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Abstract: This study applies intelligent analytical methods to analyze temperature anomaly events during the past 
seven centuries of countries in the Southeast Asia including Thailand, Malaysia, Myanmar, and Cambodia. 
The temperature reconstruction during the years 1300 to 1999 were used as data source for anomaly 
analysis. In the analytical process, correlation analysis was applied to initially investigate the temperature 
variability concordance among the Southeast Asian countries. The results are that temperature variability 
patterns in Thailand, Myanmar, and Cambodia are moderately correlated to each other. On the contrary, the 
temperature variation patterns of Malaysia do not correlate to other countries in the same region. The further 
in-depth analysis focuses on the temperature anomaly of Thailand that shows high variability from the 14th 
to 16th centuries. Several machine learning algorithms had been applied to estimate the temperature anomaly 
of Thailand based on the anomaly events among the neighbors. The learned models reveal that Myanmar 
temperature anomaly most associate to the Thailand’s temperature variation. The performance of each 
model had been assessed and the results reveal that the chi-squared automatic interaction detection, or 
CHAID, is the best one with 0.624 correlation coefficient and relative error around 0.611. 

1 INTRODUCTION 

Climate change has been reported to have strong 
influence over various natural dangers such as global 
wildfires (Jolly et al., 2015), major volcanic 
eruptions (Fujiwara et al., 2015), intense tropical 
cyclones (Wing, Emanuel, and Solomon, 2015), 
mega-heatwave (Sánchez-Benítez et al., 2018), and 
extreme cold (Hartmann, 2015; Liu et al., 2015). 
Temperature and precipitation anomalies are two 
important factors to estimate climate changes. To 
assess climate variation and trends, researchers 
deploy several interpolating techniques, for instance, 
analyzing the stratospheric temperature change 
(Seidel et al., 2016), estimating the Antarctic and 
Arctic surface air temperature anomalies over land 
and sea ice (Comiso et al., 2017; Dodd et al., 2015; 
Francis and Vavrus, 2015; Turner et al., 2016), 
examining the cloud amount anomalies (Liu and 
Key, 2016), and observing wind and temperature 
over the ocean surface (Dong and Dai, 2015; 
England et al., 2014; Randel and Wu, 2015). 

These techniques require temperature record as a 
major source of information for the climate variation 
assessment. Temperature reading using thermometer 
from the ground-based weather stations and 
instrumental reading from ships and buoys are 
common form of temperature data acquisition. But 
the major shortcoming of this kind of data source is 
that the instrumental data are available for only the 
past one or two centuries. 

To observe temperature trends and variations 
over a long period spanning across several centuries 
or a millennium, scientists have to rely on some 
forms of natural proxy records such as tree rings 
(Cai et al., 2018; Seim, 2016) and sediments from 
lakes (Li et al., 2017; McColl, 2016). Such natural-
based reconstruction data are now complemented 
with the state-of-the-art reanalysis technique that 
combines instrumental record with satellite 
observations to form an atmospheric data set suitable 
for studying climate change (Cowtan and Way, 
2014; Donat and Sillmann, 2014; Kobayashi et al., 
2015; Saha et al., 2014; Simmons et al., 2017; Xu et 
al., 2018). Reanalysis data are now widely adopted 
for observing temperature trends in many areas 
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globally (Kern et al., 2016; Song et al., 2016; Way 
and Bonnaventure, 2015). 

In this work, we use reanalysis data of surface 
temperature anomaly in eastern and south-central 
Asia (Shi et al., 2015) to analyze the anomaly 
association patterns among four countries in the 
Southeast Asia. We apply correlation analysis and 
machine learning techniques to capture the anomaly 
association patterns. The applied machine learning 
techniques include artificial neural network (ANN), 
classification and regression tree (CART), and chi-
squared automatic interaction detection (CHAID). 
Machine learning has recently been applied to the 
climatology domain, but the technique is limited to 
cluster analysis (Horton et al., 2015; Kretschmer et 
al., 2018). This work introduces a classification 
scheme to support the work of climatologists as well 
as to expand the frontier of climate change study. 

2 ANOMALY ANALYSIS 
METHODOLOGY 

2.1 Area of Study 

We focus our anomaly analysis on the neighborhood 
countries of Thailand sharing some common 
characteristics based on the climatic type (Figure 1). 

Thailand locates at 102.5 longitude and 17.5 
latitude. Country in the northwest is Myanmar 
(102.5 longitude, 2.5 latitude) with the same tropical 
wet and tropical wet and dry climate zones as in the 
north and the west parts of Thailand. Cambodia in 
the east (107.5 longitude, 12.5 latitude) is in the 
tropical wet and dry zone sharing the same climate 
type as the northeastern of Thailand. Malaysia in the 
south (102.5 longitude, 17.5 latitude) is in the 
tropical wet zone as most southern part of Thailand.  

2.2 Temperature Anomaly Analysis 
Steps 

To study the temperature anomaly patterns of 
countries in the Southeast Asia, we perform the 
following steps of data analytics:  

Step 1: Data Extraction. The temperature 
reconstruction data during the rainy season (June-
July-August) of the four countries are extract from 
the original data set that contains surface 
temperature anomaly of 126 countries in the east and 
central Asia. These data had been reconstructed in 
2015 by Feng Shi from China and his international 
team using hundreds of proxy climate data (Shi et 

al., 2015) Data are made publicly available by the 
National Centers for Environmental Information 
(http://ncdc.noaa.gov/ paleo/study/18635). 

Step 2: Correlation Analysis. Surface 
temperature anomalies of the selected four countries 
during the years 1300 to 1999 are analyzed with 
Pearson correlation to explore their association of 
anomaly event occurrence. 

 

 

 Tropical wet and dry

 Tropical wet 

Figure 1: Geographical map of the study area in Southeast 
Asia (shown on the above map) covering (1) Myanmar, 
(2) Thailand, (3) Cambodia, and (4) Malaysia, with the 
climate chart (on the bottom) showing the two weather 
styles of this region: tropical wet along the coastal areas of 
Myanmar, Thailand, and Malaysia and tropical wet and 
dry in the mainland regions. (sources: http://www. 
nationsonline.org/oneworld/map/physical_world_map_32
00.htm and http://www.asiafastfacts.com/asiaclimate. 
html). 

Step 3: Predictive Model Building. We apply 
five learning algorithms to construct a predictive 
model with Thailand’s temperature anomaly as a 
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target of the model. These algorithms are ANN, 
CART, CHAID, linear regression, and generalized 
linear model. 

Step 4: Model Evaluation. The five models are 
assessed based on their correlation metric and 
relative error on predicting the target event. The best 
model with the highest correlation and the lowest 
error is to be reported as the temperature anomaly 
estimator. 

3 ANALYSIS RESULTS 

3.1 Correlation Analysis Result of 
Temperature Variability 

From the exploration of temperature anomalies 
among the four Southeast Asian countries 
(summarized in Table 1), we found that temperature 
in Cambodia is the most fluctuate one with the 
variance as high as 0.171. Cambodia also shows the 
cold period with its minimum temperature anomaly 
at -1.688 oC. The country showing clearly the warm 
period during the past millennium is Malaysia with 
the mean temperature anomaly at 0.093 oC. In the 
18th century while Cambodia was in the cold phase, 
Malaysia was in the warm phase (as shown in Figure 
2).  

Table 1: Temperature anomaly statistics. 

Region / 
Country 

Temperature Anomaly (oC) 

Min Max Mean Variance

Eastern and 
south-central 
Asia (E&SC 
Asia) 

-0.766 0.089 -0.323 0.030 

Malaysia 
(MAL) 

-0.724 0.831 0.093 0.083 

Cambodia 
(CAM) 

-1.688 0.284 -0.613 0.171 

Myanmar 
(MYR) 

-0.524 0.446 -0.027 0.038 

Thailand 
(THA) 

-1.315 0.783 -0.243 0.113 

 

Figure 2: Temperature anomaly comparison of eastern and 
south central Asia against anomalies in Malaysia, 
Cambodia, Myanmar, and Thailand. 

The association of temperature anomaly patterns 
through the correlation analysis (as displayed in 
Table 2) is the result from the second step of our 
analysis. The strongest association pattern through 
Pearson’s correlation is the temperature anomalies 
between Thailand and Myanmar. Malaysia shows 
weak correlated temperature patterns to other 
neighboring countries. Instead, among the four 
regional countries, temperature pattern of Malaysia 
is closest to the east and central Asia with 
correlation coefficient 0.125, whereas Cambodia 
shows opposite direction of pattern. 

Table 2: Pearson correlation of temperature anomaly. 

 E&SC 
Asia 

MAL CAM MYR THA 

E&SC 
Asia 

-- 0.125 -0.175 0.051 0.009 

MAL 0.125 -- 0.034 0.107 0.044 

CAM -0.175 0.034 -- 0.070 0.313 

MYR 0.051 0.107 0.070 -- 0.549 

THA 0.009 0.044 0.313 0.549 -- 

3.2 Temperature Estimation Model 

The five machine learning algorithms that have been 
used to model temperature anomaly association 
among Thailand and the other three neighboring 
countries in the region are assessed their 
performances based on the correlation coefficient 
and the relative error. Results are summarized in 
Table 3. 
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Table 3: Performance comparison of estimation models. 

Model Correlation 
coefficient 

Relative 
error 

CHAID 0.624 0.611 

CART 0.611 0.627 

ANN 0.575 0.673 

Linear Regression 0.559 0.688 

Generalized Linear Model 0.558 0.688 

It can be seen from the results that CHAID is the 
best machine learning algorithm to estimate 
temperature anomaly of Thailand based on 
anomalies of the neighbors. The CHAID model is 
shown in Figure 3. 

CHAID is a tree-based machine learning 
algorithm that grows tree and split data set into 
subsets based on the result from the chi-square test 
(Kass, 1980). The tree is to be interpreted from the 
root node on the left-hand-side to reach a 
conclusion, which is the target node on the right-
hand-side. From Fig. 3, the interpretation of this tree 
model to estimate temperature anomaly (TA) in 
Thailand is as follows. 

• In case of TA in Myanmar ≤ -0.326, the TA in 
Thailand is around -0.643.  

• In case of TA in Myanmar > -0.326 but less 
than or equal to -0.212, the TA in Thailand is 
around -0.486.  

• In case of TA in Myanmar > -0.212 but less 
than or equal to -0.058, also taking into account 
TA in Cambodia:  

− If the TA in Cambodia ≤ 0, then TA in 
Thailand is expected to be around -0.319.  

− But if the TA in Cambodia > 0, then TA in 
Thailand is expected to be around 0.130.  

• In case of TA in Myanmar > -0.058 but less 
than or equal to 0.044, taking into account TA 
in Cambodia:  

− If the TA in Cambodia ≤ -0.939, then TA in 
Thailand is around -0.259.  

− If the TA in Cambodia > -0.939 but less 
than or equal to -0.378, then TA in 
Thailand is around -0.343.  

Predictive Factors 
Thailand

Temperature
Anomaly

MYR: ≤ -
0.326 

     -0.643 

       

MYR: 
(-0.326, -

0.212] 
     -0.486 

       

MYR: 
(-0.212, -

0.058] 
& CAM: ≤ 

0 
   -0.319 

       

MYR: 
(-0.212, -

0.058] 
&

CAM: > 
0 

   0.130 

       

MYR: 
(-0.058, 
0.044] 

& CAM: ≤ 
-0.939 

   -0.259 

       

MYR: 
(-0.058, 
0.044] 

&
CAM: 

(-0.939, 
-0.378] 

   -0.343 

       

MYR: 
(-0.058, 
0.044] 

&
CAM: > 
-0.378 

& MAL:≤ -0.192  -0.027 

       

MYR: 
(-0.058, 
0.044] 

&
CAM: > 
-0.378 

&
MAL: 

(-0.192, 0.247] 
 -0.201 

       

MYR: 
(-0.058, 
0.044] 

&
CAM: > 
-0.378 

& MAL: > 0.247  0.022 

       

MYR: 
(0.044, 
0.149] 

     -0.117 

       

MYR: > 
0.149 

& MAL: ≤ 
-0.192 

   0.114 

       

MYR: > 
0.149 

&
MAL: 

(-0.192, 
0.181] 

& CAM: ≤ -
0.939 

 -0.337 

       

MYR: > 
0.149 

&
MAL: 

(-0.192, 
0.181] 

&
CAM: 

(-0.939, -
0.003] 

 0.037 

       

MYR: > 
0.149 

&
MAL: 

(-0.192, 
0.181] 

&
CAM: > -

0.003 
 -0.090 

Figure 3: CHAID model for estimating temperature 
anomaly of Thailand based on the neighboring anomalies. 
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Predictive Factors 
Thailand 

Temperature
Anomaly

MYR: > 
0.149 

& 
MAL: 
(0.181, 
0.247] 

   0.135 

       

MYR: > 
0.149 

& 
MAL: 
(0.247, 
0.332] 

   -0.283 

       

MYR: > 
0.149 

& 
MAL: > 

0.332 
   -0.007 

Figure 3: CHAID model for estimating temperature 
anomaly of Thailand based on the neighboring anomalies 
(cont.). 

− But if the TA in Cambodia > -0.378, then 
also consider the TA in Malaysia:  
If TA in Malaysia ≤ -0.192, then TA in 

Thailand is around -0.027.  
If TA in Malaysia > -0.192 but less 

than or equal to 0.247, then TA in 
Thailand is around -0.201.  

If TA in Malaysia > 0.247, then TA in 
Thailand is around 0.022.  

• In case of TA in Myanmar > 0.044 but less than 
or equal to 0.149, the TA in Thailand is around 
-0.117.  

• In case of TA in Myanmar > 0.149, also taking 
into account TA in Malaysia:  
− If the TA in Malaysia ≤ -0.192, then TA in 

Thailand is around 0.114.  

− If the TA in Malaysia > -0.192 but less than 
or equal to 0.181, then also consider TA in 
Cambodia:  
If TA in Cambodia ≤ -0.939, then TA 

in Thailand is around -0.337.  
If TA in Cambodia > -0.939 but 

less than or equal to -0.003, 
then TA in Thailand is around 
0.037.  

If TA in Cambodia > -0.003, then TA 
in Thailand is around -0.090.  

− If the TA in Malaysia > 0.181 but less than 
or equal to 0.247, then TA in Thailand is 
around 0.135.  

− If the TA in Malaysia > 0.247 but less than 
or equal to 0.332, then TA in Thailand is 
around -0.283.  

− If the TA in Malaysia > 0.332, then TA in 
Thailand is around -0.007.  

4 CONCLUSIONS 

This research presents the statistical and machine 
learning approaches to learn correlated and 
associated patterns from historical temperature 
anomaly events among countries in the Southeast 
Asia including Myanmar, Thailand, Cambodia, and 
Malaysia. The temperature anomaly data used in this 
work are obtained from the multi-proxy 
reconstruction of east and south-central Asia during 
June-July-August of the past millennium between 
the years 1300-1999 C.E.  

Correlation analysis results reveal that climate 
variations in Myanmar and Thailand closely 
resemble, but anomaly events in Malaysia are quite 
different from other countries. From the temperature 
anomaly record of Cambodia, the cold events during 
the 18th century are noticeable and contrasting to the 
warm events in Malaysia within the same timeframe. 

Machine learning methodology is further applied 
to study associative patterns of temperature 
variations across countries. Such patterns are to be 
analyzed through modeling within the classification 
and regression framework. The results from 
applying five algorithms to induce patterns with 
numeric target, which is the temperature anomaly of 
Thailand, reveal that CHAID algorithm is the best 
one. The CHAID model employs temperature 
anomaly in Myanmar as the first factor to estimate 
temperature anomaly in Thailand. In case of 
complicate estimation, the model takes temperature 
anomaly of Cambodia as the second factor. This is 
in accordance with the correlation analysis results 
that Thailand’s temperature anomalies closely 
correlate to the anomalies in Myanmar and 
Cambodia. But the CHAID model provides more 
information than the correlation analysis in that the 
model can quantify the conditional temperature 
anomalies necessary for making accurate estimation 
over the target’s temperature anomalies.  
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