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Abstract: The great success that deep models have achieved in the past is mainly owed to large amounts of labeled
training data. However, the acquisition of labeled data for new tasks aside from existing benchmarks is both
challenging and costly. Active learning can make the process of labeling new data more efficient by selecting
unlabeled samples which, when labeled, are expected to improve the model the most. In this paper, we
combine a novel method of active learning for object detection with an incremental learning scheme (Käding
et al., 2016b) to enable continuous exploration of new unlabeled datasets. We propose a set of uncertainty-
based active learning metrics suitable for most object detectors. Furthermore, we present an approach to
leverage class imbalances during sample selection. All methods are evaluated systematically in a continuous
exploration context on the PASCAL VOC 2012 dataset (Everingham et al., 2010).

1 INTRODUCTION

Labeled training data is highly valuable and the ba-
sic requirement of supervised learning. Active lear-
ning aims to expedite the process of acquiring new
labeled data, ordering unlabeled samples by the ex-
pected value from annotating them. In this paper, we
propose novel active learning methods for object de-
tection. Our main contributions are (i) an incremental
learning scheme for deep object detectors without ca-
tastrophic forgetting based on (Käding et al., 2016b),
(ii) active learning metrics for detection derived from
uncertainty estimates and (iii) an approach to leverage
selection imbalances for active learning.

While active learning is widely studied in classi-
fication tasks (Kovashka et al., 2016; Settles, 2009),
it has received much less attention in the domain of
deep object detection. In this work, we propose met-
hods that can be used with any object detector that
predicts a class probability distribution per object pro-
posal. Scores from individual detections are aggrega-
ted into a score for the whole image (see Fig. 1). All
methods rely on the intuition that model uncertainty
and valuable samples are likely to co-occur (Settles,
2009). Furthermore, we show how the balanced se-
lection of new samples can improve the resulting per-
formance of an incrementally learned system.

In continuous exploration application scenarios,
e.g., in camera streams, new data becomes available

over time or the distribution underlying the problem
changes itself. We simulate such an environment
using splits of the PASCAL VOC 2012 (Everingham
et al., 2010) dataset. With our proposed framework,
a deep object detection system can be trained in an
incremental manner while the proposed aggregation
schemes enable selection of valuable data for anno-
tation. In consequence, a deep object detector can
explore unknown data and adapt itself involving mi-
nimal human supervision. This combination results
in a complete system enabling continuously changing
scenarios.

1.1 Related Work

Object Detection using CNNs. An important con-
tribution to object detection based on deep learning
is R-CNN (Girshick et al., 2014). It delivers a con-
siderable improvement over previously published sli-
ding window-based approaches. R-CNN employs se-
lective search (Uijlings et al., 2013), an unsupervised
method to generate region proposals. A pre-trained
CNN performs feature extraction. Linear SVMs (one
per class) are used to score the extracted features and
a threshold is applied to filter the large number of
proposed regions. Fast R-CNN (Girshick, 2015) and
Faster R-CNN (Ren et al., 2015) offer further impro-
vements in speed and accuracy. Later on, R-CNN
is combined with feature pyramids to enable efficient
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Figure 1: Our proposed system for continuous exploration scenarios. Unlabeled images are evaluated by an deep object de-
tection method. The margins of predictions (i.e., absolute difference of highest and second-highest class score) are aggregated
to identify valuable instances by combining scores of individual detections.

multi-scale detections (Lin et al., 2017). YOLO (Red-
mon et al., 2016) is a more recent deep learning-based
object detector. Instead of using a CNN as a black box
feature extractor, it is trained in an end-to-end fashion.
All detections are inferred in a single pass (hence the
name “You Only Look Once”) while detection and
classification are capable of independent operation.
YOLOv2 (Redmon and Farhadi, 2017) and YOLOv3
(Redmon and Farhadi, 2018) improve upon the ori-
ginal YOLO in several aspects. These include among
others different network architectures, different priors
for bounding boxes and considering multiple scales
during training and detection. SSD (Liu et al., 2016)
is a single-pass approach comparable to YOLO intro-
ducing improvements like assumptions about the as-
pect ratio distribution of bounding boxes as well as
predictions on different scales. As a result of a series
of improvements, it is both faster and more accurate
than the original YOLO. DSSD (Fu et al., 2017) furt-
her improves upon SSD in focusing more on context
with the help of deconvolutional layers.

Active Learning for Object Detection. The aut-
hors of (Abramson and Freund, 2006) propose an
active learning system for pedestrian detection in vi-
deos taken by a camera mounted on the front of
a moving car. Their detection method is based on
AdaBoost while sampling of unlabeled instances is
realized by hand-tuned thresholding of detections.
Object detection using generalized Hough transform
in combination with randomized decision trees, cal-
led Hough forests, is presented in (Yao et al., 2012).
Here, costs are estimated for annotations, and instan-
ces with highest costs are selected for labeling. This
follows the intuition that those examples are most li-
kely to be difficult and therefore considered most va-
luable. Another active learning approach for satellite
images using sliding windows in combination with
an SVM classifier and margin sampling is proposed
in (Bietti, 2012). The combination of active learning
for object detection with crowd sourcing is presen-
ted in (Vijayanarasimhan and Grauman, 2014). A

part-based detector for SVM classifiers in combina-
tion with hashing is proposed for use in large-scale
settings. Active learning is realized by selecting the
most uncertain instances for labeling. In (Roy et al.,
2016), object detection is interpreted as a structured
prediction problem using a version space approach in
the so called “difference of features” space. The aut-
hors propose different margin sampling approaches
estimating the future margin of an SVM classifier.

Like our proposed approach, most related met-
hods presented above rely on uncertainty indicators
like least confidence or 1-vs-2. However, they are
designed for a specific type of object detection and
therefore can not be applied to deep object detection
methods in general whereas our method can. Addi-
tionally, our method does not propose single objects
to the human annotator. It presents whole images at
once and requests labels for every object.

Active Learning for Deep Architectures. In
(Wang and Shang, 2014) and (Wang et al., 2016),
uncertainty-based active learning criteria for deep
models are proposed. The authors offer several me-
trics to estimate model uncertainty, including least
confidence, margin or entropy sampling. Wang et al.
additionally describe a self-taught learning scheme,
where the model’s prediction is used as a label for
further training if uncertainty is below a threshold.
Another type of margin sampling is presented in
(Stark et al., 2015). The authors propose querying
samples according to the quotient of the highest and
second-highest class probability. The visual detection
of defects using a ResNet is presented in (Feng et al.,
2017). The authors propose two methods: uncertainty
sampling (i.e., defect probability of 0.5) and positive
sampling (i.e., selecting every positive sample since
they are very rare) for querying unlabeled instances
as model update after labeling. Another work which
presents uncertainty sampling is (Liu et al., 2017). In
addition, a query by committee strategy as well as
active learning involving weighted incremental dicti-
onary learning for active learning are proposed. In the
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work of (Gal et al., 2017), several uncertainty-related
measures for active learning are presented. Since they
use Bayesian CNNs, they can make use of the proba-
bilistic output and employ methods like variance sam-
pling, entropy sampling or maximizing mutual infor-
mation. Finally, the authors of (Beluch et al., 2018)
show that ensamble-based uncertainty measures are
able to perform best in their evaluation. All of the
works introduced above are tailored to active learning
in classification scenarios. Most of them rely on mo-
del uncertainty, similar to our applied selection crite-
ria.

Besides estimating the uncertainty of the model,
further retraining-based approaches are maximizing
the expected model change (Huang et al., 2016) or the
expected model output change (Käding et al., 2016a)
that unlabeled samples would cause after labeling.
Since each bounding box inside an image has to be
evaluated according its active learning score, both me-
asures would be impractical in terms of runtime wit-
hout further modifications. A more complete over-
view of general active learning strategies can be found
in (Kovashka et al., 2016; Settles, 2009).

2 PREREQUISITE: ACTIVE
LEARNING

In active learning, a value or metric v(x) is assigned
to any unlabeled example x to determine its possible
contribution to model improvement. The current mo-
del’s output can be used to estimate a value, as can
statistical properties of the example itself. A high v(x)
means that the example should be preferred during se-
lection because of its estimated value for the current
model.

In the following section, we propose a method to
adapt an active learning metric for classification to ob-
ject detection using an aggregation process. This met-
hod is applicable to any object detector whose output
contains class scores for each detected object.

Classification. For classification, the model output
for a given example x is an estimated distribution of
class scores p̂(c|x) over classes K. This distribution
can be analyzed to determine whether the model made
an uncertain prediction, a good indicator of a valua-
ble example. Different measures of uncertainty are
a common choice for selection, e.g., (Ertekin et al.,
2007; Fu and Yang, 2015; Hoi et al., 2006; Jain and
Kapoor, 2009; Kapoor et al., 2010; Käding et al.,
2016c; Tong and Koller, 2001; Beluch et al., 2018).

For example, if the difference between the two
highest class scores is very low, the example may be

located close to a decision boundary. In this case, it
can be used to refine the decision boundary and is the-
refore valuable. The metric is defined using the hig-
hest scoring classes c1 and c2:

v1vs2(x) =
(
1− (max

c1∈K
p̂(c1|x)− max

c2∈K\c1
p̂(c2|x))

)2
.

(1)
This procedure is known as 1-vs-2 or margin sam-

pling (Settles, 2009). We use 1-vs-2 as part of our
methods since its operation is intuitive and it can pro-
duce better estimates than e.g., least confidence ap-
proaches (Käding et al., 2016a). However, our propo-
sed aggregation method could be applied to any other
active learning measure.

3 ACTIVE LEARNING FOR DEEP
OBJECT DETECTION

Using a classification metric on a single detection is
straightforward, if class scores are available. Though,
aggregating metrics of individual detections for a
complete image can be done in many different ways.
In the section below, we propose simple and efficient
aggregation strategies. Afterwards, we discuss the
problem of class imbalance in datasets.

3.1 Aggregation of Detection Metrics

Possible aggregations include calculating the sum, the
average or the maximum over all detections. Ho-
wever, for some aggregations, it is not clear how an
image without any detections should be handled.

Sum. A straightforward method of aggregation is
the sum. Intuitively, this method prefers images with
lots of uncertain detections in them. When aggrega-
ting detections using a sum, empty examples should
be valued zero. It is the neutral element of addition,
making it a reasonable value for an empty sum. A low
valuation effectively delays the selection of empty ex-
amples until there are either no better examples left or
the model has improved enough to actually produce
detections on them. The value of a single example x
can be calculated from the detections D in the follo-
wing way:

vSum(x) = ∑
i∈D

v1vs2(xi) . (2)

Average. Another possibility is averaging each de-
tection’s scores. The average is not sensitive to the
number of detections, which may make scores more
comparable between images. If a sample does not

Active Learning for Deep Object Detection

183



contain any detections, it will be assigned a zero
score. This is an arbitrary rule because there is no true
neutral element w.r.t. averages. However, we choose
zero to keep the behavior in line with the other me-
trics:

vAvg(x) =
1
|D| ∑i∈D

v1vs2(xi) . (3)

Maximum. Finally, individual detection scores can
be aggregated by calculating the maximum. This can
result in a substantial information loss. However, it
may also prove beneficial because of increased robus-
tness to noise from many detections. For the maxi-
mum aggregation, a zero score for empty examples is
valid. The maximum is not affected by zero valued
detections, because no single detection’s score can be
lower than zero:

vMax(x) = max
i∈D

v1vs2(xi) . (4)

3.2 Handling Selection Imbalances

Class imbalances can lead to worse results for clas-
ses underrepresented in the training set. In a continu-
ous learning scenario, this imbalance can be counte-
red during selection by preferring instances where the
predicted class is underrepresented in the training set.
An instance is weighted by the following rule:

wc =
#instances+#classes

#instancesc +1
, (5)

where c denotes the predicted class. We assume a
symmetric Dirichlet prior with α = 1, meaning that
we have no prior knowledge of the class distribution,
and estimate the posterior after observing the total
number of training instances as well as the number
of instances of class c in the training set. The weight
wc is then defined as the inverse of the posterior to
prefer underrepresented classes. It is multiplied with
v1vs2(x) before aggregation to obtain a final score.

4 EXPERIMENTS

In the following, we present our evaluation. First we
show how the proposed aggregation metrics are able
to enhance recognition performance while selecting
new data for annotation. After this, we will analyze
the gained improvements when our proposed weig-
hting scheme is applied.

The code for our experiments is available 1.

1https://github.com/cvjena/cn24-active

Data. We use the PASCAL VOC 2012 dataset (Eve-
ringham et al., 2010) to assess the effects of our met-
hods on learning. To specifically measure incremen-
tal and active learning performance, both training and
validation set are split into parts A and B in two diffe-
rent random ways to obtain more general experimen-
tal results. Part B is considered “new” and is compri-
sed of images with the object classes bird, cow and
sheep (first way) or tvmonitor, cat and boat (se-
cond way). Part A contains all other 17 classes and
is used for initial training. The training set for part B
contains 605 and 638 images for the first and second
way, respectively. The decision towards VOC in favor
of recently published datasets was motivated by the
conditions of the dataset itself. Since it mainly con-
tains images showing fewer objects, it is possible to
split the data into a known and unknown part without
having images containing classes from both parts of
the splits.

Active Exploration Protocol. Before an experi-
mental run, the part B datasets are divided randomly
into unlabeled batches of ten samples each. This fixed
assignment decreases the probability of very similar
images being selected for the same batch compared
to always selecting the highest valued samples, which
would lead to less diverse batches. This is valuable
while dealing with data streams, e.g., from camera
traps, or data with low intra-class variance. The con-
struction of diverse unlabeled data batches is a well
known topic in batch-mode active learning (Settles,
2009). However, the construction of diverse batches
could lead to unintended side-effects and an evalua-
tion of those is beyond the scope of the current study.
The unlabeled batch size is a trade-off between a tight
feedback loop (smaller batches) and computational
efficiency (larger batches). As side-effect of the fixed
batch assignment, there are some samples left over
during selection (i.e., five for first way and eight for
second way of splitting).

The unlabeled batches are assigned a value using
the sum of the active learning metric over all images
in the corresponding batch as a meta-aggregation. Ot-
her functions such as average or maximum could be
considered too, but are also beyond the scope of this
paper.

The highest valued batch is selected for an incre-
mental training step (Käding et al., 2016b). The net-
work is updated using the annotations from the dataset
in lieu of a human annotator. Please note, annotations
are not needed for update batch selection but for the
update itself. This process is repeated from the point
of batch valuation until there are no unlabeled batches
left. The assignment of samples to unlabeled batches
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Algorithm 1: Detailed description of the experimental protocol. Please note that in an actual continuous learning scenario,
new examples are always added to U. The loop is never left because U is never exhausted. The described splitting process
would have to be applied regularly.

Require: Known labeled samples L, unknown samples U, initial model f0, active learning metric v

U= U1,U2, . . .← split of U into random batches
f ← f0

while U is not empty do
calculate scores for all batches in U using f
Ubest ← highest scoring batch in U according to v

Ybest ← annotations for Ubest human-machine interaction
f ← incrementally train f using L and (Ubest ,Ybest)

U← U\Ubest
L← L∪ (Ubest ,Ybest)

end while

is not changed during an experimental run.

Evaluation. We report mean average precision
(mAP) as described in (Everingham et al., 2010) and
validate each five new batches (i.e., 50 new samples).
The result is averaged over five runs for each active
learning metric and way of splitting for a total of ten
runs. As a baseline for comparison, we evaluate the
performance of random selection, since there is no ot-
her work suitable for direct comparison without any
adjustments as of yet.

Setup – Object Detector. We use YOLO as deep
object detection framework (Redmon et al., 2016).
More precisely, we use the YOLO-Small architecture
as an alternative to larger object detection networks,
because it allows for much faster training. Our ini-
tial model is obtained by fine-tuning the Extraction
model2 on part A of the VOC dataset for 24,000 ite-
rations using the Adam optimizer (Kingma and Ba,
2014), for each way of splitting the dataset into parts
A and B, resulting in two initial models. The first half
of initial training is completed with a learning rate of
0.0001. The second half and all incremental experi-
ments use a lower learning rate of 0.00001 to prevent
divergence. Other hyperparameters match (Redmon
et al., 2016), including the augmentation of training
data using random crops, exposure or saturation ad-
justments.

Setup – Incremental Learning. Extending an exis-
ting CNN without sacrificing performance on known
data is not a trivial task. Fine-tuning exclusively on
new data leads to a severe degradation of performance
on previously learned examples (Kirkpatrick et al.,

2http://pjreddie.com/media/files/extraction.weights

2016; Shmelkov et al., 2017). We use a straightfor-
ward, but effective fine-tuning method (Käding et al.,
2016b) to implement incremental learning. With each
gradient step, the mini-batch is constructed by rand-
omly selecting from old and new examples with a
certain probability of λ or 1− λ, respectively. After
completing the learning step, the new data is simply
considered old data for the next step. This method
can balance known and unknown data performance
successfully. We use a value of 0.5 for λ to make as
few assumptions as possible and perform 100 iterati-
ons per update. Algorithm 1 describes the protocol
in more detail. The method can be applied to YOLO
object detection with some adjustments. Mainly, the
architecture needs to be changed when new classes
are added. Because of the design of YOLO’s output
layer, we rearrange the weights to fit new classes, ad-
ding 49 zero-initialized weights per class.

4.1 Results

We focus our analysis on the new, unknown data. Ho-
wever, not losing performance on known data is also
important. We analyze the performance on the known
part of the data (i.e., part A of the VOC dataset) to va-
lidate our method. In worst case, the mAP decreases
from 36.7% initially to 32.1% averaged across all ex-
perimental runs and methods although three new clas-
ses were introduced. We can see that the incremental
learning method from (Käding et al., 2016b) causes
only minimal losses on known data. These losses in
performance are also referred to as “catastrophic for-
getting” in literature (Kirkpatrick et al., 2016). The
method from (Käding et al., 2016b) does not require
additional model parameters or adjusted loss terms
for added samples like comparable approaches such
as (Shmelkov et al., 2017) do, which is important for
learning indefinitely.
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Table 1: Validation results on part B of the VOC data (i.e., new classes only). Bold face indicates block-wise best results, i.e.,
best results with and without additional weighting (·+w). Underlined face highlights overall best results.

50 samples 100 samples 150 samples 200 samples 250 samples All samples
mAP/AULC mAP/AULC mAP/AULC mAP/AULC mAP/AULC mAP/AULC

Baseline
Random 8.7 / 4.3 12.4 / 14.9 15.5 / 28.8 18.7 / 45.9 21.9 / 66.2 32.4 / 264.0

Our Methods
Max 9.2 / 4.6 12.9 / 15.7 15.7 / 30.0 19.8 / 47.8 22.6 / 69.0 32.0 / 269.3
Avg 9.0 / 4.5 12.4 / 15.2 15.8 / 29.2 19.3 / 46.8 22.7 / 67.8 33.3 / 266.4
Sum 8.5 / 4.2 14.3 / 15.6 17.3 / 31.4 19.8 / 49.9 22.7 / 71.2 32.4 / 268.2
Max + w 9.2 / 4.6 13.0 / 15.7 17.0 / 30.7 20.6 / 49.5 23.2 / 71.4 33.0 / 271.0
Avg + w 8.7 / 4.3 12.5 / 14.9 16.6 / 29.4 19.9 / 47.7 22.4 / 68.8 32.7 / 267.1
Sum + w 8.7 / 4.4 13.7 / 15.6 17.5 / 31.2 20.9 / 50.4 24.3 / 72.9 32.7 / 273.6

Most valuable examples (highest score)

Sum (+w)

Avg (+w)

Max (+w)

Least valuable examples (zero score)

All

Figure 2: Value of examples of cow, sheep and bird as determined by the Sum, Avg and Max metrics using the initial model.
The top seven selection is not affected by using our weighting method to counter training set class imbalaces.

Performance of active learning methods is usu-
ally evaluated by observing points on a learning curve
(i.e., performance over number of added samples). In
Table 1, we show the mAP for the new classes from
part B of VOC at several intermediate learning steps
as well as exhausting the unlabeled pool. In addition
we show the area under learning curve (AULC) to
further improve comparability among the methods. In
our experiments, the number of samples added equals
the number of images.

Quantitative Results – Fast Exploration. Gaining
accuracy as fast as possible while minimizing the hu-
man supervision is one of the main goals of active
learning. Moreover, in continuous exploration scena-
rios, like live camera feeds or other continuous auto-
matic measurements, it is assumed that new data is
always available. Hence, the pool of valuable exam-
ples will rarely be exhausted. To assess the perfor-
mance of our methods in this fast exploration context,

we evaluate the models after learning small amounts
of samples. At this point there is still a large number
of diverse samples for the methods to choose from,
which makes the following results much more rele-
vant for practical applications than results on the full
dataset.

In general, we can see that incremental learning
works in the context of the new classes in part B of
the data, meaning that we observe an improving per-
formance for all methods. After adding only 50 sam-
ples, Max and Avg are performing better than pas-
sive selection while the Sum metric is outperformed
marginally. When more and more samples are added
(i.e., 100 to 250 samples), we observe a superior per-
formance of the Sum aggregation. But also the two
other aggregation techniques are able to reach better
rates than mere random selection. We attribute the
fast increase of performance for the Sum metric to its
tendency to select samples with many object inside
which leads to more annotated bounding boxes. Ho-
wever, the target application is a scenario where the
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New classes (part B) Known classes (part A)
bird cow sheep aeroplane car

Initial prediction

After 50 samples

After 150 samples

Figure 3: Evolution of detections on examples from validation set.

amount of unlabeled data is huge or new data is ap-
proaching continuously and hence a complete evalu-
ation by humans is infeasible. Here, we consider the
amount of images to be evaluated more critical as the
time needed to draw single bounding boxes. Anot-
her interesting fact is the almost equal performance
of Max and Avg which can be explained as follows:
the VOC dataset consists mostly of images with only
one object in them. Therefore, both metrics lead to a
similar score if objects are identified correctly.

We can also see that the proposed balance hand-
ling (i.e., ·+w) causes slight losses in performance at
very early stages up to 100 samples. At subsequent
stages, it helps to gain noticeable improvements. Es-
pecially for the Sum method benefits from the sam-
ple weighting scheme. A possible explanation for this
behavior would be the following: At early stages, the
classifier has not seen many samples of each class and
therefore suffers more from miss-classification errors.
Hence, the weighting scheme is not able to encourage
the selection of rare class samples since the classi-
fier decisions are still too unstable. At later stages,
this problem becomes less severe and the weighting
scheme is much more helpful than in the beginning.
This could also explain the performance of Sum in
general. Further details on learning pace are given
later in a qualitative study on model evolution. Addi-
tionally, the Sum aggregation tends to select batches
with many detections in it. Hence, it is natural that
the improvement is noticeable the most with this ag-
gregation technique since it helps to find batches with
many rare objects in it.

Quantitative Results – All Available Samples. In
our case, active learning only affects the sequence of
unlabeled batches if we train until there is no new data
available. Therefore, there are only very small diffe-
rences between each method’s results for mAP after
training has completed. The small differences indi-

cate that the chosen incremental learning technique
(Käding et al., 2016b) is suitable for the faced scena-
rio. In continuous exploration, it is usually assumed
that there will be more new unlabeled data available
than can be processed. Nevertheless, evaluating the
long term performance of our metrics is important to
detect possible deterioration over time compared to
random selection. In contrast to this, the differences
in AULC arise from the improvements of the different
methods during the experimental run and therefore
should be considered as distinctive feature implying
the performance over the whole experiment. Having
this in mind, we can still see that Sum performs best
while the weighting generally leads to improvements.

Quantitative Results — Class-wise Analysis To
validate the efficacy of our sample weighting strategy
as discussed in Section 3.2, it is important to mea-
sure not only overall performance, but to look at me-
trics for individual classes. Fig. 4 shows the perfor-
mance over time on the validation set for each indi-
vidual class. For reference, we also provide the class
distribution over the relevant part of the VOC data-
set, indicated by number of object instances in total as
well as number of images with at least one instance in
it.

In the first row, we observe an advantage for the
weighted method when looking at the performance of
cow. Out of the three classes in this way of splitting
cow has the fewest instances in the dataset. The per-
formance of tvmonitor in the second row shows a si-
milar pattern, where it is also the class with the lowest
number of object instances in the dataset. Analyzing
bird and cat, the top classes by number of instan-
ces in each way of splitting, we observe only small
differences in performance. Thus, we can show evi-
dence that our balancing scheme is able to improve
performance on rare classes while it does not effect
performance on frequent classes.
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Figure 4: Class-wise validation results on part B of the VOC
dataset (i.e.,, unknown classes). The first row details the
first way of splitting (bird,cow,sheep) while the second
row shows the second way (boat,cat,tvmonitor). For re-
ference, the distribution of samples (object instances as well
as images with at least one instance) over the VOC dataset
is provided in the third row.

Intuitively, these observations are in line with our
expectations regarding our handling of class imbalan-
ces, where examples of rare classes should be prefer-
red during selection. We start to observe the advanta-
ges after around 100 training examples, because, for
the selection to happen correctly, the prediction of the
rare class needs to be correct in the first place.

Qualitative Results – Sample Valuation We cal-
culate whole image scores over bird, cow and sheep
samples using our corresponding initial model trained
on the remaining classes for the first way of splitting.
Figure 2 shows those images that the three aggrega-
tion metrics consider the most valuable. Additionally,
common zero scoring images are shown. The least
valuable images shown here are representative of all
proposed metrics because they do not lead to any de-
tections using the initial model. Note that there are
more than seven images with zero score in the trai-
ning dataset. The images shown in the figure have
been selected randomly.

Intuitively, the Sum metric should prefer images
with many objects in them over single objects, even if
individual detection values are low. Although VOC
contains mostly of images with a single object, all
seven of the highest scoring images contain at le-
ast three objects. The Average and Maximum metric
prefer almost identical images since the average and
maximum are used to be nearly equal for few detecti-
ons. With few exceptions, the most valuable images
contain pristine examples of each object. They are
well lit and isolated. The objects in the zero scoring
images are more noisy and hard to identify even for
the human viewer, resulting in fewer reliable detecti-
ons.

Qualitative Results – Model Evolution. Obser-
ving the change in model output as new data is lear-
ned can help estimate the number of samples needed
to learn new classes and identify possible confusions.
Fig. 3 shows the evolution from initial guesses to cor-
rect detections after learning 150 samples, correspon-
ding to an fast exploration scenario. For selection, the
Sum metric is used.

The class confusions shown in the figure are typi-
cal for this scenario. cow and sheep are recognized
as visually similar dog, horse and cat. bird is often
classified as aeroplane. After selecting and learning
150 samples, the objects are detected and classified
correctly and reliably.

During the learning process, there are also
unknown objects. Please note, being able to mark
objects as unknown is a direct consequence of using
YOLO. Those objects have a detection confidence
above the required threshold, but no classification is
certain enough. This property of YOLO is important
for the discovery of objects of new classes. Nevert-
heless, if similar information is available from other
detection methods, our techniques could easily be ap-
plied.
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5 CONCLUSIONS

In this paper, we propose several uncertainty-based
active learning metrics for object detection. They
only require a distribution of classification scores per
detection. Depending on the specific task, an object
detector that will report objects of unknown classes
is also important. Additionally, we propose a sample
weighting scheme to balance selections among clas-
ses.

We evaluate the proposed metrics on the PASCAL
VOC 2012 dataset (Everingham et al., 2010) and offer
quantitative and qualitative results and analysis. We
show that the proposed metrics are able to guide the
annotation process efficiently which leads to superior
performance in comparison to a random selection ba-
seline. In our experimental evaluation, the Sum me-
tric is able to achieve best results overall which can
be attributed to the fact that it tends to select batches
with many single objects in it. However, the targe-
ted scenario is an application with huge amounts of
unlabeled data where we consider the amount of ima-
ges to be evaluated as more critical than the time nee-
ded to draw single bounding boxes. Examples would
be camera streams or camera trap data. To expedite
annotation, our approach could be combined with a
weakly supervised learning approach as presented in
(Papadopoulos et al., 2016). We also showed that our
weighting scheme leads to even increased accuracies.

All presented metrics could be applied to other
deep object detectors, such as the variants of SSD
(Liu et al., 2016), the improved R-CNNs e.g., (Ren
et al., 2015) or the newer versions of YOLO (Red-
mon and Farhadi, 2017). Moreover, our proposed me-
trics are not restricted to deep object detection and
could be applied to arbitrary object detection met-
hods if they fulfill the requirements. It only requires
a complete distribution of classifications scores per
detection. Also the underlying uncertainty measure
could be replaced with arbitrary active learning me-
trics to be aggregated afterwards. Depending on the
specific task, an object detector that will report objects
of unknown classes is also important.

The proposed aggregation strategies also genera-
lize to selection of images based on segmentation re-
sults or any other type of image partition. The re-
sulting scores could also be applied in a novelty de-
tection scenario.
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