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Abstract: mDBSCAN is an improved version of DBSCAN (Density Based Spatial Clustering of Applications with 

Noise) superpixel segmentation. Unlike DBSCAN algorithm, the proposed algorithm has an automatic 

threshold based on the colour and gradient information. The proposed algorithm performs under different 

colour space such as RGB, Lab and grey images using a novel distance measurement. The experimental results 

demonstrate that the proposed algorithm outperforms the state of the art algorithms in terms of boundary 

adherence and segmentation accuracy with low computational cost (30 frames/s). 

1 INTRODUCTION 

In these days, superpixels have a great interest in the 

field of computer vision and image processing. They 

have been widely applied in image segmentation 

(Saito et al., 2017) (Lei, 2017) (Zhang et al., 2018), 

3D reconstruction (Concha and Civera, 2014) (Kucas 

and Margarita, 2017), scene flow (Vogel et al., 2013) 

and object tracking (Chan et al., 2015). A superpixel 

is a set of pixels that share the same features, for 

example, color information, texture features, and 

others. Superpixel algorithms are performed as a pre-

processing step in many computer vision applications 

in order to reduce the computational time of 

subsequent processing without affecting the 

performance of the entire system. Therefore, fast 

computation superpixel algorithms that provide high 

boundary adherence and segmentation accuracy are 

preferred. 

Many superpixel algorithms have been introduced 

such as Simple Linear Iterative Clustering (SLIC) 

(Achanta et al., 2012), Entropy Rate Superpixel 

Segmentation (ERS) (Liu et al., 2011)), Superpixels  

Extracted via Energy-Driven Sampling (SEEDS) 

(Van et al., 2012), and DBSCAN (Shen et al., 2016). 

 Different approaches have been followed to 

generate superpixels, for example, SLIC deals with 

superpixels as an iterative clustering problem. On the 

other hand, SEEDS considers the superpixels as an 

energy maximization problem, which achieved a 

good boundary adherence. Our approach deals with 

superpixels as a non-iterative clustering problem. 

Moreover, it presents precisely the boundary 

adherence by defining a novel simple distance 

measurement that considers the boundary 

information as well as the color and spatial 

information between the superpixel and its neighbors. 

All of the approaches are aiming to fulfill the 

requirements of superpixels by having regular, 

compact and connected superpixels with high 

boundary adherence and low computational 

complexity.  

Fig. 1 shows the superpixel results of the modified  

DBSCAN algorithm (mDBSCAN) that have compact 

and regular shapes, which precisely represent the 

image boundaries as described in section 4.5. 

Recently, DBSCAN clustering algorithm (Martin et 

al., 1996) has been used to generate the superpixels. 

DBSCAN superpixel algorithm achieved the state of 

the art algorithms at a substantially smaller 

computation cost even for complex images. However, 

the DBSCAN algorithm suffers from few limitations  

such as it needs to be trained in order to select the 

values that describe the relation between the color and 

spatial information and to select the suitable threshold 

value for the distance measurement. Furthermore, it 

works only with RGB images. Thus, it deals with 

color and spatial information, which do not perfectly 

describe the boundary information.  

Therefore, in this paper, we present a modified  

version of the DBSCAN algorithm to overcome its 

limitations as described above. The proposed 

algorithm is used with introducing a novel distance 
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measurement that enforces the connectivity and 

regularity of the superpixels, which can handle gray 

images as well as color images independently from 

the color space. In addition, instead of training the 

algorithm, our approach uses an automatic threshold 

value based on color and edge information. The 

proposed algorithm performs a local clustering of 

pixels in 6D space for color images defined by three 

color information values, one for contour information  

and two values for spatial information and 4D space 

for grey images defined by one color information  

value, one for contour information and two values for 

spatial information. mDBSCAN with low losing 

meaningful image edges and low computation cost, 

will be utilized as pre-processing step for optical flow 

computation and moving objects tracking in a moving 

platform. 

The proposed algorithm has been tested on the 

Berkeley segmentation benchmark . The results show 

that the proposed approach outperforms the state of 

the art in terms of boundary recall, under 

segmentation error and explained variation. 

The main contributions of this paper are: 

 Real time DBSCAN clustering with an automatic 

parameter for distance measurement . 

 Novel distance measurement that works 

independently from the color space such as RGB, 

Lab and gray images and at the same time 

improves the segmentation quality and boundary 
adherence. 

   

Figure 1: Image segmentation using mDBSCAN algorithm. 

The number of superpixels are 250, 500 and 1000, 

respectively. 

2 RELATED WORK 

In this section, we briefly revisit the DBSCAN 

algorithm (Shen et al., 2016) and other important 

superpixel algorithms. The superpixel algorithms are 

divided into two categories: graph based algorithms 

and clustering based algorithms. 

 

2.1 Graph based Algorithms  

Graph based approaches describe the image as 

undirected graph consisting of vertex set and edge 

weights. The vertex set represents the pixels in the 

image where the edge weights define the similarities  

between the neighboring pixels. 

Recently, Liu et al. have proposed a graph based 

algorithm .The entropy rate superpixel algorithm 

(ERS) deals with superpixels as a maximizat ion  

problem. The superpixels are generated by 

maximizing the entropy rate of a random walk. 

According to the superpixel benchmark (Stutz et al., 

2016), ERS algorithm is one of the top performance 

superpixel algorithms. It has three input parameters; 

the balancing term, kernel bandwidth and the number 

of superpixel. The main shortcoming of ERS 

algorithm is the computation cost. As results, it needs 

around 2.5 seconds to generate the superpixels for one 

image which not suitable for real time applications. 

2.2 Clustering based Algorithms 

One of the clustering based approaches is SLIC 

algorithm. In SLIC algorithm (Achanta et al., 2012), 

the superpixels are generated based on a gradient 

ascent principle. Firstly, initial seeds are defined 

using a regular grid. After that, an iterative process is 

performed to obtain better segmentation 

performance. During each iteration, the seeds are 

refined from the previous iteration based on the 

gradient information. Because of its simplicity, low 

computation cost and good boundary adherence, 

SLIC becomes the most famous superpixel algorithm. 

However, it has a few disadvantages. It uses an 

iterative process, which increases the computation 

cost. Moreover, SLIC needs a post-processing step to 

enforce the connectivity (Stutz et al., 2016) (Achanta 

and Süsstrunk, 2017). 

On the other hand, SEEDS algorithm (Van et al., 

2012) generates the superpixels by optimizing an 

energy function. Each superpixel is defined as a 

region with color and shape boundary information . 

Using a simple hill climbing optimization , 

superpixels are refined by updating the boundaries of 

the superpixels. Although the SEEDS algorithm has  a 

high performance in terms of boundary adherence and 

computation cost, six parameters have to be defined 

(Liu et al., 2011).  

2.3 DBSCAN Clustering Algorithm 

DBSCAN clustering algorithm (Shen et al., 2016) is 

a clustering based approach for image superpixels 
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segmentation by applying the density based spatial 

clustering of applications with noise (DBSCAN) 

algorithm. DBSCAN performs a two-steps 

framework using RGB color information and spatial 

information. The first step is the clustering step. In 

this step, the initial superpixels are generated based 

on the color information of two adjacent pixels (n, m) 

using a geometric condition such that the maximu m 

number of pixels in each superpixel does not exceed 

a certain value as given in (2). Subsequently, the 

initial superpixels are merged to form the final 

superpixels through a distance measurement of both 

color and spatial information of the superpixels seeds 

as described in (3). DBSCAN has only one parameter 

– the number of required superpixels. The authors of 

the DBSCAN algorithm show that their algorithm 

outperforms the state of the art and achieves the real 

time capability. 

ds
m,n = √(Rm − Rn )2 + (Gm − Gn )2 + (Bm − Bn)2     (1) 

 D1 = α1ds
i,j + α2ds

i,Seed 

               φ ,α1, α2 and φ are constant values        
(2) 

Dseed i,seed j
2

= ds
𝑖,𝑗 + α3√(xi − x j)

2 + (y i − y  j)
2        

(3) 

           Despite it has a good performance, DBSCAN 

suffers from certain shortcomings. It needs to be 

trained in order to select suitable parameters from (2) 

and (3). The output number of superpixel per image 

varies from the required number of superpixel. Lastly, 

it works only under RGB images. 

3 mDBSCAN ALGORITHM 

Like DBSCAN, the pixels are classified into three 

categories as seed, root and unlabeled sets. The top 

left pixel is assigned as the first seed and root. For 

each pixel in the root set, four or eight neighboring 

pixels are found, then the distance between the 

unlabeled pixel and both the seed pixel and root pixel 

is calculated. If the unlabeled pixel satisfies the 

distance measurement, it assigns the same label as the 

seed pixel and considers as the next root. The process 

is repeated until the termination condition such as the 

searching area is satisfied. In this section, the 

proposed algorithm will be described. 

3.1 Contour Map  

Representation of the objects boundaries in an image 

is an essential property of the superpixel algorithm, as 

they will be used as a pre-processing step for objects 

segmentation and tracking. Therefore, the contour 

map is introduced in the proposed algorithm. Given  

an image I, the contour map is computed based on the 

vector filed method with Sobel filter (Shinohara et al., 

1993). Firstly, the derivatives of an image are 

determined, and then the maximum eigenvalues of 

the Jacobian matrix J as described in (4) is computed. 

The gradient value of a pixel x is computed based on 

a w x w sized window around it. In this paper, w has 

a value of three. The advantage of this method that no 

threshold value is required and it works under all 

types of color spaces. Fig. (2) shows the contour map 

of an input image. 

𝐽𝐼 =  [
𝜕𝑥 𝑅 𝜕𝑥 𝐺 𝜕𝑥 𝐵
𝜕𝑦𝑅 𝜕𝑦𝐺 𝜕𝑦𝐵

]   (4) 

  

Figure 2: The contour map using the vector filed method. 

3.2 Novel Distance Measurement 

As explained before, the relation between an 

unlabeled pixel and its seed and root is described by 

a distance of color, gradient and spatial information . 

The distance combines three terms i.e., normalized  

spatial information, gradient information, and 

weighted color information.  

Ds = wsp × (1 + ‖Gi − Gk‖) × (dcolour
i,k + d

colour

j,k
×

dxy
j ,k

S
)  (5) 

dcolour
m,n = √ ∑ (Ik (m) − Ik (n))2

colour channels

k=1

 

 

 

(6) 

dxy
m,n = √(xm − xn)2 + (ym − yn)2 (7) 

wsp = 0.5 × (1 +
dxy

i,k

S
) (8) 

Where i, j, k, and G are the seed, root, unlabeled 

pixel and the pixel gradient value from the contour 

map, respectively. The  𝑤𝑠𝑝  is the weight of the 

spatial information between the seed and unlabelled 

pixel. Assuming a square shape of a superpixel, each 

superpixel should contain N/K pixels where N is the 

total number of pixels in an image and K is the 

number of required superpixels. The size of 

superpixel should be control, therefore, the searching 

region is restricted to an area of S x S around the seed 

where S is set to be√
𝑁

𝐾
.The  𝑤𝑠𝑝  is introduced as 

another geometric constraint to control the shape of 
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the superpixel and produce compact, regular shapes. 

As given in (5), the distance measurement does not 

have any external parameters; therefore, it does not 

need to be trained like DBSCAN algorithm [18].  

3.3 Effective Threshold Value 

The main principle of DBSCAN clustering is to 

compare the computed distance value with a certain 

threshold. DBSCAN algorithm chooses manually the 

threshold value, which adapts the value to have a 

good performance. However, choosing manual 

values provides scope for error especially when the 

algorithm is used for real applications. This is an 

important parameter where any change of its value 

will affect the output of the algorithm. The proposed 

algorithm introduces an automatic threshold to 

compute the suitable threshold value for an input 

image I. The threshold E is defined as: 
E = min{max(Ii) − min(Ii)}  × C × N ×  σgradient        

                                ∀ i ∈ [i, … . , C]                                       (9) 

Where C is the number of color channels in image 

I. N describes the number of neighbors around the 
pixel (it has two values 4 or 8 neighbors). 𝜎𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 is 

the standard deviation of the contour map of the 

image as described in section 3.1. 

3.4 Superpixel Segmentation 
Algorithm 

The mDBSACN consists of two steps similar to 

DBSCAN algorithm; clustering step and noise 

removal step. In the clustering step, the seeds are 

selected in a certain order of column-by-column 

(from top to bottom and from left to right). As 

mentioned before, the top left pixel assigns the first 

seed and root. For a seed and a root, the four or eight 

neighboring pixels are obtained, then only the pixels 

that fulfill the distance measurement are selected. 

This step is repeated for each new combination of a 

seed and a root until the searching region condition is 

satisfied.  

The second step is a noise removal step. Due to the 

sensitivity of distance measurement and the noise in 

an image, small noisy pixels are generated. DBSCAN 

algorithm deals with noisy pixels indirectly as it 

generates small superpixels in the first step and then 

margining them to form the final superpixels. 

However, using this approach will affect the number 

of required superpixels as discussed in section 4.5. In 

the mDBSCAN, all noisy pixels are stored in a queue 

set. This queue set consists of a small group of pixels 

that may not belong to the final superpixel but locate 

on the searching region S x S, which will be labeled 

as the final superpixel. In addition, if the small group 

of pixels lies on the boundary between different 

superpixels, these pixels will be considered as noisy 

pixels and will be assigned a label according to the 

shortest distance between these pixels and the 

surrounding superpixels. All noisy pixels in the queue 

set will be either root pixels or unlabeled pixels. 

 

Algorithm 1: Superpixel clustering step. 

Inputs: Image I, contour map C, regular step S. 
Output: Noisy superpixel L. 

for each unlabeled pixel p in image I do 

set pixel p as a seed i; 

find 4 or 8 neighboring pixels Nset around seed i; 

for each pixel k in Nset do 
compute the distance Ds(i,k); 

if Dk
s(i,k) < E then 

set k ∈ Rset;  

set k∈ L(k); 
endif 

endfor 

for each pixel k in Rset do 
if the number of pixels in L(k) < S2 then 

find 4  neighboring pixels Nset around root j; 

for each pixel m in Nset do 

compute the distance Ds(i,j,m); 

if Ds(i,j,m) < E then 

set m ∈ L(k) & set m ∈ Rset; 

else  

set m ∈ Noiseset; 
endif 

endfor 

endif 

endfor 

endfor 
 

Algorithm 2: Noise removal step. 

Inputs: Superpixels L(P) and noisy superpixels Noiseset  
Output: Final superpixel Lf. 

for each pixel ns in Noiseset d o 
find the 8 neighboring superpixels  Nsup in L; 

for each superpixel Q in Nsup do 

compute the distance Ds(ns,Q); 

endfor 
find the minimum distance Ds; 

assign L(ns)=L(min(Ds)); 

endfor 

 

4 EXPERIMENTAL RESULTS 

In this section, the proposed algorithm is compared 

with four well-known and high performance state of 
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the art algorithms, Superpixels Extracted via Energy-

Driven Sampling (SEEDS), Entropy Rate Superpixel 

Segmentation (ERS), Simple Linear Iterative 

Clustering (SLIC) and DBSCAN clustering 

algorithm using the available online implementation  

source codes. SEEDS and ERS are considered the 

state of the art with regarding performance and SLIC 

is considered the state of the in terms of computation 

cost. All the methods are evaluated on the Berkeley  

Segmentation Dataset 500 (BSD500). This dataset 

consists of 500 images with human-labelled ground 

truth segmentation. The parameters of the methods 

SEEDS, ERS, SLIC, and DBSCAN are selected 

according to their suggestion parameters in their 

papers. 

The results are demonstrated using qualitative 

(visual) and quantitative comparison based on all 500 

images in the BSD500 dataset, whereas DBSCAN 

algorithm was evaluated based only on the testing 

datasets as it needs to be trained. The qualitative 

comparison is based on boundary adherence, 

compactness and regularity of the superpixels as 

shown in fig 5. Fig. 3 shows the results of the 

mDBSCAN based on different color space. For the 

quantitative comparison as shown in fig. 4, 

undersegmentation error (UE), boundary recall (Rec), 

achievable segmentation accuracy (ASA) and 

compactness factor (CO) are used based on the 500 

images in the Berkeley Segmentation Dataset. 

4.1 Undersegmentation Error (UE)  

The perfect case when each superpixel overlaps with 

only one object. However, sometimes the superpixel 

lies on different objects that produce a segmentation 

error. The undersegmentation error measures the 

overlap error between the superpixel (S) and the 

ground truth (G) by counting the pixels lie outside the 

ground truth objects, and then divided it by the total 

number of image pixels (N). The undersegmentation 

error is computed using Nuebart and Protzel formulae  

(Vogel et al., 2013). The lower UE value indicates 

better performance. 

UE(G,S) =
1

N
∑ ∑ min {|Sk ∩ Gi|

Sk ∩Gi≠∅Gi

, |Sk − Gi|} 
 

(10) 

 

4.2 Boundary Recall (Rec)  

The boundary recall assesses the performance and 

quality of boundary adherence. The boundary recall 

(Rec) (Martin et al., 2004) measures the percentage 

of the ground truth boundaries (G) that covered 

within three pixels of a superpixel boundary (S). The 

boundary recall is defined as: 

Rec(G, S) =
Tp (G, S)

Tp
(G,S) + FN(G, S)

 (11) 

Where TP (G, S) and FN (G, S) are the number of 

true positive boundary pixels and the number of false 

negative boundary pixels, respectively. A higher 

value is better. 

4.3 Achievable Segmentation Accuracy 
(ASA)  

The achievable segmentation accuracy computes the 

highest achievable segmentation accuracy by using 

superpixels as units. ASA is computed as the fraction 

of the number of labeled pixels that correctly overlap 

with the ground truth objects to the total number of 

image pixels (Liu et al., 2011). 

ASA(G, S) =
1

N
∑ max

Gi
{|Sk ∩ Gi

|}
Sk

 (12) 

4.4 Compactness (CO)  

The compactness is the fraction of the area of each 

superpixel S to the area of a circle that has the same 

perimeter of this superpixel. A higher value is better. 

Schick et al. have proposed a formula to compute the 

compactness as follow 

CO(S) =
1

N
∑ 

4πA(Sk)

Acircle(P(Sk
))

Sk

 
(13) 

4.5 Discussion of Results  

A high performance superpixel algorithm is the 

algorithm, which has a low undersegmentation error 

with high boundary recall. Therefore, 

undersegmentation error (UE), boundary recall (Rec), 

achievable segmentation accuracy (ASA) and the 

compactness factor (CO) are used to evaluate the 

quality of the superpixel algorithms. Fig. 4 shows the 

results of UE, Rec, ASA, and CO. With respect to UE, 

good performance algorithm should have low UE. UE 

is computed as the average value of the minimum UE 

value of each image in the dataset. As shown in fig. 

4a, the modified DBSCAN with lab color space 

outperforms the other algorithms, whereas the other 

color spaces of modified DBSCAN lie more closely 

together. The reason for that is the introduction of the 

contour information in the distance measurement, 
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which makes the edges of the superpixels overlap 

consistently with the image object boundaries. For 

Rec, as shown in fig. 4c, the modified DBSCAN with 

lab color space achieves almost the same performance 

of the SEEDS algorithm. However, the modified  

DBSCAN performs better than SEEDS algorithm in 

term of ASA. The modified DBSCAN has better 

results than DBSCAN algorithm, as DBSCAN 

algorithm generates superpixels using pre-trained 

thresholds without the contour information, which 

reduce the performance of the algorithm especially in 

weak image boundaries as shown in fig. 5. Regarding 

the compact shapes, SLIC algorithm has the most 

compact and regular shapes as shown in fig. 4d. 

However, the modified DBSCAN still generates 

compact and regular shapes of superpixels for 

different color spaces as shown in fig. 3 and fig. 5, 

because of the restricted searching area as described 

in section 2.2. 

Another important factor for evaluating the 

performance of the superpixel algorithms is the 

computational cost. We perform all experiments on a 

desktop PC with 32 GB RAM and 2.7GHz Intel Core 

i7. According to Table 1, the computational 

complexity of ERS algorithm is O(nN2logN), this 

indicates that it will spend time in generating 

superpixels. SLIC algorithm has a computational 

complexity of O(N), however, it iterates many times 

to obtain good segmentation performance and 

boundary adherence. 

Though the complexity of DBSCAN algorithm is 

O(N), it deals with noisy pixels as small superpixels 

and needs pre-trained threshold values. Our algorithm 

does not need pre-trained threshold values without an 

iterative process or merging step. According to the 

computational time, the proposed algorithm achieves 

the speed of 30fps. Thus, it is obvious that the 

proposed algorithm has the real time performance. 

Fig. 6 shows the computational time with regarding 

to the different number of superpixels. 

5 CONCLUSION  

An improved real time version of DBSCAN 

superpixel algorithm is introduced. Our mDBSCAN 

produces regular shapes of superpixels with high 

boundaries adherence in 30 fps  with a novel distance 

measurement. In addition, an automatic threshold  is 

introduced instead of using pre  trained threshold 

values. The mDBSCAN algorithm generates 

superpixels independently of the colour space. In 

future work, the proposed algorithm will be extended 

to video content for tracking objects and optical flow 

determination. 

  

  

  
Figure 3: Superpixel segmentation results of the 

mDBSCAN based on different color spaces. From top to 

bottom, the results are obtained by using gray values, RGB 
color space and lab color space. 
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Table 1: The performance results of superpixel algorithms. The number of superpixel is roughly 400. 

 SEEDS[10] ERS[9] 
SLIC[
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DBSCAN[18] mDBSCAN 

Boundaries adherence      

Undersegmentation error(UE) 0.152 0.128 0.143 0.132 0.109 

Boundary recall (Rec) 0.923 0.775 0.727 0.792 0.923 
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Computational speed      

Computational complexity O(N) O(nN2logN) O(N) O(N) O(N) 

Average time per image(seconds) 0.0506 0.8916 
0.088

2 
0.03 0.033 

 

  

(a) Undersegmenation error (b) Achievable segmentation accurracy 

  

(c) Boundary recall (d) Compactness factor 

Figure 4: Quantitative comparison of superpixel segmentation results based on BSD500 dataset. In contrast, 

undersegmentation error (lower is better), boundary recall (higher is better) and achievable segmentation accuracy (higher is 

better) present the overview of the performance. 
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Figure 5: Visual comparison of superpixel segmentation results. The average number of superpixels is roughly 300. 
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Figure 6: Computational time comparison of state of the art 

superpixel algorithms (SEEDS, ERS, SLIC, DBSCAN and 
mDBSCAN). 
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