm is about L

k times slower than other
pairing-based IBE schemes. In our system, where the
size of the message to be encrypted (the PMS) is 48
bytes, the encryption would be 24-times slower.

Another way to construct an IBE is to use a
composite-order pairing. Many IBE schemes con-
structed from composite-order pairings can be found
in literature (Waters, 2009; Lewko and Waters, 2010).
However, none of them is practical for the CoC plat-
form or in general for lightweight devices.

In 2001, Cocks (Cocks, 2001) proposed a novel
IBE scheme based on the quadratic residuosity prob-
lem. This scheme is probably the less interesting one
due to its inefficiency. Moreover, the scheme is vul-
nerable to adaptive chosen ciphertext attack. The in-
efficiency of the scheme comes from the fact that it
encrypts messages bit by bit. For example, during the
TLS handshake, if we have to encrypt the PMS (384
bits) using a 1024 bit modulus, the sender would have
to send 2×384×1024 = 786 KBytes, which is quite
unreasonable for our platform. Another pairing free
variant is the construction from trapdoor discrete log
groups designed by Paterson and Srinivasan (Paterson
and Srinivasan, 2009). The major limitations of this
scheme are, the use of a particular curve with a fixed
80-bit security and inefficient private key extraction
(Guo et al., 2017).

This scheme is designed for applications where
the PKG has a lot of computational power (e.g.

military applications) and where the client is very
resource-constrained, such as a sensor.
Following the above discussion, two elliptic curve
cryptography (ECC) based IBE schemes (Guo et al.,
2017; Sakai and Kasahara, 2003) are chosen to mod-
ify TLS. Both the schemes have contrasting strong
points. It would be interesting to compare them for
our platform. The table 1 presents a comparison of all
interesting schemes.

3.1 ID-TLS Communication Between
Switch and Controller

The switches initialize a TLS connection to commu-
nicate securely with the controller. We propose to
use a modified version of TLS handshake that uti-
lizes an ID-based encryption scheme to encrypt the
pre-master secret (PMS), as shown in figure 2.

4 IMPLEMENTATION DETAILS

In order to implement the two chosen IBE schemes
(Guo et al., 2017; Sakai and Kasahara, 2003) and their
integration in our modified TLS protocol, the prelim-
inary phase is secure delivery of private key. The next
step is to embed the modified IBE protocols to ex-
isting TLS framework and then integrate it on CoC
platform. The subsections below describe the steps in
a more concrete manner.

4.1 Generation of Node Identity and
Private Keys

The first step for each node in the system (includ-
ing the controller) is to contact the PKG, to obtain its
identity, its private key and the system parameters. In
contrast with common IBE schemes where the nodes
choose their identity and provide it to the PKG, in our
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Figure 2: ID-TLS handshake.

implementation the choice of the identity is made by
the PKG itself. Unfortunately, implementing this sys-
tem without any authentication would lead to multiple
attacks as explained in section 2.2.1. In order to solve
some of the security threats highlighted before, we
implemented mutual authentication based on a shared
secret symmetric key between the nodes and the PKG.
This key is stored at all the ICs (for all switches and
controller) at the system integration time. The same
key is also used to encrypt the communications and
provide confidentiality.

To obtain its identity and private key, the node
(switches and controller) encrypts the current times-
tamp using AES in Galois/Counter Mode (GCM) with
the pre-shared key (PSK) and send it to PKG. The
same PSK is stored on all ICs at the time of sys-
tem integration. The private key request to PKG in-
cludes the ciphertext, the initialization vector (IV) and
the authentication tag. The PKG decrypts the cipher-
text using the PSK and matches the authentication
tags. Also, the PKG checks whether the decrypted
timestamp is between a certain interval (depending on
the network, system configuration and speed). After-
wards, the PKG randomly generates a node ID and

computes its corresponding private key, following the
appropriate IBE scheme. Finally, the PKG encrypts
the node ID and private key along with the system pa-
rameters using AES-GCM and the PSK. It then sends
the ciphertext, IV and tag to the node. The node de-
crypts the response and stores the ID and private key.

The detailed steps of the modified handshake are
as follows:

1. The switch sends a client hello request to the con-
troller containing the ciphersuites supported by
the client and a random byte string (called Rc).
In our system, we propose two ciphersuites mak-
ing use of ID-based encryption as key-exchange
algorithm:

• TLS-SK-WITH-AES-256-GCM-SHA384
• TLS-OIBE-WITH-AES-256-GCM-SHA384

AES-256 in GCM mode is used for secure com-
munication between switch and the controller, and
SHA384 is used as a pseudo random function
(PRF) throughout the TLS protocol such as to
generate the master secret (MS) or during the FIN-
ISH request to make sure that they both have the
same MS. SHA384 is also generally used as a pa-
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rameter of the HMAC function to protect the mes-
sage integrity which is not needed here because
the Galois/Counter Mode already provides mes-
sage integrity protection.

2. The controller responds by sending the cipher-
suite, a random byte string (called Rs) and other
relevant information such as session ID

3. The controller notifies the client that the hello pro-
cedure is done

4. The switch generates the PMS which is a random
48-byte string, encrypts with the ID of the con-
troller.

5. This step is common for the controller and switch,
as both have to compute the master secret (MS)
using the PMS,Rc and Rs:

MS = PRF(PMS,Rc,Rs)

where PRF is a pseudo random function.

6. Finally, the controller and switch send the FIN-
ISH request which is the first protected packet
with the newly generated master secret. They
verify that the content of the message is correct:
Veri f (PRF(MS,“ f inished”,Hash(handshake −
message))) == 1
The handshake-message is the concatenation of
all the handshake communications such as client
hello, server hello, server hello done and key
exchange messages.

7. When both parties have sent, received and val-
idated the FINISH requests of each other, they
can start sending encrypted application data using
AES-256 in GCM mode.

In order to ensure that only nodes authenticated by
the PKG can establish a secure connection with the
controller, we use token-based authentication. The
steps are as follows:

1. The PKG and the controller have a pre-shared se-
cret key K PKG C

2. During the key extraction process, the PKG gener-
ates an authToken=HMACK PKG C(nodeID) and
delivers to all switches. The authToken is trans-
mitted encrypted along with the private key

3. During the TLS handshake, the node sends the
encrypted PMS, his ID and a token = authToken
⊕ PMS[2:len(authToken)+2]. Note that the first
two bytes of the PMS are the protocol version, so
they are deterministic and cannot be used to en-
crypt the token. The controller decrypts the PMS,
XORs it again with the token to obtain the auth-
Token and then checks its validity using the node
ID and the K PKG C

4.2 ID-TLS on CoC

In order to realize the key extraction and ID-TLS, as
a proposed solution to CoC, precisely the steps are
detailed below.

1. The switch and controller encrypt a timestamp
along with PSK and send the resulting ciphertext,
IV and tag to the PKG

2. The PKG decrypts the ciphertext, checks the tag
and timestamp and then generates the node ID.
Now, PKG runs the key extract algorithm of SK
or OIBE, to get the private key corresponding to
the newly generated ID. Finally, PKG generates
the authToken for each switch ID.

3. The PKG sends encrypted the generated ID, pri-
vate key and authToken along with the parame-
ters of the SK or OIBE scheme. Depending on
the parameters of each IBE scheme, the content of
the encrypted packet can be as follows (For more
details about parameters, refer (Guo et al., 2017;
Sakai and Kasahara, 2003)):

• SK: (ID,authToken,dA,Ppub,P1,P2,
g = ê(P1,P2))

• OIBE: (ID,authToken,dID(d1,d2),
(u1,u2,h1,h2,g1,g2))

4. The switch decrypts and verify the received mes-
sage. During the TLS handshake, the switch en-
crypts the PMS using chosen IBE scheme and
sends the encrypted PMS along with its identity
and a token, proving its membership of the sys-
tem

5. After the TLS handshake and the generation of the
master secret (MS), the switch and the controller
can communicate securely.

5 RESULTS

In order to analyze the running time and the mem-
ory consumption of the ID-TLS handshake, we com-
pare it with TLS handshake using RSA. We will first
analyze the performance of ID-based encryption and
decryption compared to RSA in isolation and then
we will look at the general performance of the TLS
handshake. We implemented our solution integrating
mbed TLS (also known as PolarSSL in the past) with
PBC library. For the bilinear pairing map, we choose
type D pairing which implements MNT curves with
embedded degree 6. The order of the curve is around
170-bits (base field) and therefore the security will be
1024-bit in the subgroup of Fp6 , which is considered
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Table 2: Running time comparison of encryption/decryption and key extract functions of the SK, OIBE with an average of
100 repetitions.

Scheme Encryption time (ms) Decryption time (ms) Extract time (ms)
CPU time Real time CPU time Real time CPU time Real time

SK 2.639 2.643 5.525 9.967 5.314 10.714
OIBE 57.610 136.308 264.445 443.481 11.069 21.456
RSA 0.193 0.156 3.257 3.331 - -

Table 3: Speed performance of the TLS handshake and private key extraction on an average of 100 repetitions.

Scheme Handshake client Handshake server Get private key
CPU time Real time CPU time Real time CPU time Real time

SK 2.989 93.869 6.099 59.764 30.037 78.973
OIBE 57.884 582.496 266.348 583.022 30.093 87.707
RSA 0.674 89.216 3.633 44.534 - -

good enough (Lynn, 2010). We compare the follow-
ing three ciphersuites:

• TLS-SK-WITH-AES-256-GCM-SHA384
• TLS-OIBE-WITH-AES-256-GCM-SHA384
• TLS-RSA-WITH-AES-256-GCM-SHA384

5.1 Performance Results Without TLS
Handshake

As expected, the OIBE encryption and decryption al-
gorithms are far slower than both RSA and SK. Our
experimental results show that the encryption is 22-
times slower in CPU time and 52-times slower in real
time while decryption is 48-times slower in CPU time
and 45-times slower in real time. However, in com-
parison with the RSA scheme, the performance of the
SK scheme is respectable. Also, note that the code
of the RSA scheme is fully optimized by the authors
of the mbed TLS library while our implementation of
SK is not optimized. Therefore, with a more opti-
mized SK implementation we could be closer to the
performance of the RSA scheme. Furthermore, the
key extract is also two times faster in SK as compared
to OIBE. The following table 2 describes the compar-
ative results of their timings.

5.2 Performance Results of the ID-TLS
Handshake

The running time for private key extraction and ID-
TLS handshake is presented in table 3.

Note that for SK and OIBE, the TLS handshake
also comprises the token management used for au-
thentication of the switches to the controller. The

RSA handshake does not include this mechanism.
From table 3, we see that the CPU time of the hand-
shake for all three schemes is almost the same as the
CPU time of the encryption and decryption as shown
in table 2 above. Therefore, the cost of token-based
authentication mechanism seems negligible and does
not add more computational overhead. Furthermore,
we claim that the RSA scheme seems faster than SK
but the difference is trivial. In the case of a real-
time application, the RSA handshake would have to
include the verification of server certificate and in that
case, SK could overtake.

The real time cost of the client and server hand-
shake is very high (around 0.5 second) for OIBE,
which is due to the slow encryption and decryption
algorithm. The time of the “Get private key” column
represents the interval from the moment when a node
sends an encrypted private key request to the PKG un-
til the moment it receives its parameters (private key,
ID etc.) and initializes the elements it needs to use
IBE in TLS. The speed of the two IBE is about same,
SK being slightly faster.

5.3 Memory Usage

In comparison with the SK encryption, OIBE uses far
less memory with a memory consumption around 12
Kbytes. In order to estimate the memory usage for
a TLS secure communication, we transfer a webpage
between a client and a server. The client used ap-
proximatively the same memory, irrespective of the
encryption used in the TLS handshake. However, on
the server side, OIBE uses significantly more heap
memory because it has to store the big hashmap used
for the decryption. The following table 4 represents
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the peak heap memory consumption of our testing ap-
plication. The OIBE scheme uses less heap memory

Table 4: Memory usage.

Scheme Memory usage client Memory usage server

SK 3148 KB 3296 KB
OIBE 3160 KB 22752 KB
RSA 3344 KB 3332 KB

during the encryption than SK, but the memory usage
of an actual application is comparable to that of SK.
This is because OIBE has to store more cryptographic
parameters for its operation, so the initialization of
these parameters consumes additional memory. In ad-
dition, the memory usage of the server for the OIBE
scheme is much higher than that of the SK scheme.
Finally, the OIBE scheme at server requires around
7 seconds to perform the initialization of the system
before clients can contact it, while the SK initializa-
tion is much faster. So, in applications where speed
is critical, the SK scheme seems more suitable for an
ID-based version of TLS, while in applications where
lower heap memory usage can make a difference, the
OIBE scheme might offer a viable alternative.

5.4 Results on CoC

In order to investigate the integration of above mod-
ified TLS, we need SDN supporting switches and
controller. The OpenVSwitch (OVS) and Ryu con-
troller are chosen to run on an SDN emulator
Mininet (Mininet, 2014). OVS is written in C, while
Ryu is mainly written in Python. Rather than follow-
ing direct integration of the secure channel in OVS
and Ryu, we opted for a solution that allows using
them more like “black-boxes”, with minimal or no
modifications to their pre-existing functionality. We
call them “crypto-proxies”. These proxies handle all
the tasks detailed above: obtaining the private key,
establishing a TLS connection and then handling the
encryption and decryption of messages accordingly.

On the CoC platform, it is easy to realize these
proxies in the network interface (NI) of the IP core.
Moreover, there are several advantages of the proxy
approach as follows:

• Our solution is independent of the chosen OF
switch or controller

• New security solution is easy to adopt as simple
as replacing the current proxy with a new one

• This approach bypasses the communication chan-
nel originally used between the switch and the
controller (TCP), which means that the data can
now be transferred over UDP or by any other
means, eventually a new protocol

We claim that there is no security compromise
while using proxies. The message generated at IP
core is encrypted and decrypted in its own NI and to
the best of our knowledge, there is no existing breach
in this situation. Using the setup described above, we
measured the flow establishment time (defined below)
for the default insecure version of OF as a baseline.
We then measured the secure channel setup and flow
establishment time for the OF secured with the ID-
TLS proxies.

In the TLS case, secure channel setup refers to
the execution time of the TLS handshake (for one
switch). To measure the flow establishment time, we
used the pingall command, which makes each host
ping all the other hosts in the network. In a fresh run
of the network emulation, the first time pingall is
executed, the switches have to contact the controller
to create their flow tables. For all subsequent exe-
cutions, the relevant flow entries are already inside
the switch’s flow tables and no further communica-
tion with the controller is required. We define the flow
establishment time as the average execution time of
the first pingall command minus the average execu-
tion time of subsequent pingall commands (which is
35.51ms in our test setup). Our results are displayed
in Figure 4 below:

The Sakai-based variant of TLS clocks in at about
100ms. The OIBE version of TLS is about 6 times
slower. It is important to note that in different scenar-
ios, the TLS cost will remain constant irregardless of
the number of switches. However, we calculated that
the average AES-GCM encryption-decryption times
in our testing environment is 0.0045ms (Averaged
over 1000 executions on actual OF messages, Stan-
dard deviation: 0.001ms).

6 CONCLUSION

This paper demonstrated that ID-TLS can be em-
ployed to secure the SDN communication on CoC.
We analyzed the performance of ID-TLS with tra-
ditional PKI based version of TLS in the view of
computation and storage efficiency. In particular, our
basis for comparison is to analyze the performance
of traditional protocols and their TLS versions. The
SK and RSA protocols have comparable performance
while OIBE is significantly slow. However, the OIBE
protocol while slower during the encryption and de-
cryption, has significantly lower heap memory con-
sumption during the encryption. In a client applica-
tion where speed is critical, the SK scheme seems
more suitable while in applications where lower heap
memory usage can make a difference, the OIBE
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Figure 3: “crypto proxy” architecture.

Figure 4: Secure Channel setup and Flow Establishment
times, averaged over 10 executions.

scheme might offer a viable alternative. The integra-
tion of ID-TLS in existing OF nodes makes the so-
lution more appealing, especially for embedded sys-
tems. Moreover, the proposed solution is not lim-
ited to CoC but applicable to all such SDN instances
where certificate management is complex. The real-
ization of proposed solution on CoC hardware is in-
teresting for further exploration.
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