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Abstract: This workshop paper discusses the application of various sensors in an industrial assembly scenario, in which
multiple sensors are deployed to enable the detailed monitoring of worker activity, task progress and also
cognitive and mental states. The described and evaluated sensors include stationary (RGBD cameras, stereo
vision depth sensors) and wearable devices (IMUs, GSR, ECG, mobile eye tracker). Furthermore, this pa-
per discusses the associated challenges mainly related to multi-sensor fusion, real-time data processing and
semantic interpretation of data.

1 INTRODUCTION

The increasing digitalization in industrial production
processes goes hand in hand with the increased ap-
plication of all kinds of sensors, whereby the ma-
jority of these sensors are exploited for automated
machine-to-machine communication only. However,
in all human-in-the-loop processes which involve ma-
nual or semi-manual labor, physiological sensors are
on the rise, assessing the behavioral and somatic sta-
tes of the human workers as to deduce on activity or
task analysis as well as the estimation of human cog-
nitive states.

The observable revival of human labor as an op-
posing trend to the predominant tendency of full auto-
mation (Behrmann and Rauwald, 2016) is associated
with the requirements of industrial processes to be-
come more and more adaptive to dynamically chan-
ging product requirements. The combination of the
strengths of both men and machine working together
yields the best possible outcome for industrial pro-
duction, as humans provide their creativity, adaptabi-
lity, and machines ensuring process constraints such
as quality or security.

In the light of these changes towards men-machine
collaboration, it is essential for machines or com-
puters to have a fundamental understanding of their
users - their ongoing activities, intentions, and atten-

tion distributions. The creation of such a high level of
awareness requires not only (i) the selection of suit-
able sensors but as well needs to solve fundamental
problems regarding (ii) handling the big amounts of
data, (iii) the correct fusion of different sensor types
as well as (iv) the adequate interpretation of complex
psycho-physiological states.

This work will introduce the industrial applica-
tion scenario of an aware assistance system for a
semi-manual assembly task, introduce and evaluate
the employed sensors and discuss the derived chal-
lenges from the associated multi-sensor fusion task.

1.1 Related Work

With the ever-increasing number of sensors, the fu-
sion of the data from multiple, potentially heterogene-
ous sources is becoming a non-trivial task that directly
impacts application performance. When addressing
physiological data, such sensor collections are often
referred to as Body Sensor Networks (BSNs) with
applications in many domains (Gravina et al., 2017).
Such physiological sensor networks usually cover we-
arable accelerometers, gyroscopes, pressure sensors
for body movements and applied forces, skin/chest
electrodes (for electrocardiogram (ECG), electromyo-
gram (EMG), galvanic skin response (GSR), and
electrical impedance plethysmography (EIP)), (PPG)
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sensors, microphones (for voice, ambient, and he-
art sounds) and scalp-placed electrodes for electroen-
cephalogram (EEG) (Gravina et al., 2017). These we-
arable sensor types can also be enriched with infra-
structural, remote sensor systems such as traditional
(RGB) and depth cameras.

Sensor networks are investigated in and employed
by industrial applications (Li et al., 2017), specifically
in domains such as the Automotive Industry (Mara-
belli et al., 2017), (Otto et al., 2016), healthcare IOT
(Baloch et al., 2018), (Chen et al., 2017) or food in-
dustry (Kröger et al., 2016), in industrial use cases as
welding (Gao et al., 2016) or CNC-machining (Jovic
et al., 2017).

1.2 Contribution of this Work

This work introduces an industrial assistance system
which is based on the integration of various sensors
which have been applied and evaluated regarding their
applicability and suitability in an industrial applica-
tion. In this context, this work presents an overview of
the investigated sensors with reviews and experiences
regarding data quality, reliability, etc. Furthermore,
this work reports on the key challenges and opportu-
nities which are (i) handling of big amounts of data in
real-time, (ii) ensuring interoperability between diffe-
rent systems, (iii) handling uncertainty of sensor data,
and the general issues of (iv) multi-sensor fusion.

While Section 2 describes the industrial applica-
tion scenario, in Sections 3 and 4 the respective sen-
sors are introduced. Section 5 puts the focus on
the discussions of challenges and opportunities and
section 6 provides a summary and addresses future
work.

2 INDUSTRIAL APPLICATION
SCENARIO

The industrial application scenario is an industrial as-
sistance system which is employed in a semi-manual
industrial application of a complex assembly of pre-
mium alpine sports products, where it is supposed
to ensure the high-quality requirements by providing
adaptive worker support.

The work task consists of manually manipulating
and arranging the multiple parts whereas errors can
occur regarding workflow order, object orientation, or
omission of parts. These errors express in unaccepta-
ble product quality differences regarding usage cha-
racteristics (e.g. stability, stiffness), thus increase re-
jects and inefficiency.

Figure 1: Ski assembly procedure and environment.

Full automation of the process is not feasible
due to (i) required high flexibility (minimal lot si-
zes, changing production schedules), (ii) used mate-
rial characteristics (highly sticky materials) and (iii)
human-in-the-loop production principles enable the
optimization of product quality and production pro-
cesses.

In this context, the sensor-based assistance system
is designed to enable the realization of an adaptive,
sensitive assistance system as to provide guidance
only if needed, thus minimizing obtrusiveness and
enabling the assistance system to seamlessly disap-
pear into the background. Furthermore, the adapti-
vity of the feedback design enables the education of
novices in training-on-the-job scenarios, integrating
novices directly into the production process during
their one month training period without occupying
productive specialists.

The assistance system is supposed to observe the
task execution, identify the associated step in the
workflow and identify errors or uncertainty (hesita-
tion, deviation from work plan, etc.) to support the
operator via different levels of assistance (Haslgrübler
et al., 2017). The selection of assistance depends on
operator skill (i.e. day 1 trainee vs 30-year-in-the-
company worker), cognitive load and perception ca-
pability to provide the best possible assistance with
the least necessary disruption. Such supportive mea-
sures range from, laser-based markers for part place-
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ment or visual highlighting of upcoming work steps
in case of uncertainty, to video snippets visualizing
the correct execution of a task, in case of doubt.

3 ACTIVITY SENSING

The most common application of activity and beha-
vior analysis in industrial applications is monitoring
of task progress for documentation or assistance ap-
plications. The main kinds of sensors and technolo-
gies that can be exploited for activity tracking are (i)
stationary (visual) sensors and (ii) wearable motion
sensors. The different fields of application are intro-
duced in the following, for an overview please refer
to Table 1:

3.1 Skeleton Tracking

Mainly stationary visual sensors are employed to
identify body joints and the resulting associated skele-
ton pose. Depending on the application, these sensors
address the full skeleton or sub-selections of body
joints.

3.1.1 Full Skeleton Tracking

Sensor Description - Kinect v2. The Microsoft Ki-
nect v2 combines an infrared and an RGB camera to
track up to six complete skeletons, each consisting of
26 joints. The Kinect uses an infrared time-of-flight
technology to build a 3D map of the environment and
the objects in view. Skeleton data is provided by the
associated Microsoft SDK which is restricted to Mi-
crosoft Windows platforms.

In the described application scenario, two Kinect
cameras have been installed on opposing sides of the
work environment - as a frontal positioning was not
possible - to avoid obstructions and enable an en-
compassing perception of the scene. Based on a ma-
nual calibration of the two sensors, the data is combi-
ned into a single skeleton representation via a multi-
sensor fusion approach as described in Section 5.4.
The calibration is achieved via a two-step process: (1)
real-world measurement of the placement and orien-
tation angle of the sensors in the application scenario,
obtaining the viewpoints of the two sensors in a joint
coordinate system and (2) fine adjustment based on
skeleton joints that are observed at the same time, at
different positions. For this purpose, the head joint
was chosen as it represents the most stable joint of
the Kinect tracking approach - according to our expe-
rience. The overall result of the calibration approach
is the localization and orientation of the two sensors

in a joint coordinate system, thus enabling the overlay
and fusion of the respective sensor input data.

Evaluation. Kinect-like sensors provide unique op-
portunities of skeleton tracking, thus overcome
many problems associated with professional motion
tracking systems such as enabling (i) markerless
tracking, (ii) fast and simple setup and (iii) low-cost
tracking results. However, due to the infrared techno-
logy, the depth sensors do not perform well in outdoor
settings with high infrared background noise. Furt-
hermore, the cameras require good allocation of the
scene, with a full view of the worker for best tracking
results.

Overall, the application of Kinect sensors in in-
dustrial applications requires careful handling and
substantial data post-processing. With the Kinect ske-
leton data showing large amounts of fluctuations, the
Kinect represents a cheap, yet not per se reliable sen-
sor for skeleton tracking.

3.1.2 Sub-Skeleton Tracking

Sensor Description - Leap Motion. Aiming only
at tracking the hands of a user, specifically in Virtual
Reality applications, the Leap Motion controller re-
presents an infrared, stereo-vision-based gesture and
position tracking system with sub-millimeter accu-
racy (Weichert et al., 2013). Suitable both for mobile
and stationary application, it has been specifically de-
veloped to track hands and fingers in a close distance
of up to 0.8 m, enabling highly accurate hand gesture
control of interactive computer systems.

In the introduced industrial application scenario,
the Leap Motion controllers are installed in the focus
areas of the assembly tasks, trying to monitor the de-
tailed hand movements.

Evaluation. The Leap Motion controller shows
high accuracy and also high reliability. Yet, unfor-
tunately, the sensor shows a high latency in the initial
registration of hands (up to 1-2 s). In a highly dyna-
mic application as in the presented use-case scenario,
this latency prevented the applicability of the Leap
Motion sensor, as the hands were often already lea-
ving the area of interaction when they were detected.
For this purpose, this highly accurate sensor could not
be applied in the final assistance setup, yet they repre-
sent a very interesting sensor choice when addressing
a very stationary industrial task.

3.1.3 Joint Tracking

Mobile, wearable sensors are used to extract the mo-
vement of single body joints, most commonly the
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Figure 2: Scheme of the introduced industrial multi-sensor assistance system with the various level of abstractions: Perception,
Understanding, Reasoning, Acting. Data from Sensors are processed individually and in aggregated form to perform activity,
work-step, skill and cognitive recognition. Reasoning Models are then used to select appropriate assistance measure via
different actors.

wrists for inference on hand movement activity. The
vast majority of these sensors are based on accelero-
meters and gyrometers to provide relative changes in
motion and orientation for behavior analysis.

Sensor Description - Shimmer. The Shimmer sen-
sors have already been validated for use in acade-
mic and industrial research applications (Burns et al.,
2010), (Gradl et al., 2012), (Srbinovska et al., 2015)
Also, Shimmer research offers the several tools and
APIs for manipulation, integration and easy data
access. Due to their small size and lightweight (28g)
wearable design, they can be worn on any body seg-
ment for the full range of motion during all types of
tasks, without affecting the movement, techniques, or
motion patterns. Built-in inertial measurement sen-
sors are able to capture kinematic properties, such as
movement in terms of (i) Acceleration, (ii) Rotation,
(iii) Magnetic field.

The updated module boasts a 24MHz CPU with a
precision clock subsystem and provides the three-axis
acceleration and gyrometer data. We applied a shim-
mer sensor on each of the worker’s hands to obtain
expressive manual activity data. The Shimmer sen-
sors provide their data with a frame rate of 50 Hz. In
the current scope of the implementation, hand activity
data is parsed from respective text/csv-files in which
the recorded data has been stored. This accumulates
to 6 features per iteration per sensor (3x gyrometer,
3x accelerometer) every 20 ms.

Evaluation. Shimmer sensors provide reliable and
accurate tracking data, also in rough industrial envi-
ronments. The real-time analysis requires a smartp-
hone as a transmission device, yet does work reliably.
Overall, when aiming for raw accelerometer data, the
Shimmer sensor platforms have proven their suitabi-
lity.

3.2 Gesture Detection

The introduced Kinemic sensor is closely related to
the previously described accelerometer sensors pla-
ced on the wrist of the worker. Yet, it does not pro-
vide access to the raw accelerometer data but directly
provides only higher level gesture detections as re-
sult to the system. Due to this reason, the distinction
between general joint tracking and hand gesture de-
tection was made.

Sensor Description - Kinemic. The Kinemic wrist-
band sensor for hand gesture detection is a new sensor
for which almost no official information is available.
It is based on - presumably - 3-axis accelerometer and
gyrometer sensor and connected to a mobile computa-
tion platform (RaspberryPi) which carries out the ge-
sture detection processes. Currently, 12 gestures are
supported, with the goal to expand to customizable
gestures, air writing, etc.

Evaluation. The sensors are easily initiated and in-
tegrated into a multi-sensor system. The recognition
of the gestures works well for the majority of existing
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gestures. In summary, this sensor with the associa-
ted SDK provides a useful solution for people looking
for high-level off-the-shelf gesture interaction, wit-
hout requiring access to raw accelerometer data.

3.3 Behavior Analysis

3.3.1 Gaze-based Task Segmentation

The analysis of gaze behavior also provides interes-
ting insights into the execution of activities, especially
the segmentation of subsequent tasks in a work pro-
cess. Recent work shows that the gaze feature Nearest
Neighbour Index (Camilli et al., 2008), which descri-
bes the spatial distribution of fixations in a dynamic
environment (Amrouche et al., 2018). Employing a
wearable Pupil Labs eye tracker, this gaze behavior
feature was capable of successfully segmenting and
recognizing tasks. For the sensor discussion, please
refer to section 4.1.1.

4 SENSING OF COGNITIVE
STATES

4.1 Visual Attention

Generally, the human eye gaze represents the most
efficient and fastest, consciously controlled form of
information acquisition with the unique capability to
bridge large distances. Intuitively, the human eye is
mainly responsible for the positioning of eye gaze,
thus represent an expression for stimulus selection,
yet, fine details of gaze behavior also show connecti-
ons to conscious and subconscious information pro-
cessing mechanisms that allow inferences on internal
attention processes.

4.1.1 Gaze Behavior

Sensor Description - Pupil Labs. the PupilLabs
mobile eye tracker is realized as a modular and open
source solution, providing direct access to all sensors
and data streams (gaze position, gaze orientation, sac-
cade analysis, pupil dilation, etc.), rendering the de-
vice as more suitable for academic research applicati-
ons. The PupilLabs eye tracker enables direct access
in real-time to all parameters and tracking results. The
PupilLabs device provides the eye tracking data for
each eye with a distinct timestamp, requiring additio-
nal synchronization of obtained data frames.

Evaluation. The PupilLabs eye tracker provides
rather simple and encompassing access to basic data
streams. As a consequence, the PupilLabs eye tracker
is a suitable, low-cost device for ambitious developers
that want to develop algorithms based on the raw sen-
sor data. However, the sensor fails in outdoor environ-
ments when exposed to scattered infrared light. In the
proposed application scenario, the PupilLabs eye trac-
ker is employed for associating gaze orientation to ob-
jects in space (hands, task-relevant objects, etc.) via
object recognition in the first person video. However,
the achieved results are always situated in the user-
specific coordinates, which, to be associated with an
overall world space of the industrial shop floor requi-
res a complex and detailed localization of the worker,
regarding both head location and orientation.

4.1.2 Visual Focus of Attention

The general spatial allocation of attention can also be
assessed on a less-fine-grained level via external, in-
frastructural sensors. The so-called visual focus of
attention has found sustained application in human-
computer-interaction applications. These differ in ap-
plication and tracking technology but all use head
orientation as the key information for attention orien-
ting (Asteriadis et al., 2009), (Smith et al., 2006),
(Leykin and Hammoud, 2008).

Sensor Description - Kinect v2. As described
above, the Kinect provides a quite reliable skeleton
information on a low-cost platform. It also provides
joint orientation, yet not head orientation. To exploit
the available data for the estimation of the visual fo-
cus of attention, an approximation of shoulder axis
and neck-head axis can be employed.

Evaluation. The visual focus of attention data deri-
ved from this approach can only provide very rough
information on the actually perceived objects and
areas in space. However, it directly provides the spa-
tial context, which misses in the assessment via we-
arable eye trackers, as described above. Hence, the
combination of the two sensors, wearable and infra-
structural, may help in providing substantial advances
in the task of 3D-mapping of visual attention in in-
dustrial environments - a task which will be pursued
in future work.

4.2 Arousal

In the literature, arousal is defined by Kahneman
(Kahneman, 1973) as general activation of mind, or
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as general operation of consciousness by Thatcher
and John (Thatcher and John, 1977).

Psychophysiological measures exploit these phy-
sical reactions of the human body in the preparation
of, execution of, or as a reaction to cognitive activi-
ties. In contrast to self-reported or performance me-
asures, psychophysiological indicators provide conti-
nuous data, thus allowing a better understanding of
user-stimulus interactions as well as non-invasive and
non-interruptive analysis, maybe even outside of the
scope of the users consciousness. Whereas these me-
asures are objective representations of ongoing cogni-
tive processes, they often are highly contaminated by
reactions to other triggers, as e.g. physical workload
or emotions.

4.2.1 Cognitive Load

Besides light incidence control, the pupil is also sen-
sitive to psychological and cognitive activities and
mechanisms, as the musculus dilatator pupillae is di-
rectly connected to the limbic system via sympathe-
tic control (Gabay et al., 2011), hence, the human
eye also represents a promising indicator of cognitive
state. Currently, existing analysis approaches towards
analysis of cognitive load from pupil dilation - Task-
Evoked Pupil Response (TEPR) (Gollan and Ferscha,
2016) and Index of Cognitive Activity (ICA) (Kra-
mer, 1991) - both find application mainly in labora-
tory environments due to their sensitivity to changes
in environment illumination.

Sensor Description - PupilLabs. The employed
Pupil Labs mobile eye tracker provides pupil diameter
as raw measurement data, both in relative (pixel size)
as in absolute (mm) units due to the freely positiona-
ble IR eye cameras. The transformation is achieved
via a 3D model of the eyeball and thus an adaptive
scaling of the pixel values to absolute mm measure-
ments.

Evaluation. The assessment of pupil dilation works
as reliably as the gaze localization with the lack of
official accuracy measures in comparative studies.
Hence, it is difficult to evaluate the sensor regarding
data quality. Overall, the assessment of pupil dilation
with the mobile Pupil Labs eye tracker provides reli-
able data, for laboratory studies or field application.
Erroneous data like blinks needs to be filtered in post-
processing of the raw data.

4.2.2 Cardiac Indicators

The cardiac function, i.e. heart rate, represents anot-
her fundamental somatic indicator of arousal and thus

of attentional activation as a direct physiological re-
action to phasic changes in the autonomic nervous sy-
stem (Graham, 1992). Heart Rate Variability (HRV),
heart rate response (HRR) or T-Wave amplitude ana-
lysis are the most expressive physiologic indicators of
arousal (Suriya-Prakash et al., 2015), (Lacey, 1967).

The stationary and mobile assessment of cardiac
data is very well established in medical as well as
customer products via diverse realizations of ECG
sensors. The different sensors are based on two
main independent measurement approaches: (i) me-
asuring the electric activity of the heart over time via
electrodes that are placed directly on the skin and
which detect minimal electrical changes from the he-
art muscle’s electro-physiologic pattern of depolari-
zing during each heartbeat; and (ii) measuring the
blood volume peak of each heartbeat via optical sen-
sors (pulse oximeters) which illuminates the skin and
measures the changes in light absorption to capture
volumetric changes of the blood vessels (Photoplet-
hysmography (PPG)).

Sensor Description - Shimmer. Shimmer sensors
use a photoplethysmogram (PPG) which detects the
change in volume by illuminating the skin with the
light from a light-emitting diode (LED) and then me-
asuring the amount of light transmitted or reflected
towards a photodiode. From this volume changes an
estimate of heart rate can be obtained.

Sensor Description - Empatica E4. The E4 wris-
tband allows two modes of data collection: (i) in-
memory recording and (ii) live streaming of data.
Accessing in-memory recorded data requires a USB
connection to a Mac or Windows PC running Em-
patica Manager Software for a posteriori analysis.
Accessing streaming data for real-time analysis of so-
matic data, the Empatica Real-time App can be instal-
led from the Apple App Store or Google Play Market
onto a smartphone device via Bluetooth on which the
data can be processed or forwarded. Additionally, a
custom application can be implemented for Android
and iOS systems.

Sensor Description - Microsoft Band 2. The Mi-
crosoft Band 2 is equipped with an optical PPG sensor
for analysis of pulse. With the Microsoft Band repre-
senting an end-user product, the focus in the provided
functionality is not set on providing most accessible
interfaces for academic purposes, yet, still, the availa-
ble SDK enables the access of raw sensor data in real-
time. For data access, the sensor needs to be paired
with a smartphone device and data can be transferred
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via a Bluetooth connection for either direct proces-
sing on the mobile device or further transmission to a
general processing unit.

Evaluation. The Microsoft Band is highly re-
stricted in sensor placement as the sensor is integrated
into the wristband of the device and thus measures the
skin response on the bottom surface of the wrist. In
experiments, the Microsoft Band sensor showed large
drops in measurement data, most probably due to a
change of contact between the sensor and the skin du-
ring device shifts. In contrast, the Shimmer Sensing
Platform allows much more freedom in the placement
of the sensor with the help of external sensing mo-
dules e.g. pre-shaped for mounting on fingers which
show the most promising locations for reliable GSR
measurements.

Accessing real-time data for the E4 wristband
shows similar comfort levels as the Microsoft Band
as the device needs to be paired with a smartphone
device and data can be transferred via a Bluetooth
connection for either direct processing on the mobile
device or further transmission to a general processing
unit. Being designed for research and academic pur-
poses, the Shimmer platform provides easiest and fas-
test access via open and intuitive interfaces. Overall,
the data from all devices can be accessed in real-time,
yet the destinated applications of the products resem-
ble in their applicability in research and development
approaches.

4.2.3 Galvanic Skin Response

From the very early 1900s, the Galvanic Skin Re-
sponse has been the focus of academic research. The
skin is the only organ that is purely innervated by
the sympathetic nervous system (and not affected
by parasympathetic activation). The GSR analyzes
the electrodermal activity (EDA) of the human skin
which represents an automatic reflection of synaptic
arousal as increased skin conductance shows signifi-
cant correlations with neuronal activities (Frith and
Allen, 1983), (Critchley et al., 2000). Hence, Galva-
nic Skin Response (GSR) acts as an indicator of arou-
sal and increases monotonically with attention in task
execution (Kahneman, 1973).

Sensorial Assessment. The accessibility of the raw
and real-time data depends on the respective develop-
ment environment which is provided to support these
sensors, ranging from a general limitation to statisti-
cal information to access of true real-time data.

The GSR can be assessed via mobile, wearable
sensors worn on the bare skin, e.g., as integrated into

activity trackers or smartwatches or scientific activity
and acceleration sensors. These sensors measure the
skin conductance, i.e. skin resistivity via small inte-
grated electrodes. The skin conductance response is
measured from the eccrine glands, which cover most
of the body and are especially dense in the palms and
soles of the feet. In the following, three wearable sen-
sors are explored which provide the analysis of skin
conductance response:

Evaluation
E4 Wristband: is a hand wearable wireless devices

designated for continuous, real-time data acquisi-
tion of daily life activities. It is specifically de-
signed in an extremely lightweight (25g) watch-
like form factor that allows hassle-free unobtru-
sive monitoring in- or outside the lab. With the
built-in 3-axis accelerometer sensor the device is
able to capture motion-based activities. Additio-
nally, the device is able to capture the following
physiological features (i) Galvanic skin response
(ii) Photoplethysmography (heart rate) (iii) In-
frared thermophile (peripheral skin temperature).
The employed Empatica E4 Wristband has alre-
ady found application in various academic rese-
arch applications and publications (van Dooren
et al., 2012), (Fedor and Picard, 2014).

Microsoft Band 2: offers an affordable mean for
tracking a variety of parameters of daily living.
Besides 11 advanced sensors for capturing mo-
vement kinematics, physical parameters and en-
vironmental factors the device also offers various
channels for providing feedback. A 1.26 x 0.5-
inch curved screen with a resolution of 320 x 128
pixels can be used to display visual messages. Ad-
ditionally, a haptic vibration motor is capable of
generating private vibration notifications.

Shimmer: sensors have already been validated for
use in biomedical-oriented research applications.
Due to their small size and lightweight (28g) we-
arable design, they can be worn on any body seg-
ment for the full range of motion during all types
of tasks, without affecting the movement, techni-
ques, for motion patterns. Built-in inertial measu-
rement sensors are able to capture kinematic pro-
perties, such as movement in terms of (i) Accele-
ration, (ii) Rotation, (iii) Magnetic field.
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Table 1: Overview on introduced sensors, grouped according to their sensing category and analysis type, listing the associated
technologies and sensor parameters.

Category Type Sensor Name Technology Accuracy / Range

A
ct

iv
ity Sk

el
et

on Full Skeleton Microsoft Kinect v2
Time-of-Flight

Infrared

Depth: 512x424 @ 30 Hz

FOV: 70◦ x 60◦

RGB: 1920x1080 @ 30 Hz

FOV: 84◦ x 53◦

acc: 0.027m, (SD: 0.018m)

depth range: 4m

Sub-Skeleton
Leap Motion

(Potter et al., 2013)

Stereo-Vision

Infrared

hand tracking

FOV: 150◦ x 120◦

avg error: < 0.0012m

(Weichert et al., 2013)

depth range: 0.8m

Joint Tracking

(wrist)
Shimmer

3-axis accelerometer

gyrometer

Range: ±16g

Sensitivity: 1000 LSB/g at ±2g

Resolution: 16 bit

G
es

tu
re

Hand Gesture Kinemic
3-axis accelerometer

gyrometer
not available

B
eh

av
io

r

A
na

ly
si

s

Gaze Behavior
Pupil Labs

(Kassner et al., 2014)

Mobile Eyetracker

gaze feature analysis

for task segmentation

accuracy 91%

(Amrouche et al., 2018)

C
og

ni
tiv

e
St

at
es V

is
ua

l

A
tte

nt
io

n

Gaze Behavior
Pupil Labs

(Kassner et al., 2014)

Mobile Eyetracker

fixations, saccades,

gaze features

Gaze acc: 0.6◦

Sampling Rate: 120 Hz

Scene Camera: 30 Hz @ 1080p

60 Hz @ 720p

120 Hz @ VGA

Calibration: 5-point, 9 point

Visual Focus

of Attention
Microsoft Kinect v2

Head Orientation from

Skeleton Tracking
not available

A
ro

us
al

Cognitive Load Pupil Labs
Mobile Eyetracker

pupil dilation

pupil size in pixel

or mm via 3D model

acc. not available

Heart Rate

(HRV, HRR)
Microsoft Band 2 PPG

avg. error rate: 5.6%

(Shcherbina et al., 2017)

Empatica E4 Wristband

(Poh et al., 2012)
PPG

samping frequency: 64 Hz

error rate: 2.14%

Galvanic Skin

Response
Microsoft Band 2

data rate: 0.2/5Hz

acc. not available

Empatica Wristband
Empatica E3 EDA

proprietary design

data rate: 4 Hz

mean cor. to reference

0.93, p < 0.0001

(Empatica, 2016)
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5 CHALLENGES &
OPPORTUNITIES

5.1 Summary

In the previous chapters, several sensors have been
described regarding their underlying technology,
access to sensor data and evaluation regarding suit-
ability for academic or industrial exploitation. As an
overview, a short fact summary of the information is
collected in Table 1, including further numerical data
regarding the accuracy and range of the sensors, if
available.

5.2 Handling Amounts of Data

The first challenge in the analysis of multi-sensor ap-
plications is the handling of the amounts of data, usu-
ally with real-time requirements. This applies both
the required levels of computational performance as
well as to further hardware assets as BUS bandwidth
or hard drive access speed.

But also the offline handling of the data may re-
present problems for the design of interactive systems
as especially raw video data - when stored - quickly
exceeds GigaBytes of data. These amounts of data
need to be managed, if possible in suitable database
structures to enable efficient further processing of re-
corded data.

Other than data transfer and storage, also human
resources for post-processing of the data represents
a substantial challenge. This implies checking, filte-
ring data, extracting relevant segments of data, etc.
Especially - when aiming for supervised machine le-
arning tasks - the manual labeling of activities repre-
sents an effort which often substantially exceeds the
actual time of collected data and needs to be consi-
dered in the application setup. This labeling can be
improved via suitable software solutions that enable
the review and direct labeling of multimodal data stre-
ams.

5.3 Interoperability, Interfaces,
Operating Platforms

Besides the pure amount of data, the different sour-
ces and interfaces represent a further source of pro-
blems. Depending on the producer, the analysis of the
sensors requires specific supported frameworks and
development environments. Mobile sensors are of-
ten associated with Android apps for mobile data col-
lection and transfer, or e.g. the Microsoft Kinect sen-
sors require Microsoft Windows platforms for opera-
tion, etc.

Creating a multi-sensor industrial application re-
quires the multi-platform capability of development
staff and often the creation of distributed systems ope-
rating on different native platforms. In the presen-
ted industrial application, such a distributed set of
platforms is employed, inter-connected with a cross-
platform messaging solution, thus overcoming the in-
teroperability issue.

5.4 Multi-sensor Fusion

In many industrial applications, no single sensor is
suitable to cover the overall complexity of a situa-
tion. Furthermore, no sensor provides perfect data,
so redundant sensor designs enable the compensation
of sensor failure. However, the handling of parallel,
multi-modal datastreams provides several issues re-
garding data processing and system design, as discus-
sed in the following paragraphs.

5.4.1 Synchronization & Subsampling

The synchronization of different sensor types repre-
sents a substantial problem, especially of non-visual
sensors (accelerometers, etc.). It is advisable to in-
troduce a synchronizing activity which is unambigu-
ously identifiable in diverse data representations. In
the introduced industrial application, a single hand
clap has proved to provide useful data for synchro-
nization as it shows explicit peaks in motions sensing
and can precisely be timed also in visual and auditory
sensors.

However, a single synchronization is usually not
sufficient. Different sampling rates from the diverse
sensor types require a sub-or re-sampling of data to
combine single data snippets into collected data fra-
mes which are able to provide an overall representa-
tion of the scene over the various available sensors.
Sometimes, when recording long sessions (¿1 hour),
the differences in the internal clocks of the sensors
may also cause significant shifts in the data, making
re-synchronization in periodic time ranges advisable.

5.4.2 Dealing with the Uncertainty of Sensor
Data

One of the most critical and difficult aspects of multi-
modal sensor applications is the evaluation of data
quality as this directly affects fusion of different data
types. Some sensors directly provide measures of
confidence of sensor data, while others require hand-
made post-processing for the evaluation of data qua-
lity. These can range from rule-based evaluation crite-
ria as application-based plausibility checks (e.g. avoi-
ding jitter in hand tracking data by limiting the maxi-
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mal distance between consecutive data frames) to sta-
tistical measures (check if data lies in the standard va-
lue range) or comparison of actual data with predicti-
ons from previous frames.

Such evaluation of data quality is required to dy-
namically select the sensors with the currently best
and most reliable sensor data, hence is the main pre-
requisite for the fusion of redundant sensor data.

5.4.3 Fusion of Redundant Data

Based on an evaluation of incoming sensor data qua-
lity, the different data types can be merged via dif-
ferent weights based on the respective sensor data
confidence. In the proposed application-scenario, a
Kalman-Filter was used to combine skeleton data
from two Kinect sensors and an RGB image sensor
to calculate a merged, stabilized user skeleton for the
adjacent behavior analysis approach.

6 CONCLUSION AND FUTURE
WORK

In this paper, various sensors for the analysis of acti-
vities and cognitive states are introduced in the speci-
fic case of an industrial, semi-manual assembly sce-
nario. The proposed sensors range from image- and
depth-image-based infrastructural sensors to body-
worn sensors of somatic indicators of behavior and
cognitive state. For all sensors, a general description
and evaluation regarding the experiences in the des-
cribed industrial use-case have been provided, trying
to help other researchers in their selection of suitable
sensors for their specific research question.

The sensor discussion is followed with a general
description of issues and challenges of sensors in in-
dustrial application scenarios, with a special focus on
multi-sensor fusion.

The goal of future work is to realize a truly oppor-
tunistic sensor framework which dynamically can add
and select sensors which provide the best data for the
current application.
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