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Abstract: Most of the segmentation CNNs (convolutional neural network)   based on the ResNet. Recently, Huang et 

al. introduced a new classification CNN called DenseNet. Then Jégou et al. used a sequence of building 

blocks for DenseNet to build their semantic segmentation CNN, called FC-DenseNet, and achieved state-of-

the-art results on CamVid dataset. In this paper, we implement the design concept of DenseNet into a 

ResNet-based semantic segmentation CNN called Global Convolutional Network (GCN) and build our own 

network by switching every identity mapping operation of the decoder network in GCN to a concatenation 

operation. Our network uses less computational resources than FC-DenseNet to obtain a mean IoU score of 

69.34% on CamVid dataset, and surpass the 66.9% obtained in the paper of FC-DenseNet. 

1 INTRODUCTION 

Semantic segmentation is a challenging computer 

vision problem of assigning semantic labels (e.g., 

car, person, etc.) to each pixel in the given image. It 

is a crucial step towards scene understanding. It 

improves image classification to pixel-wise level 

and could further be enhanced to instance 

segmentation which distinguishes different instances 

from the same semantic class. A good semantic 

segmentation technique could be useful in a lot of 

applications such as self-driving or other 

environmental monitoring products. 

In recent years, convolutional neural network 

(CNN) has driven significant progression in image 

classification. Networks like (Krizhevsky et al., 

2012; Simonyan et al., 2014; Szegedy et al., 2015; 

He et al., 2016; Huang et al., 2017) broke the 

records of many challenging benchmarks (Deng et 

al., 2009; Lin et al., 2014; Krizhevsky et al., 2009) 

one after another. Fully convolutional network 

(FCN) (Long et al., 2015) introduced the concept of 

fully convolution for replacing fully connected 

layers in the last part of the classification networks 

(Krizhevsky et al., 2012; Simonyan et al., 2014; 

Szegedy et al., 2015). It enables these networks to 

make semantic segmentation prediction under down-

sampled resolution. For up-sampling the prediction 

back to original resolution, they took these 

classification networks as a feature encoder network 

and used the skip connection to restore the spatial 

information from the feature maps in the middle 

layers of the encoder network. This skip architecture 

design achieved a state-of-the-art result and proved 

that the pre-trained classification networks could be 

extended to semantic segmentation networks. 

After FCN, more and more semantic 

segmentation methods (Lin et al., 2017; Peng et al., 

2017; Jégou et al., 2017) used this skip architecture 

to design their own decoder networks  for up-

sampling the feature maps of classification 

networks. One of the methods, (Peng et al., 2015), 

suggested that there still have some differences 

between the principles of doing classification and 

segmentation. For example, classification should be 

invariant to various image transformations, but 

segmentation has to be sensitive to this spatial 

information. They believed that network not only 

needs to use fully convolution and remove global 

pooling to retain the localization information but 

also has to use large convolution kernels to enhance 

the capability to handle different transformations. 

Following this principle, they proposed a decoder 

network called Global Convolutional Network 

(GCN) and achieved state-of-the-art results on 

Cityscapes (Cordts et al., 2016) and Pascal-VOC 
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2012 (Everingham et al., 2010) datasets by using 

ResNet (He et al., 2016) as thier encoder network. 

In 2017, Huang et al. introduced a new 

classification CNN called DenseNet where the input 

of each building block is an iterative concatenation 

of previous feature maps. It is similar to ResNet 

which using summation through identity mapping, 

but according to (Jégou et al., 2017), this small 

modification brings lots of positive effects to the 

network, including: (1) parameter efficiency, (2) 

implicit deep supervision, and (3) feature reusing. 

They used the building block of DenseNet to build 

both the encoder network and the decoder network 

with skip connections and named their network as 

FC-DenseNet, where FC stands for fully 

convolution. It used significantly fewer parameters 

to achieve state-of-the-art results on CamVid 

(Brostow et al., 2008) dataset without pre-training 

on any dataset. 

Despite the success of FC-DenseNet, we still 

agree with Peng et al. that there exist additional 

requirements on architecture for doing segmentation 

task. We should design the decoder network based 

on the principles of both DenseNet and GCN. In this 

paper, we focus on utilizing the concatenation 

operation to every blocks in the decoder architecture 

of GCN. Therefore, we can take the advantage of 

DenseNet and keep the same segmentation process 

of GCN at the same time. We take reference to FC-

DenseNet and name our network as GC-DenseNet. 

2 RELATED WORK 

Since the size of an object in an image could be 

various, semantic segmentation CNNs require 

various field-of-views to recognize the objects. An 

intuitive way is using multi-input to generate multi-

scale features. For example, (Chen et al., 2016) used 

an attention model to decide which scale features are 

more useful at each location. Another way is using 

multi-path architecture to generate multi-scale 

features. DeepLab (Chen et al., 2018) introduced an 

“atrous spatial pyramid pooling” (ASPP) 

architecture that use dilation convolutions with 

different rates to create multi-scale features. As 

comparison, PSPNet (Zhao et al., 2017) used a 

similar architecture simply through different sizes of 

pooling. 

Another kind of methods is FCN-based networks 

such as FC-DenseNet (Jégou et al., 2017) and GCN 

(Peng et al., 2017), which reused the feature maps in 

the encoder network to obtain multi-scale field-of-

views. FC-DenseNet tried to implement dense block 

(Huang et al., 2017) in their decoder network. 

Unlike other FCN-based methods using pre-trained 

classification network, they re-built the encoder with 

five dense blocks according to their own 

combination. Finally, they built the decoder 

symmetrical to the encoder. Since the number of 

feature map channels increase each time through a 

building block, it will be computationally expensive 

for the decoder network. They did not transfer 

previous feature maps to the next dense block during 

up-sampling. However, we think it violates the 

principle of DenseNet and causes their network 

could not improve further. 

GCN is the network we reference the most. It 

took pre-trained ResNet as the encoder network and 

used global convolutional networks to extract 

classification features from the encoder network. It 

is constructed by 2 pairs of 1 × k  and k × 1 

convolution layers with different orders where k is 

an editable kernel size. To further refine the 

prediction around object boundary, they added 

boundary refinement blocks after each GCN block 

and up-sampling layer. They set the output channels 

of every blocks in the decoder network to the 

number of semantic classes. Each GCN block would 

learn to make a segmentation prediction under 

different field-of-views. 

3 METHOD 

To present our method, we will introduce the 

overview of our semantic segmentation network in 

section 3.1. Then, in section 3.2, we will explain the 

architecture details of each block in our network. 

3.1 Overview 

Since our network is based on the architecture of 

GCN (Peng et al., 2017), we take architecture figure 

in their paper as reference to draw the overview of 

our network in Figure 1. In Figure 1(a), we show the 

overview of our network architecture. The leftmost 

column is a DenseNet (Huang et al., 2017) without 

the classification layer. It is our encoder network. 

The rest of the blocks construct our decoder 

network. Each output feature map of a “dense block” 

(DB) is transferred through a “global convolution” 

(GC) block and a “boundary refinement” (BR) 

block. Then the feature map with lower resolution is 

up-sampled by a “transposed convolution layer” 

(TC) and concatenated (Concat.) with the higher 

resolution one. After a sequence of up-sampling, the 

last feature map is passed to the final BR block. 
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Figure 1: Architecture of our network. (a) Overview of the whole network. (b) Global convolution block architecture. (c) 

Boundary refinement block architecture. 

It abandons the previous feature maps and generates 

a score map with 11 channels corresponding to 11 

semantic classes in the CamVid dataset (Brostow et 

al., 2008). Finally, the prediction of each pixel label 

is determined to be the class with the highest score. 

3.2 Architecture Details 

Unlike ResNet down-sampling the feature maps at 

the first convolution layer in each ResNet block, 

DenseNet implements it at the transition layers.  We 

replace the ResNet in GCN with DenseNet and skip 

connect the output feature maps of each dense block 

to our global convolution block before transition 

layers. 

Our main modification of the decoder network in 

GCN is switching every identity mapping operation 

to a concatenation operation. To make each block 

act more like a building block for DenseNet, we add 

the batch normalization (Ioffe et al., 2015) and 

ReLU (Nair et al., 2010) before of global 

convolution blocks and the convolution layers in 

boundary refinement blocks. Since there always has 

a batch normalization after the convolution layer, we 

remove the bias operation in every convolution 

layers. 

As for up-sampling layer, we use transposed 

convolution (Noh et al., 2010) with 3×3 kernel and 

stride 2. Due to concatenation operations, the 

number of feature map channel will not remain the 

same like GCN does. Thus we remove the 

concatenation in the last boundary refinement block. 

It only outputs the new feature map with channel 

equals to the number of semantic classes. 

4 EXPERIMENTAL RESULTS 

In this section, we will first introduce the training 

details of our network in section 4.1. Then, we 

conduct several experiments with different network 

settings in section 4.2 to find the best result of our 

network. Finally, we compare our best setting 

network with other networks in section 4.3. 

We use “mean intersection of union” (mIoU) to 

measure the performance. The mIoU of every 

semantic classes “𝐶𝑙𝑎𝑠𝑠” are computed by: 

𝑚𝐼𝑜𝑈 =
1

‖𝐶𝑙𝑎𝑠𝑠‖
∑

𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐+𝐹𝑁𝑐
𝑐∈𝐶𝑙𝑎𝑠𝑠 , (1) 

where 𝑇𝑃𝑐 , 𝐹𝑃𝑐 , and 𝐹𝑁𝑐  denotes the number of 

pixels belong to “true positive”, “false positive”, and 

“false negative” of the prediction on class “ 𝑐 ”. 

Therefore, the score value will be always between 

0%~100%, and the higher is the better. 

4.1 Training Details 

We use PyTorch (Paszke et al., 2017) to implement 

our network models. We evaluate our network 

performance on CamVid (Brostow et al., 2008) 

dataset. It is a 360×480 urban scene video frame 
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dataset which consists of 367 frames for training, 

101 frames for validation, and 233 frames for 

testing. Each frame is fully labelled with 11 

semantic classes and a void class. 

We add dropout layers with 0.2 dropping rate 

after each block in the decoder network and the 

building blocks in the DenseNet. All models are 

trained on data augmented with random horizontal 

flips and normalization on RGB channels. 

We initialize our models using HeUniform (He 

et al., 2015) and train them using Adam (Kingma et 

al., 2014) with 175 epochs and  a batch size of 4. We 

set the initial learning rate of 10-4 and multiply it by 

0.4 at epoch 125 and 150. Finally, we regularize our 

model with a weight decay of 10-4. All of our 

network trainings run on a Nvidia GTX 1080 GPU 

with 8GB memory. 

4.2 Finding the Best Setting 

Since DenseNet (Huang et al., 2017) has different 

depth version pre-trained on ImageNet (Deng et al., 

2009), we want to find the best suit version for our 

network. We use the same size of global convolution 

kernel (k=7) to train our network with different 

DenseNet depth in Table 1. The results show that 

DesneNet-121 is the best choice for our network on 

CamVid dataset. We believe it is because that 

CamVid is a dataset much smaller than ImageNet 

comparing to the number of classes and data. It does 

not need that many parameters to solve the problem. 

Then we need to find the best kernel size of 

global convolution kernel. Based on the above 

experiment, we use DesneNet-121 and transposed 

convolution to build our network with different 

global convolution kernel size k in Table 2. In 

contrast to Peng et al. finding k =15 is the best size 

on Pascal-VOC 2012 (Everingham et al., 2010), we 

get the best result at k = 7 on CamVid instead. We 

think the reason is that CamVid dataset does not 

contain any object with the full image size like 

Pascal-VOC 2012. 

Table 1: Comparison of DenseNet depth on CamVid 

testing dataset. 

 Depth = 121 Depth = 169 Depth = 201 

mIoU (%) 69.34 69.03 69.14 

Table 2: Comparison of global convolution kernel size on 

CamVid testing dataset. 

 k = 3  k = 7 k = 11 k = 15 

mIoU (%) 68.87 69.34 68.61 67.77 

 

Table 3: Comparison of GCN and our network. 

 GCN-ResNet GCN- DenseNet ours 

mIoU (%) 64.15 64.69 69.34 

 
Figure 2: Computational efficiency for GCN-ResNet, FC-

DenseNet, and ours. 

Hence we do not need a kernel with the full size of 

the final output feature map of encoder network. 

4.3 Comparing to Other Networks 

Since (Peng et al., 2017) only evaluate GCN on 

Pascal-VOC 2012 (Everingham et al., 2010) and 

Cityscapes (Cordts, 2016), we have to implement the 

network and evaluate it on CamVid (Brostow et al., 

2008) by ourselves. Additionally, we hope to 

distinguish our contribution of modifying the 

decoder network from simply replacing the ResNet 

with the DenseNet. Therefore, we also build a 

DenseNet version of GCN, which only switch the 

encoder network without doing any modification on 

the decoder network. We denote this model as GCN-

DenseNet and compare these two versions of GCN 

to our network in Table 3. All the networks uses 

7×7 global convolution kernels. The results show 

that DenseNet really is better than ResNet in 

semantic segmentation task. However, the difference 

is not that obvious. On the contrary, our 

modification of the decoder network does contribute 

most of the improvement because we use 

concatenation to provide more flexibility for the 

feature combination. 

Since DenseNet use much fewer parameters than 

ResNet, we will not just compare the computational 

efficiency to GCN-ResNet. We also compare our 

network with FC-DenseNet. In Figure 2, we 

compare the number of training parameters, training 

time of each epoch, and the consumption of GPU 

memory on GCN-ResNet, FC-DenseNet, and our 

network. All the networks are trained with batch size 

of 4. Unlike GCN-ResNet, ours is trained with full 

size images, while FC-DenseNet is only trained with

58.77

40 4497
9.32 40

5961

8.21

49 5731

# Parameters

(Milion)

Training Time

(Sec/Epoch)

GPU Memory

(MB)

GCN-ResNet FC-DenseNet (224 x 224) Ours

Semantic Segmentation via Global Convolutional Network and Concatenated Feature Maps

295



Table 4: Comparison of our and other networks in each class IoU (%). 
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FC-DenseNet 9.32 90.92 81.93 35.34 95.22 83.60 75.56 43.32 36.93 80.51 57.20 45.15 65.97 91.27 

GCN-ResNet 58.77 91.56 82.70 26.45 93.76 78.95 76.11 40.08 36.67 82.79 50.15 46.39 64.15 90.96 

GCN-DenseNet 7.42 91.50 83.61 30.46 94.93 84.04 76.09 37.66 39.98 78.12 51.36 43.79 64.69 91.53 

GC-DenseNet 8.21 92.32 84.71 35.91 94.69 82.15 77.06 46.69 46.22 84.86 56.15 61.94 69.34 92.14 

 

     

     

     
(a) Input (b) Ground Truth (c) GCN-ResNet (d) FC-DenseNet (e) Our method 

Figure 3: Comparison of our method and other methods.

224×224 random cropped patches. 

Although GCN-ResNet uses much more 

parameters, it takes less GPU memory and trains 

faster than our network, because FC-DenseNet and 

our network use more channels of the feature maps 

in the decoder network. As for FC-DenseNet, it uses 

slightly more parameters and memory than ours. The 

only downside of our network is it trains slower than 

other networks, because it has more channels in the 

decoded feature maps with higher resolution. In 

Figure 3, we show our results is better than GCN-

ResNet  and ) FC-DenseNet in detail such as the 

sign pole in the image. 

In Table 3, we show each semantic class IoU 

separately and mIoU of each network. We also 

compute the pixel accuracy to see how many pixels 

are predicted correctly. Despite GCN-DenseNet is 

our experimental network, our GC-DenseNet use the 

least number of parameters and achieve the highest 

mIoU score. Our network brings improvement on 

almost every classes, especially those classes with 

low mIoU score. 

5 CONCLUSION 

In this paper, we propose a semantic segmentation 

CNN that modifies the GCN-ResNet (Peng et al., 

2017) with concatenation architecture introduced in 

DenseNet. Although our network takes more GPU 

memory comparing to GCN-ResNet, it uses fewer 

parameters and achieves the mIoU score higher than 

GCN-ResNet and FC-DenseNet in CamVid dataset. 

In contrast to DenseNet-264 obtaining a 

classification accuracy close to the ResNet-152, we 
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simply use DenseNet-121 in GCN-DenseNet to 

achieve the mIoU score better than GCN-ResNet, 

which use ResNet-152 as the encoder network. It 

shows that concatenation architecture is more 

suitable than identity mapping architecture for 

semantic segmentation. 
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