
Semantic Segmentation via Global Convolutional Network and

Concatenated Feature Maps

Chuan Kai Wang and Long Wen Chang
Department of Computer Science, National Tsing Hua University, Republic of China

Keywords: Semantic Segmentation, Convolutional Neural Network, Global Convolutional Network, DenseNet,

Concatenation, ResNet, FC-DenseNet, and CamVid.

Abstract: Most of the segmentation CNNs (convolutional neural network) based on the ResNet. Recently, Huang et

al. introduced a new classification CNN called DenseNet. Then Jégou et al. used a sequence of building

blocks for DenseNet to build their semantic segmentation CNN, called FC-DenseNet, and achieved state-of-

the-art results on CamVid dataset. In this paper, we implement the design concept of DenseNet into a

ResNet-based semantic segmentation CNN called Global Convolutional Network (GCN) and build our own

network by switching every identity mapping operation of the decoder network in GCN to a concatenation

operation. Our network uses less computational resources than FC-DenseNet to obtain a mean IoU score of

69.34% on CamVid dataset, and surpass the 66.9% obtained in the paper of FC-DenseNet.

1 INTRODUCTION

Semantic segmentation is a challenging computer

vision problem of assigning semantic labels (e.g.,

car, person, etc.) to each pixel in the given image. It

is a crucial step towards scene understanding. It

improves image classification to pixel-wise level

and could further be enhanced to instance

segmentation which distinguishes different instances

from the same semantic class. A good semantic

segmentation technique could be useful in a lot of

applications such as self-driving or other

environmental monitoring products.

In recent years, convolutional neural network

(CNN) has driven significant progression in image

classification. Networks like (Krizhevsky et al.,

2012; Simonyan et al., 2014; Szegedy et al., 2015;

He et al., 2016; Huang et al., 2017) broke the

records of many challenging benchmarks (Deng et

al., 2009; Lin et al., 2014; Krizhevsky et al., 2009)

one after another. Fully convolutional network

(FCN) (Long et al., 2015) introduced the concept of

fully convolution for replacing fully connected

layers in the last part of the classification networks

(Krizhevsky et al., 2012; Simonyan et al., 2014;

Szegedy et al., 2015). It enables these networks to

make semantic segmentation prediction under down-

sampled resolution. For up-sampling the prediction

back to original resolution, they took these

classification networks as a feature encoder network

and used the skip connection to restore the spatial

information from the feature maps in the middle

layers of the encoder network. This skip architecture

design achieved a state-of-the-art result and proved

that the pre-trained classification networks could be

extended to semantic segmentation networks.

After FCN, more and more semantic

segmentation methods (Lin et al., 2017; Peng et al.,

2017; Jégou et al., 2017) used this skip architecture

to design their own decoder networks for up-

sampling the feature maps of classification

networks. One of the methods, (Peng et al., 2015),

suggested that there still have some differences

between the principles of doing classification and

segmentation. For example, classification should be

invariant to various image transformations, but

segmentation has to be sensitive to this spatial

information. They believed that network not only

needs to use fully convolution and remove global

pooling to retain the localization information but

also has to use large convolution kernels to enhance

the capability to handle different transformations.

Following this principle, they proposed a decoder

network called Global Convolutional Network

(GCN) and achieved state-of-the-art results on

Cityscapes (Cordts et al., 2016) and Pascal-VOC

292
Wang, C. and Chang, L.
Semantic Segmentation via Global Convolutional Network and Concatenated Feature Maps.
DOI: 10.5220/0007251002920297
In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2019), pages 292-297
ISBN: 978-989-758-351-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2012 (Everingham et al., 2010) datasets by using

ResNet (He et al., 2016) as thier encoder network.

In 2017, Huang et al. introduced a new

classification CNN called DenseNet where the input

of each building block is an iterative concatenation

of previous feature maps. It is similar to ResNet

which using summation through identity mapping,

but according to (Jégou et al., 2017), this small

modification brings lots of positive effects to the

network, including: (1) parameter efficiency, (2)

implicit deep supervision, and (3) feature reusing.

They used the building block of DenseNet to build

both the encoder network and the decoder network

with skip connections and named their network as

FC-DenseNet, where FC stands for fully

convolution. It used significantly fewer parameters

to achieve state-of-the-art results on CamVid

(Brostow et al., 2008) dataset without pre-training

on any dataset.

Despite the success of FC-DenseNet, we still

agree with Peng et al. that there exist additional

requirements on architecture for doing segmentation

task. We should design the decoder network based

on the principles of both DenseNet and GCN. In this

paper, we focus on utilizing the concatenation

operation to every blocks in the decoder architecture

of GCN. Therefore, we can take the advantage of

DenseNet and keep the same segmentation process

of GCN at the same time. We take reference to FC-

DenseNet and name our network as GC-DenseNet.

2 RELATED WORK

Since the size of an object in an image could be

various, semantic segmentation CNNs require

various field-of-views to recognize the objects. An

intuitive way is using multi-input to generate multi-

scale features. For example, (Chen et al., 2016) used

an attention model to decide which scale features are

more useful at each location. Another way is using

multi-path architecture to generate multi-scale

features. DeepLab (Chen et al., 2018) introduced an

“atrous spatial pyramid pooling” (ASPP)

architecture that use dilation convolutions with

different rates to create multi-scale features. As

comparison, PSPNet (Zhao et al., 2017) used a

similar architecture simply through different sizes of

pooling.

Another kind of methods is FCN-based networks

such as FC-DenseNet (Jégou et al., 2017) and GCN

(Peng et al., 2017), which reused the feature maps in

the encoder network to obtain multi-scale field-of-

views. FC-DenseNet tried to implement dense block

(Huang et al., 2017) in their decoder network.

Unlike other FCN-based methods using pre-trained

classification network, they re-built the encoder with

five dense blocks according to their own

combination. Finally, they built the decoder

symmetrical to the encoder. Since the number of

feature map channels increase each time through a

building block, it will be computationally expensive

for the decoder network. They did not transfer

previous feature maps to the next dense block during

up-sampling. However, we think it violates the

principle of DenseNet and causes their network

could not improve further.

GCN is the network we reference the most. It

took pre-trained ResNet as the encoder network and

used global convolutional networks to extract

classification features from the encoder network. It

is constructed by 2 pairs of 1 × k and k × 1

convolution layers with different orders where k is

an editable kernel size. To further refine the

prediction around object boundary, they added

boundary refinement blocks after each GCN block

and up-sampling layer. They set the output channels

of every blocks in the decoder network to the

number of semantic classes. Each GCN block would

learn to make a segmentation prediction under

different field-of-views.

3 METHOD

To present our method, we will introduce the

overview of our semantic segmentation network in

section 3.1. Then, in section 3.2, we will explain the

architecture details of each block in our network.

3.1 Overview

Since our network is based on the architecture of

GCN (Peng et al., 2017), we take architecture figure

in their paper as reference to draw the overview of

our network in Figure 1. In Figure 1(a), we show the

overview of our network architecture. The leftmost

column is a DenseNet (Huang et al., 2017) without

the classification layer. It is our encoder network.

The rest of the blocks construct our decoder

network. Each output feature map of a “dense block”

(DB) is transferred through a “global convolution”

(GC) block and a “boundary refinement” (BR)

block. Then the feature map with lower resolution is

up-sampled by a “transposed convolution layer”

(TC) and concatenated (Concat.) with the higher

resolution one. After a sequence of up-sampling, the

last feature map is passed to the final BR block.

Semantic Segmentation via Global Convolutional Network and Concatenated Feature Maps

293

Figure 1: Architecture of our network. (a) Overview of the whole network. (b) Global convolution block architecture. (c)

Boundary refinement block architecture.

It abandons the previous feature maps and generates

a score map with 11 channels corresponding to 11

semantic classes in the CamVid dataset (Brostow et

al., 2008). Finally, the prediction of each pixel label

is determined to be the class with the highest score.

3.2 Architecture Details

Unlike ResNet down-sampling the feature maps at

the first convolution layer in each ResNet block,

DenseNet implements it at the transition layers. We

replace the ResNet in GCN with DenseNet and skip

connect the output feature maps of each dense block

to our global convolution block before transition

layers.

Our main modification of the decoder network in

GCN is switching every identity mapping operation

to a concatenation operation. To make each block

act more like a building block for DenseNet, we add

the batch normalization (Ioffe et al., 2015) and

ReLU (Nair et al., 2010) before of global

convolution blocks and the convolution layers in

boundary refinement blocks. Since there always has

a batch normalization after the convolution layer, we

remove the bias operation in every convolution

layers.

As for up-sampling layer, we use transposed

convolution (Noh et al., 2010) with 3×3 kernel and

stride 2. Due to concatenation operations, the

number of feature map channel will not remain the

same like GCN does. Thus we remove the

concatenation in the last boundary refinement block.

It only outputs the new feature map with channel

equals to the number of semantic classes.

4 EXPERIMENTAL RESULTS

In this section, we will first introduce the training

details of our network in section 4.1. Then, we

conduct several experiments with different network

settings in section 4.2 to find the best result of our

network. Finally, we compare our best setting

network with other networks in section 4.3.

We use “mean intersection of union” (mIoU) to

measure the performance. The mIoU of every

semantic classes “𝐶𝑙𝑎𝑠𝑠” are computed by:

𝑚𝐼𝑜𝑈 =
1

‖𝐶𝑙𝑎𝑠𝑠‖
∑

𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐+𝐹𝑁𝑐
𝑐∈𝐶𝑙𝑎𝑠𝑠 , (1)

where 𝑇𝑃𝑐 , 𝐹𝑃𝑐 , and 𝐹𝑁𝑐 denotes the number of

pixels belong to “true positive”, “false positive”, and

“false negative” of the prediction on class “ 𝑐 ”.

Therefore, the score value will be always between

0%~100%, and the higher is the better.

4.1 Training Details

We use PyTorch (Paszke et al., 2017) to implement

our network models. We evaluate our network

performance on CamVid (Brostow et al., 2008)

dataset. It is a 360×480 urban scene video frame

ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods

294

dataset which consists of 367 frames for training,

101 frames for validation, and 233 frames for

testing. Each frame is fully labelled with 11

semantic classes and a void class.

We add dropout layers with 0.2 dropping rate

after each block in the decoder network and the

building blocks in the DenseNet. All models are

trained on data augmented with random horizontal

flips and normalization on RGB channels.

We initialize our models using HeUniform (He

et al., 2015) and train them using Adam (Kingma et

al., 2014) with 175 epochs and a batch size of 4. We

set the initial learning rate of 10-4 and multiply it by

0.4 at epoch 125 and 150. Finally, we regularize our

model with a weight decay of 10-4. All of our

network trainings run on a Nvidia GTX 1080 GPU

with 8GB memory.

4.2 Finding the Best Setting

Since DenseNet (Huang et al., 2017) has different

depth version pre-trained on ImageNet (Deng et al.,

2009), we want to find the best suit version for our

network. We use the same size of global convolution

kernel (k=7) to train our network with different

DenseNet depth in Table 1. The results show that

DesneNet-121 is the best choice for our network on

CamVid dataset. We believe it is because that

CamVid is a dataset much smaller than ImageNet

comparing to the number of classes and data. It does

not need that many parameters to solve the problem.

Then we need to find the best kernel size of

global convolution kernel. Based on the above

experiment, we use DesneNet-121 and transposed

convolution to build our network with different

global convolution kernel size k in Table 2. In

contrast to Peng et al. finding k =15 is the best size

on Pascal-VOC 2012 (Everingham et al., 2010), we

get the best result at k = 7 on CamVid instead. We

think the reason is that CamVid dataset does not

contain any object with the full image size like

Pascal-VOC 2012.

Table 1: Comparison of DenseNet depth on CamVid

testing dataset.

 Depth = 121 Depth = 169 Depth = 201

mIoU (%) 69.34 69.03 69.14

Table 2: Comparison of global convolution kernel size on

CamVid testing dataset.

 k = 3 k = 7 k = 11 k = 15

mIoU (%) 68.87 69.34 68.61 67.77

Table 3: Comparison of GCN and our network.

 GCN-ResNet GCN- DenseNet ours

mIoU (%) 64.15 64.69 69.34

Figure 2: Computational efficiency for GCN-ResNet, FC-

DenseNet, and ours.

Hence we do not need a kernel with the full size of

the final output feature map of encoder network.

4.3 Comparing to Other Networks

Since (Peng et al., 2017) only evaluate GCN on

Pascal-VOC 2012 (Everingham et al., 2010) and

Cityscapes (Cordts, 2016), we have to implement the

network and evaluate it on CamVid (Brostow et al.,

2008) by ourselves. Additionally, we hope to

distinguish our contribution of modifying the

decoder network from simply replacing the ResNet

with the DenseNet. Therefore, we also build a

DenseNet version of GCN, which only switch the

encoder network without doing any modification on

the decoder network. We denote this model as GCN-

DenseNet and compare these two versions of GCN

to our network in Table 3. All the networks uses

7×7 global convolution kernels. The results show

that DenseNet really is better than ResNet in

semantic segmentation task. However, the difference

is not that obvious. On the contrary, our

modification of the decoder network does contribute

most of the improvement because we use

concatenation to provide more flexibility for the

feature combination.

Since DenseNet use much fewer parameters than

ResNet, we will not just compare the computational

efficiency to GCN-ResNet. We also compare our

network with FC-DenseNet. In Figure 2, we

compare the number of training parameters, training

time of each epoch, and the consumption of GPU

memory on GCN-ResNet, FC-DenseNet, and our

network. All the networks are trained with batch size

of 4. Unlike GCN-ResNet, ours is trained with full

size images, while FC-DenseNet is only trained with

58.77

40 4497
9.32 40

5961

8.21

49 5731

Parameters

(Milion)

Training Time

(Sec/Epoch)

GPU Memory

(MB)

GCN-ResNet FC-DenseNet (224 x 224) Ours

Semantic Segmentation via Global Convolutional Network and Concatenated Feature Maps

295

Table 4: Comparison of our and other networks in each class IoU (%).

Model

#
 p

ar
am

et
er

s
(M

)

S
k

y

B
u

il
d

in
g

P
o

le

R
o

ad

S
id

ew
al

k

T
re

e

S
ig

n

F
en

ce

C
ar

P
ed

es
tr

ia
n

C
y

cl
is

t

m
Io

U
 (

%
)

P
ix

el
 A

cc
u

ra
cy

 (
%

)

FC-DenseNet 9.32 90.92 81.93 35.34 95.22 83.60 75.56 43.32 36.93 80.51 57.20 45.15 65.97 91.27

GCN-ResNet 58.77 91.56 82.70 26.45 93.76 78.95 76.11 40.08 36.67 82.79 50.15 46.39 64.15 90.96

GCN-DenseNet 7.42 91.50 83.61 30.46 94.93 84.04 76.09 37.66 39.98 78.12 51.36 43.79 64.69 91.53

GC-DenseNet 8.21 92.32 84.71 35.91 94.69 82.15 77.06 46.69 46.22 84.86 56.15 61.94 69.34 92.14

(a) Input (b) Ground Truth (c) GCN-ResNet (d) FC-DenseNet (e) Our method

Figure 3: Comparison of our method and other methods.

224×224 random cropped patches.

Although GCN-ResNet uses much more

parameters, it takes less GPU memory and trains

faster than our network, because FC-DenseNet and

our network use more channels of the feature maps

in the decoder network. As for FC-DenseNet, it uses

slightly more parameters and memory than ours. The

only downside of our network is it trains slower than

other networks, because it has more channels in the

decoded feature maps with higher resolution. In

Figure 3, we show our results is better than GCN-

ResNet and) FC-DenseNet in detail such as the

sign pole in the image.

In Table 3, we show each semantic class IoU

separately and mIoU of each network. We also

compute the pixel accuracy to see how many pixels

are predicted correctly. Despite GCN-DenseNet is

our experimental network, our GC-DenseNet use the

least number of parameters and achieve the highest

mIoU score. Our network brings improvement on

almost every classes, especially those classes with

low mIoU score.

5 CONCLUSION

In this paper, we propose a semantic segmentation

CNN that modifies the GCN-ResNet (Peng et al.,

2017) with concatenation architecture introduced in

DenseNet. Although our network takes more GPU

memory comparing to GCN-ResNet, it uses fewer

parameters and achieves the mIoU score higher than

GCN-ResNet and FC-DenseNet in CamVid dataset.

In contrast to DenseNet-264 obtaining a

classification accuracy close to the ResNet-152, we

ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods

296

simply use DenseNet-121 in GCN-DenseNet to

achieve the mIoU score better than GCN-ResNet,

which use ResNet-152 as the encoder network. It

shows that concatenation architecture is more

suitable than identity mapping architecture for

semantic segmentation.

REFERENCES

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012.

ImageNet classification with deep convolutional

neural networks. In Conference on Neural Information

Processing Systems, pp. 1097-1105.

Simonyan, K., Zisserman, A., 2014. Very deep

convolutional networks for large-scale image

recognition. In arXiv preprint arXiv: 1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich,

A., 2015. Going deeper with convolutions. In IEEE

Conference on Computer Vision and Pattern

Recognition, pp. 1-9.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual

learning for image recognition. In IEEE Conference on

Computer Vision and Pattern Recognition, pp. 770-

778.

Huang, G., Liu, Z., Maaten, L. van der, Weinberger, K.

Q., 2017. Densely connected convolutional networks.

In IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2261-2269.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Li, F. F.,

2009. ImageNet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision

and Pattern Recognition, pp. 248-255.

Lin, T. Y., Maire, M., Belongie, S., Bourdev, L., Girshick,

R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L.,

Dollár, P., 2014. Microsoft COCO: Common objects

in context. In European Conference on Computer

Vision, pp. 740-755.

Krizhevsky, A., Hinton, G. E., 2009. Learning multiple

layers of features from tiny images. In Tech Report,

University of Toronto.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully

convolutional networks for semantic segmentation. In

IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3431-3440.

Lin, G, Milan, A., Shen, C., Reid, I., 2017. RefineNet:

Multi-path refinement networks for high-resolution

semantic segmentation. In IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5168-

5177.

Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J., 2017. Large

kernel matters -- Improve semantic segmentation by

global convolutional network. In IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1743-

1751.

Jégou, S., Drozdzal, M., Vazquez, D., Romero, A.,

Bengio, Y., 2017. The one hundred layers tiramisu:

Fully convolutional DenseNets for semantic

segmentation. In IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1175-1183.

Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J.,

Zisserman, A., 2010. The PASCAL visual object

classes (VOC) challenge. In International journal of

computer vision, pp. 303-338.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T.,

Enzweiler, M., Benenson, R., Franke, U., Roth, S.,

Schiele, B., 2016. The cityscapes dataset for semantic

urban scene understanding. In IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3213-

3223.

Brostow, G. J., Shotton, J., Fauqueur, J., Cipolla, R., 2008.

Segmentation and recognition using structure from

motion point clouds. In European Conference on

Computer Vision, pp. 44-57.

Chen, L. C., Yang, Y., Wang, J., Xu, W., Yuille, A. L.,

2016. Attention to scale: Scale-aware semantic image

segmentation. In IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3640-3649.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K.,

Yuille, A. L., 2018. DeepLab: Semantic image

segmentation with deep convolutional nets, atrous

convolution, and fully connected CRFs. In IEEE

Transactions on Pattern Analysis and Machine

Intelligence, pp. 834-848.

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid

scene parsing network. In IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2881-

2891.

Ioffe, S., Szegedy, C., 2015. Batch normalization:

Accelerating deep network training by reducing

internal covariate shift. In International Conference on

Machine Learning, pp. 448-456.

Nair, V., Hinton, G. E., 2010. Rectified linear units

improve restricted boltzmann machines. In

International Conference on Machine Learning, pp.

807-814.

Noh, H., Hong, S., Han, B., 2015. Learning deconvolution

network for semantic segmentation. In Proceedings of

the IEEE International Conference on Computer

Vision, pp. 1520-1528.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,

DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer,

A., 2017. Automatic differentiation in PyTorch.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep

into rectifiers: Surpassing human-level performance

on ImageNet classification. In Proceedings of the

IEEE International Conference on Computer Vision,

pp. 1026-1034.

Kingma, D. P., Ba, J. L., 2014. Adam: A method for

stochastic optimization. In arXiv preprint

arXiv:1412.6980.

Semantic Segmentation via Global Convolutional Network and Concatenated Feature Maps

297

