Preliminary Results of the Southern Mariana Trench Wide-Angle Seismic Experiment

Genggeng Wen¹, ², Kuiyuan Wan¹,* and Jinlong Sun¹
¹ CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
² University of Chinese Academy of Sciences, Beijing 100049, China.
Email: kywan@scsio.ac.cn

Keywords: Southern Mariana Trench, challenger deep, wide-angle seismic

Abstract: The Mariana subduction zone is a key area of magmatism and tectonic evolution in the western Pacific, which has the deepest abyss “Challenger Deep” on the earth. An active source seismic experiment with an array of ocean bottom seismometers (OBS) were conducted across the Challenger Deep in the southern Mariana Trench during November-December 2016, and we have acquired the first significant wide-angle seismic data. We relocated the OBSs position and revised the travel-time of the phases, using the travel-time data of the direct water waves, and obtained high-quality seismic sections based on these corrections. The phase records are complex because of the topography variations but each OBS has recorded continuous and clear phases with a maximum offset of 120 km. The phases of crustal refraction were identified at 5~80 km offsets with little difference on the two sides of the southern Mariana Trench, while the reflections from Moho were found to be very different. From the seismic record profiles, those phases provide an important foundation for analyzing the structure and evolution of crust and the features of its internal velocity structure in Mariana Trench-Arc-Basin system.

1 INTRODUCTION

The OBS wide-angle seismic survey has the characteristics of large depth of exploration and wide range: its investigate depth can reach 30~40 km and the depth of the Moho interface can be reached under the continental crust. Different seismic phases and clear signals can be identified from more than 100 km distance (sometimes up to 200–300 km) (Xia et al. 2007). Thus, the OBS wide-angle seismic survey is used in the study of the crust and mantle velocity structure (Ruan et al. 2004).

All the time, the Mariana Trench is hot research with a narrow and deep-water abyss more than 6,000 m. The trench extends parallel to the island arc, with a “V” cross-section, which is located between the island arcs and the oceanic basin. In 2002, Simon Fraser University in Canada cooperated with the United States and Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out a three-dimensional (3D) deep seismic survey of Mariana Trench subduction zone, revealing the distribution of its internal velocity structure in temporally and spatially (Caluert, et al. 2008). In 2003, JAMSTEC also carried out a deep seismic experiment which across the entire Mariana island arc and back-arc system. A wide-angle reflection-refraction seismic record was acquired that about 700 km, the crustal and upper mantle velocity structures and the arc crust evolution model were obtained. The model can explain the process of IBM (Izu-Bonin-Mariana) arc crust creation (Takahashi et al. 2008; Tatsumi Y et al. 2008). Although there have done lots of research in the Mariana island arc, rarely deep seismic experiments have been carried out in the deepest trench of the world. During November-December 2016, we have conducted an active source seismic experiment with an array of ocean bottom seismometers (OBS) across the Challenger Deep in the southern Mariana Trench. The experiment strives for a breakthrough in the study of major scientific issues in deep trench, and have great significance in revealing the formation process of the trench and the relationship with
The deep seismic data were acquired by R/V “Shiyan 3” of the South China Sea Institute of Oceanology, during December 2016 near the Challenger Deep in the Mariana Trench (Figure 1). Eighteen 4-component OBSs (14 were recycled), spaced in ~15 km intervals, were deployed along the 349 km NW-SE profile across the Challenger Deep and Mariana arc. The 6000 cubic inches air gun arrays were towed at ~10m depth to produce a low-frequency source (3~15 Hz), which delivered a working pressure of 2000 psi. The excitation time is about 90 s and the shot distance intervals about 223.0 m and a total of 1572 shot were fired along the survey line.

Figure 1: Topography and bathymetry map of the Mariana Trench (the red circles represent OBS stations).

The original data collected by seismic exploration includes original navigation data (HYPACK files and timer files) and original OBS data. The original navigation data were processed to navigation UKOOA file. In UKOOA file, the shot number and the shot position are from the HYPREACK files, the excitation time is from the timer files. The UKOOA file can be used for cropping seismic data. The original OBS data is RAW files that records two horizontal components, one vertical component and one hydrophone component which can be converted into standard SAC format by the RAW2SAC program. SAC format can show the continuously waveform data and it can enable the common operations such as seismic phases picking, filtering and so on. SAC format can be converted into standard SEGY file by the SAC2Y program (Barry, et al. 1975; Qiu, et al. 2011; Zhao, et al. 2004). Finally, the SEGY data is processed and visualized, then the seismic record profiles were obtained (band-pass filtered from 3 to 15 Hz and the reduce velocity is 6.0 km/s). According to the seismic record profiles, we can judge the quality of the seismic record data and the characteristics of travel-time that from different seismic phases.

Due to the influence of ocean currents, the location of OBS falls on the seafloor will deviate from the deployed positions, the more depth of water and the more deviation from the deployed positions. Obtaining the exact location of OBS is particularly important to the data processing because the location deviation of OBS will affect the travel-time of deep seismic phases, such as Pg, PmP and Pn (Pg is the refraction within the crust, PmP is the Moho reflection, Pn is the Moho refraction). Especially, the influence will become bigger when carried out three-dimensional (3D) seismic exploration. The Monte Carlo method is generally used to invert the location which is closest to the actual location of OBS (Ao, et al. 2010; Zhang, et al. 2013). The process is as follows: picking up the travel-time of direct water phases from the seismic record profiles and finding the corresponding shots. The curves of travel-time are fitted by the quadratic curve fitting method, then the velocity of seawater and the depth of OBS are inversed. Taking the OBS deployed positions as the center, with a radius of 2 km and the search area “R” is delineated, which is possible location that OBS on the seafloor. By the gridded bathymetric data sets, calculate the theoretical travel-time that is between each point in area R and the shot points for pick up the direct water wave (Figure 2 c). Next, we calculate the root-mean-square residuals (RMS) between the theoretical travel-time and the observed travel-time (Figure 2 d) to find the latitude and longitude.
coordinates corresponding to the minimum value of RMS that as the location of the corrected OBS. If the relocated position of OBS is accurate, then the direct water wave travel-time curve must be symmetrical, so direct wave travel-time curve symmetry or not can judge whether the correction is correct.

Table 1 show that the relocation parameters of OBS stations along the survey line. From Table 1, we can know that the value of RMS is less than 6.0 ms, which indicate that the result of correction is reliable. It can be seen from Figure 3 that the symmetry of the direct water phases in seismic record profile is better than before correction, it means that the relocated position is closer to the actual position.

Table 1: Relocation parameters of OBS stations along the survey line.

<table>
<thead>
<tr>
<th>Station</th>
<th>Recycled position</th>
<th>Relocated position</th>
<th>RMS (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lon(°) lat(°)</td>
<td>lon(°) lat(°)</td>
<td></td>
</tr>
<tr>
<td>obsY36</td>
<td>142.709656 10.713066</td>
<td>142.710154 10.713349</td>
<td>0.005819</td>
</tr>
<tr>
<td>obsY14</td>
<td>142.619663 10.816673</td>
<td>142.616404 10.821096</td>
<td>0.003510</td>
</tr>
<tr>
<td>obsY12</td>
<td>142.439940 11.020450</td>
<td>142.441096 11.022307</td>
<td>0.005462</td>
</tr>
<tr>
<td>obsY35</td>
<td>142.350578 11.122969</td>
<td>142.351797 11.124636</td>
<td>0.003075</td>
</tr>
<tr>
<td>obsY94</td>
<td>142.041620 11.475710</td>
<td>142.040969 11.480242</td>
<td>0.003310</td>
</tr>
<tr>
<td>obsY08</td>
<td>141.951940 11.578050</td>
<td>141.950584 11.583437</td>
<td>0.003457</td>
</tr>
<tr>
<td>obsY81</td>
<td>141.862190 11.680380</td>
<td>141.860966 11.685728</td>
<td>0.003630</td>
</tr>
<tr>
<td>obsY03</td>
<td>141.772726 11.782211</td>
<td>141.774115 11.784745</td>
<td>0.002996</td>
</tr>
<tr>
<td>obsY02</td>
<td>141.681278 11.883481</td>
<td>141.683936 11.887525</td>
<td>0.003319</td>
</tr>
<tr>
<td>obsL27</td>
<td>141.592537 11.986747</td>
<td>141.593683 11.989987</td>
<td>0.005529</td>
</tr>
<tr>
<td>obsL25</td>
<td>141.502816 12.088570</td>
<td>141.504691 12.091123</td>
<td>0.004712</td>
</tr>
<tr>
<td>obsY07</td>
<td>141.412384 12.191542</td>
<td>141.413171 12.195028</td>
<td>0.005393</td>
</tr>
<tr>
<td>obsY88</td>
<td>141.321854 12.293921</td>
<td>141.322159 12.298346</td>
<td>0.003661</td>
</tr>
<tr>
<td>obsY09</td>
<td>141.051429 12.600061</td>
<td>141.053252 12.602530</td>
<td>0.003493</td>
</tr>
</tbody>
</table>
THE DEEP SEISMIC RECORD PROFILES

The Mariana subduction zone comprises Parece Vela Basin (PVB), West Mariana Ridge (WMR), Mariana Trough (MT), Mariana Arc (MA), Fore Arc (FA), Trench and Pacific Plate. We selected several seismic record profiles from different tectonic units (Figure 4). We find that the major phases, such as Pg and PmP, are identified and different in the seismic records. To account for the various S/N ratios and levels of data quality of the different phases and OBS records, the picks were assigned uncertainties ranging from 50 ms to 100 ms based on the empirical parameterization of Zelt and Forsyth (Zelt and Forsyth, 1994).

Pg is the refraction within the crust that is clearly visible and can be identified on four stations, but the pattern of the Pg travel-time curve varies significantly, indicate that the complex of basement topography and crustal structure in this area. The Pg phase can be tracked about 160 km on Y12 station (range of -90 km to -70 km at offsets). From 70 km to -47 km, the Pg travel-time is increasing. At -47 km, it suddenly decreases. The probable reason is that the Pacific plate subducting and result in large change of basement topography near the trench (Figure 4a). On Y94 station, the Pg phase is observed at offsets from -65 km to 70 km. At 32 km, the Pg travel-time suddenly decreases, probably due to the tapering of depth from trench to forearc (Figure 4b). The Pg phase can be tracked about 160 km on L25 station (range of -85~75 km at offsets). In the range of -40~30 km, the Pg travel-time suddenly decreases, which may be related to the underground anomalous structure (Figure 4c). On Y88 station, the Pg phase is observed at offsets from -85 km to 120 km. At -50~40 km, the Pg travel time changes dramatically that probably related to volcano (Figure. 4d).

PmP is a reflected wave from the Moho interface. Its extension range, the amplitude and energy vary significantly on four stations, indicate that the complex of Moho interface and crustal structure in this area. On Y12 station, the Pmp phase is observed at offsets range of -30 to -20 km and 10~50 km. From SE to NW, the travel time of Pmp is increasing which indicate that the depth of Moho interface increases due to the subduction of Pacific plate (Figure. 4a). On Y94 station, the Pmp phase is observed at offsets range of -40~20 km and 3~28 km. The travel time of Pmp at 3~28 km is obviously greater than -40~20 km, indicate that the depth of the Moho interface is large between trench and forearc (Figure 4b). On L25 station, the Pmp phase is observed at offsets range of 20~35 km (Figure. 4c). On Y88 station, the Pmp phase is observed at offsets range of 40~65 km, -19~10 km and -35~30 km (Figure. 4d). The amplitude and energy of PmP are weak on that both stations, which shows that the complex of crustal structure in Mariana arc-back arc system.

CONCLUSIONS AND EXPECTATIONS

The deep seismic experiment was carried out in Challenger Deep and we have obtained all the seismic record profiles. The process includes original RAW data to SAC format, SAC format to SEGY format and the OBS position relocations. During the position relocations process, the Monte Carlo method is used to calculate the probability distribution of OBS position and select the best OBS position. The final result shows that the OBS position is close to the target area and the seismic records are clear and high quality. The preliminary results demonstrate that the Mariana subduction zone is a collision zone between the Pacific plate and the Mariana plate, and the Moho interface is shallower in the forearc than in the trench. The complex of crustal structure and basement topography in this area is significant and needs further study.
Carlo method is used to relocate the position of OBS on seafloor. After a series of data processing, the deep seismic record profiles were obtained. The seismic record profiles indicate that seismic data are of high quality in this deep seismic experiment. We selected four seismic record profiles from different tectonic units which includes the Pacific Plate, Fore Arc, Mariana Arc and Mariana Trough. Furthermore, we described the dramatic changes of the Pg and Pmp phase from different profiles, which related to basement topography and crustal structure. The variety of phases travel-time show that the complex of the crustal structure and evolution in the Mariana Trench-Arc-Basin system.

In next step, we will construct the velocity structure model by picking up the Pg and Pmp travel-time. Combined with regional geological and geophysical information, we will study the characteristics of the deep structure of the Mariana Trench-Arc-Basin system, we also wish to explore the dynamics of Mariana subduction zone, analyze the structure and evolution of this area.

ACKNOWLEDGMENT

The field work of this study was assisted by the all staff and research workers of R/V Shiyan 3. This work is supported by the Natural Science Foundation of China (Nos. 41676042, 41376060, and 41506046).

REFERENCES