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Abstract: To train an object detection network labeled data is required. More precisely, all objects to be detected must be
labeled in the dataset. Here, we investigate how to train an object detection network from multiple heterogeneous
datasets to avoid the cost and time intensive task of labeling. In each dataset only a subset of all objects must be
labeled. Still, the network shall be able to learn to detect all of the desired objects from the combined datasets.
In particular, if the network selects an unlabeled object during training, it should not consider it a negative
sample and adapt its weights accordingly. Instead, it should ignore such detections in order to avoid a negative
impact on the learning process. We propose a solution for two-stage object detectors like Faster R-CNN (which
can probably also be applied to single-stage detectors). If the network detects a class of an unlabeled category
in the current training sample it will omit it from the loss-calculation not only in the detection but also in
the proposal stage. The results are demonstrated with a modified version of the Faster R-CNN network with
Inception-ResNet-v2. We show that the model’s average precision significantly exceeds the default object
detection performance.

1 INTRODUCTION

Object detection and classification research has seen
huge leaps over the past few years. Driven by the re-
cent advances in object classification (Szegedy et al.,
2014; Krizhevsky et al., 2012; Szegedy et al., 2016;
Szegedy et al., 2015; Lin et al., 2014a; Zagoruyko
and Komodakis, 2017; Xie et al., 2017) also object
detection networks trained on annotated datasets were
able to achieve very good results (Ren et al., 2016;
Redmon et al., 2016; Redmon and Farhadi, 2018; Lin
et al., 2018). To combat overfitting, models need to be
trained with a large number of labeled images. Label-
ing, however, is a time and cost intensive task. Multi-
ple approaches were introduced to augment datasets
such as oversampling and image transformations. Still,
the best results are achieved when models are trained
on numerous instances of manually labeled images.

One solution is to take multiple datasets that con-
tain at least labels for a subset of the required ob-
jects and to combine them. This, however, will lead
to the following problem during training. Assume,
for example, that we want to train a model to detect
classes C1,C2, and C3 using two datasets. The first
dataset, DS1, contains class labels for C1 and the sec-
ond dataset, DS2, contains class labels for C2 and
C3. Let’s also assume that DS1 contains objects of

C3 (which are not labeled). If the network correctly
detects an object in an instance of DS1 of class C3 dur-
ing training it will consider it as background (since it
is not labeled in DS1) and will adapt its weights to not
select it the next time (which of course has a negative
impact on classification and detection performance).

In this work, we present an extension for two-stage
object detectors that minimizes the described impacts.
It can probably also be applied to single-stage detec-
tors (left for future research). Performance is evaluated
on an extended version of the the Faster R-CNN based
network with Inception-ResNet-v2 and atrous convo-
lutions pretrained on the COCO dataset (Lin et al.,
2014b) provided by the TensorFlow object detection
API (Huang et al., 2017) to train on multiple combined
datasets. We show that the proposed model is signifi-
cantly better than the original model when trained on
hetereogeneous datasets.

2 RELATED WORK

Current state-of-the-art object detectors are either
based on a two-stage proposal-driven mechanism or a
one-stage detector. Through a sequence of advances
the two-stage detectors (He et al., 2015; Girshick,
2015; Ren et al., 2016; Lin et al., 2017; He et al.,
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2017) achieved top accuracy on the challenging COCO
benchmark (Lin et al., 2014b). Same for single stage
detectors like YOLO (Redmon et al., 2016; Redmon
and Farhadi, 2018) and SSD (Liu et al., 2016) and
recently out-performed two-stage detectors (Lin et al.,
2018). For run-time comparisons see, for example,
(Nguyen-Meidine et al., 2017).

None of those, however, had a focus on training
from multiple datasets and on dealing with the problem
of heterogeneous datasets, i.e., the combination of
datasets in which each dataset contains potentially all
objects but only a subset of all objects is labeled. In
particular, a solution is needed to avoid punishing the
network for correctly selecting an object that happens
not to be labeled.

Note that this multi-task learning is somewhat re-
lated to inductive transfer learning. See (Pan and
Qiang, 2010; Csurka, 2017) for comprehensive re-
views on that topic. In contrast to inductive transfer
learning, however, we simultaneously learn from the
same source domains and multiple tasks (because of
the differing label sets). In contrast to transfer learning,
we are not only interested in the performance of the
target domain but want to learn the target and source
task simultaneously (besides, here, it cannot be clearly
distinguished between source and target task).

It also has some relation to omitting the reward
in reinforcement learning until a later time (Sutton
and Barto, 1998; Mnih et al., 2015; Brosch et al.,
2015; Brosch et al., 2013; Wörgötter and Porr, 2005;
Grondman et al., 2012). The scenario here can be seen
as not giving reward for a correctly detected instance.

3 PROPOSED MODEL

The proposed method is to combine the knowledge
about what classes are not labeled in the particular
training image with the network classification output
during training. Whenever the network classifies an
object as one that is not labeled in the current train-
ing sample it is omitted from the loss-calculation and
consequently, does not harm the training process by
giving erroneous feedback.

For single-stage detectors (Redmon et al., 2016;
Redmon and Farhadi, 2018; Liu et al., 2016; Lin et al.,
2018) we can simply omit training whenever the de-
tector recognizes a class from which we know that it
is not labeled in this particular training image. For
two-stage detectors (Girshick, 2015; Ren et al., 2016;
Lin et al., 2017; He et al., 2017) it is less obvious since
the region-proposal stage is class agnostic and thus
needs feedback from the classification stage. The first
stage produces class agnostic region proposals (RP)

and is trained based on the objectness and localization
losses. The second stage on the other hand produces
the bounding box detections and is trained based on
classification and localization losses. Since the first
stage produces RPs that are class agnostic, it is not
possible to know which RPs are supposed to be ig-
nored. Our suggestion to dealing with this problem is
to wait for the second stage to classify the RPs pro-
duced by the first stage in an image. In this case, we
know exactly which regions belong to the classes that
are not labeled in that image based on which dataset it
belongs to (c.f. Figure 1). Hence, any bounding boxes
produced by the second stage and classified as a class
that is not labeled in the current image would not con-
tribute to the classification loss. Consequently, it will
not affect the network weights.

The ignore-process for the first stage means that all
region proposals that have an intersection over union
of more than 0.5 do not contribute to the objectness
and localization losses of the first stage (Figure 1, right,
gray boxes). Similarly, the ignored bounding boxes
of the second stage are not allowed to contribute to
the classification and localization losses of the second
stage. Thus, the loss is calculated like this:

L({pi},{ti}) =
1

Ncls
∑

i/∈Ncls

Lcls(pi, p∗i ) (1)

+λ
1

Nreg
∑

i/∈Nreg

p∗i Lreg(ti, t∗i ) (2)

In the example shown in Figure 1 only the green boxes
would contribute to the loss-function (and the back-
ground anchors not shown) whereas the boxes shown
in gray (that were classified as an object that is not
being labeled in this training sample) are ignored. In
contrast to (Ren et al., 2016), here, the loss is not
summed over the set Ncls,reg of all indexes belonging
to an area that was classified as an object that is not la-
beled for the particular training image. Otherwise, the
loss is calculated as in (Ren et al., 2016). It consists
of the classification loss Lcls(pi, p∗i ), i.e., the object
vs. no-object loss between the ground-truth label p∗i
and the predicted probabilitiy pi of anchor i being an
object, and the regression loss Lreg(ti, t∗i ) that denotes
the loss due to the difference between the predicted and
the ground-truth bounding box (see (Ren et al., 2016)
for further details). The training is then performed
with stochastic gradient descent (LeCun et al., 1989)
and the usual sampling strategies and hyperparameters
as in (Ren et al., 2016) (see section 4 for details).

Here, we focus on two-stage detectors with an ob-
ject vs. no-object stage and a separate classification
stage. For single-stage detectors we expect similar
results, which is to be investigated.
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Figure 1: The proposed model omits unlabeled objects to improve the training process: In this example only cars are
labeled in the input image. Left: In the standard Faster-R-CNN model all detections will contribute to the loss including the
detections of trucks and pedestrians (shown in red). Since those objects are not labeled they will be considered as false positives
and affect the network weights. Right: In the proposed model, however, the model knows that trucks and pedestrians are not
labeled and consequently ignores all detections of such objects in the loss calculation of the “RoI” and “Proposal” stage (boxes
shown in gray). Note: For illustration purposes no anchor boxes of the background are shown. Pictures from (Udacity, 2017).

4 RESULTS

In this section, we demonstrate that the proposed
model-loss extension outperforms the original imple-
mentation if trained from heterogeneous datasets by a
significant margin. In the following, we will explain
the implementation (sect. 4.1), the employed datasets
(sect. 4.2), the test configuration setup (sect. 4.3), and
the test results (sect. 4.4).

4.1 Implementation

The proposed method was benchmarked with the
TensorFlow Object Detection API1. More precisely,
we extended the Faster R-CNN based network
with Inception-ResNet-v2 and atrous convolutions
(Szegedy et al., 2016) pretrained on the COCO dataset
(Lin et al., 2014b) with our proposed loss-calculation
method. For evaluation, we assembled train- and test-
sets based on the Udacity datasets 1 and 2 (Udacity,
2017) (see next section for details).

1https://github.com/tensorflow/models/tree/master/
research/object_detection

4.2 Datasets

In order to train the proposed method, we used Udacity
dataset 1, created one subset with cars only (DS1), and
one with trucks and pedestrians only (DS2). Both
sets were then used to train the model. Mean average
precision is reported for evaluation on Udacity dataset
2 (DStest).

As mentioned earlier, the problem with training
on heterogeneous datasets is that not all classes are la-
beled in each and every dataset. In our test case, for ex-
ample, DS1 has images with labeled cars (∼32000 in-
stances), and DS2 has labeled trucks (∼2100 instances)
and pedestrians (∼2100 instances) only (c.f. Figure 2,
top for an example of DS1, and bottom for an example
of DS2). During training on the bottom image of Fig-
ure 2, the original model would treat the unlabeled cars
as negative examples because they do not have ground
truth references (c.f. Figure 1, left). The same can
occur for images that contain unlabeled pedestrians
and trucks in DS1.
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Figure 2: Illustration of used datasets: Top: Sample im-
age from DS1 with labeled cars. Bottom: Sample image
from DS2 with labeled pedestrians/trucks and unlabeled cars.
The samples are taken from Udacity’s annotated driving
dataset by CrowdAI (Udacity, 2017).

4.3 Test Configuration

We benchmarked the proposed method against the un-
modified Faster R-CNN version of the TensorFlow
Object Detection API. Sampling strategies and hyper-
parameters were identical for both models. Only the
loss calculation differed for the proposed model as
outlined in sect. 3.

4.4 Test Results

Overall the mean average precision was 54.4% for the
modified variant which was significantly better than
the mean average precision of 53.2% of the original
model (on 1% confidence-level, n = 30 test-runs). The
mean average precisions for trucks and pedestrians
were almost identical whereas the mean average preci-
sions for cars were significantly better for the modified
variant (64.6% vs. 60.9% for the modified vs. the orig-
inal model on 1% confidence-level, n = 30 test-runs),
which is to be expected due to the huge number of
cars in the dataset, since the original model suffers
significantly from being “punished” to correctly select
cars.

A comparison of the average precision-recall
curves between the original and the proposed model

Figure 3: Average precision-recall curves for each class.
Top: Original model. Bottom: Proposed model. Note that
in particular the class of cars benefits significantly from
the proposed model, which is to be expected due to a huge
amount of samples of cars in the dataset. The curves shown
are the average of 30 runs.

confirms those observations. They show that in par-
ticular the class of cars benefits from our proposed
model (Figure 3).

Note that this also demonstrates that the original
model is already quite robust with respect to unlabeled
objects in the dataset as long as the objects are not
too frequent or do not occupy too much of the scene
(because in this case the likelihood of being selected
as training sample is higher). Thus, we expect that
our model performs even better compared to the orig-
inal model for objects that take up a lot of space on
images and/or are very frequent. This is definitely
something that needs to be investigated in more detail
in the future.

Finally, in order to assess whether additional labels
would lead to a better classification result, we also used
DS1 with no objects being unlabeled (i.e. the original
dataset). Most interestingly, the original model trained
on this complete and fully labeled dataset did not out-
perform the proposed model, demonstrating that the
proposed method in this case achieves the same per-
formance level without the need for a fully labeled
training set.
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5 CONCLUSION

We proposed a novel method to train a two-stage ob-
ject detection network from multiple datasets in which
each dataset does not need to have the full label set,
i.e. not all object categories are labeled in all datasets
that are used for training. The results indicate that the
novel approach outperforms a regular object detection
network significantly by excluding unlabeled objects
from the loss-calculation. Furthermore, the results
indicate that depending on the task even regular ap-
proaches are quite robust but can perform better when
extended with the new method which excludes regions
from the loss-calculations that have been identified as
objects of an unlabeled category for the current train-
ing sample. Thus, our method can help to speed up
learning of new object sets without going through the
time and cost intensive task of labeling all objects in
the entire dataset. It also helps in domains where la-
beled data is rare. From a run-time perspective the
proposed method is virtually identical to the original
Faster R-CNN implementation.

In addition to the study presented here, more work
is needed. In future studies, additional dataset con-
figurations need to be evaluated and it also needs to
be investigated how the method performs with single-
stage detectors like (Redmon et al., 2016; Redmon and
Farhadi, 2018; Liu et al., 2016; Lin et al., 2018). It
might also be interesting to see if the approach can be
transferred to other domains such as action recognition
(Layher et al., 2017). Furthermore, it should also be
adressed how many datasets can be simultaneously
used and how it affects system performance.
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