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Abstract: Large-scale global optimization (LSGO) is known as one of the most challenging problem for many search 
algorithms. Many well-known real-world LSGO problems are not separable and are complex for 
comprehensive analysis, thus they are viewed as the black-box optimization problems. The most advanced 
algorithms for LSGO are based on cooperative coevolution with problem decomposition using grouping 
methods. The random adaptive grouping algorithm (RAG) combines the ideas of random dynamic grouping 
and learning dynamic grouping. In our previous studies, we have demonstrated that cooperative coevolution 
(CC) of the Self-adaptive Differential Evolution (DE) with Neighborhood Search (SaNSDE) with RAG 
(DECC-RAG) outperforms some state-of-the-art LSGO algorithms on the LSGO benchmarks proposed 
within the IEEE CEC 2010 and 2013. Nevertheless, the performance of the RAG algorithm can be 
improved by tuning the number of subcomponents. Moreover, there is a hypothesis that the number of 
subcomponents should vary during the run. In this study, we have performed an experimental analysis of 
parameter tuning in the RAG. The results show that the algorithm performs better when using 
subcomponents of larger size. In addition, some improvement can be done by applying dynamic group 
sizing. 

1 INTRODUCTION 

Optimization problems with many hundreds or 
thousands of objective variables are called large-
scale global optimization (LSGO) problems. LSGO 
is known as one of the most challenging problem for 
many search techniques from the field of 
mathematical programming and evolutionary 
optimization. Many well-known real-world LSGO 
problems are not separable and are complex for 
comprehensive analysis, thus they are viewed as the 
black-box optimization problems even the objective 
function has analytical representation (using 
mathematical formula).  

Evolutionary algorithms (EAs) have proved their 
efficiency at solving many complex real-world 
black-box optimization problems. However, their 
performance usually decreases when the 
dimensionality of the search space increases. The 
most advanced algorithms for LSGO are based on 
cooperative coevolution (CC) with problem 

decomposition using different grouping methods, 
which decomposes LSGO problems into multiple 
low-dimensional non-overlapping subcomponents. 
Unfortunately, the nonseparability of real-world 
LSGO problems excludes a straightforward variable-
based decomposition. There exist at least three types 
of subcomponent grouping methods, including: 
static, random dynamic and learning dynamic 
grouping. The static grouping performs well only for 
well-studied LSGO problems with regular 
structures. The majority of state-of-the-art LSGO 
techniques are based on the random grouping and 
the learning-based grouping. The standard random 
grouping can be applied to the wide range of 
separable and non-separable LSGO problems, but it 
does not use any feedback from the search process 
for creating more efficient variables combinations. 
Many learning dynamic grouping techniques 
demonstrates too greedy adaptation, thus performs 
well only with separable LSGO problems. 
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In our previous study, we have proposed a novel 
grouping technique that combines the ideas of the 
random dynamic grouping and the learning dynamic 
grouping. The approach is called the random 
adaptive grouping (RAG). In our implementations, 
the RAG is combined with cooperative coevolution 
(CC) of the Self-adaptive Differential Evolution 
(DE) with Neighborhood Search (SaNSDE) (the 
whole search algorithm is called DECC-RAG). The 
RAG starts with random subcomponents of an equal 
predefined size. After some generations of the 
DECC (so-called adaptation period), we estimate the 
performance of each subcomponent. A portion of the 
best subcomponents is saved for the next adaptation 
period and for the rest of subcomponents we apply 
the random grouping again. Such a feedback forms 
different groups of variables and adaptively changes 
them during the search. 

In this study, we have performed an experimental 
analysis of parameter tuning in the RAG. We have 
estimated how the performance of the DECC-RAG 
depends on the number of subcomponents. And, we 
have implemented and investigated a modification 
of the RAG with changing number of 
subcomponents. In this paper, we will present the 
experimental results for the LSGO CEC’10 
benchmark only, because of great amount of time- 
and resource-costly fitness evaluations. 
Nevertheless, we will present and discuss the results 
for the LSGO CEC’13 benchmark in our further 
works and our presentation of the study. 

The rest of the paper is organized as follows. 
Section 2 describes related work. Section 3 describes 
the proposed approach and experimental setups. In 
Section 4 the results of numerical experiments are 
discussed. In the Conclusion the results and further 
research are discussed. 

2 RELATED WORK 

There exist a great variety of different LSGO 
techniques that can be combined in two main 
groups: non-decomposition methods and cooperative 
coevolution (CC) algorithms. The first group of 
methods are mostly based on improving standard 
evolutionary and genetic operations. But the best 
results and the majority of approaches are presented 
by the second group. The CC methods decompose 
LSGO problems into low dimensional sub-problems 
by grouping the problem subcomponents. There are 
many subcomponent grouping methods, including: 
static grouping (Potter and Jong, 2000), random 
dynamic grouping (Yang et al., 2008c) and learning 

dynamic grouping (Omidvar et al., 2014, Liu and 
Tang, 2013). 

The first attempt to divide solution vectors into 
several subcomponents using the static grouping was 
proposed by (Potter and Jong, 1994). The approach 
proposed by Potter and Jong decomposes a n-
dimensional optimization problem into n one-
dimensional problems (one subcomponent for each 
variable). The CCGA employs CC framework and 
the standard genetic algorithm (GA). Potter and Jong 
had investigated two different modification of the 
CCGA: CCGA-1 and CCGA-2. The CCGA-1 
evolves each variable of objective in a round-robin 
fashion using the current best values from the other 
variables of function. The CCGA-2 algorithm 
employs the method of random collaboration for 
calculating the fitness of an individual by integrating 
it with the randomly chosen members of other 
subcomponents. Potter and Jong had shown that 
CCGA-1 and CCGA-2 outperforms the standard 
GA. Unfortunately, search techniques based on the 
static grouping are inefficient for many non-
separable LSGO problems. 

One of the most popular and well-studied random 
grouping method had been proposed by Yang et al. 
(Yang et al., 2007, Yang et al., 2008c) and uses a 
DE-based CC method. The approach is called 
DECC-G and it is used as a core conception for 
many advanced techniques. 

The learning dynamic grouping seems to be the 
most perspective approach as it collects and uses 
feedback information for improving the 
decomposition stage. There were proposed a CC 
algorithm based on the correlation matrix (Ray and 
Yao, 2009), a CC with Variable Interaction Learning 
(CCVIL) (Chen et al, 2010), an automated 
decomposition approach (DECC-DG) with 
differential grouping (Omidvar et al., 2014) and 
many others. In our previous studies, we have 
proposed the adaptive variable-size random 
grouping algorithm (AVS-RG CC) based on the 
Population-Level Dynamic Probabilities adaptation 
model (Sopov, E., 2018). A good survey on LSGO 
and methods is proposed in (Mahdavi et al., 2015). 

The DECC-RAG algorithm (Vakhnin and 
Sopov, 2018), which is investigated in this study, 
combines the RAG approach with CC of the 
SaNSDE. The SaNSDE algorithm have been 
proposed by (Yang et al, 2008b). We have chosen 
this algorithm because of its self-adaptive tuning of 
parameters during optimization process. After each 
regrouping of variable in the CC stage of the DECC-
RAG, we will deal with new optimization problems, 
thus we need to choose a new efficient search 
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algorithm for each subcomponent. The SaNSDE 
forms an efficient combination of DE’s parameters 
(such as the type of mutation, the differential weight 
and the crossover probability) in an automated (self-
adaptive) way. 

The DECC-RAG operates with subcomponents 
of equal size. This limitation excludes such 
problems of the grouping methods as uneven 
distribution of computational resources between 
search algorithms and tuning the minimum and 
maximum number of variables in groups. The RAG 
divides the n-dimensional solution vector into m s-
dimensional sub-components (m x s = n), thus the 
number of subcomponents is a parameter of the 
algorithm. In our previous study we have estimated 
the performance of the DECC-RAG with m = 10 on 
the CEC’10 and CEC’13 LSGO benchmarks. The 
experiments have shown that the proposed approach 
outperforms on average some state-of-the-art 
algorithms such as DMS-L-PSO dynamic multi-
swarm and local search based on PSO algorithm) 
(Liang and Suganthan, 2005), DECC-G (cooperative 
coevolution with random dynamic grouping based 
on differential evolution) (Yang et al, 2008c),  
MLCC (Multilevel cooperative coevolution based on 
differential evolution) (Yang et al, 2008a) and 
DECC-DG DECC-DG (cooperative coevolution 
with differential grouping based on differential 
evolution) (Omidvar et al, 2014). 

It should be noted that the comprehensive 
experimental analysis of LSGO algorithms is a 
challenging problem because computations are time- 
and resource-costly. According to the CEC LSGO 
competition rules, the performance of a LSGO 
algorithm is evaluated through 25 independent runs 
on each benchmark problem using 3x106 fitness 
evaluations in each independent run of the algorithm 
(Li et al., 2013). In a case of serial computations 
using 1 processor, the time for estimating the 
performance of one algorithm (or one configuration 
of an algorithm) is about 28 hours for LSGO 
CEC’10 benchmark and is about 255 hours for 
LSGO CEC’13 benchmark. We have implemented 
all our numerical experiments using the C++ 
OpenMP framework for parallel computing. The 
time of computations using 16 processors is about 5 
hours for LSGO CEC’10 benchmark and is about 22 
hours for LSGO CEC’13 benchmark. 

3 EXPERIMENTAL SETUPS 

The general scheme of the DECC-RAG can be 
described by the following pseudo code: 

Pseudocode of the DECC-RAG algorithm. 

1: Set FEV_max, FEV_global, T, 
FEV_local = 0; 
2: An n-dimensional object vector is 
randomly divided into m  
s-dimensional subcomponents; 
3: i = 1; 
4: Evolve the i-th subcomponent with  
SaNSDE algorithm; 
5: FEV_local++, FEV_global++; 
6: If i < m, then i++, and go to  
Step 4 else go to Step 7; 
7: Choose the best_solutioni for each 
subcomponents; 
8: If (FEV_local < T) then go to  
Step 3 else go to Step 9; 
9: Choose m/2 subcomponents with the 
worse performance and randomly mix 
indices of their variables, restart 
parameters of SaNSDE for the choosen 
m/2 subcomponents, FEV_local = 0; 
10: If (FEV_global < FEV_max) go to 
Step 3, else go to Step 11; 
11: Return the best found solution. 

Here FEV_max is maximum number of fitness 
evaluations, T is an adaptation period, FEV_local 
and FEV_global are counters for fitness evaluation 
inside the adaptation period and for the whole 
algorithm, respectively. 

We use the following general settings for the 
experiments: 

 20 CEC’10 LSGO benchmark problems; 

 Dimensionality of all problems are D = 1000; 

 FEV_max is 3x106 in each independent run ; 

 25 independent runs for each benchmark 
problem; 

 The performance of algorithms is estimated 
using the median value of the best found 
solutions; 

 Population size for each subcomponent is 50; 

 Adaptation period T is 3x105; 

 Number of subcomponents m is {4, 8, 10, 20, 
40, 50, 100}. We use the following notation: 
DECC-RAG(m);  

 The DECC-RAG(4-8) algorithm starts with 
m=4, and after 4 periods of adaptation (T=4, 
FEV=1.2x106) m is changed to 8; 

 All parameters of the SaNSDE algorithm are 
self-adaptive.  

 

An Investigation of Parameter Tuning in the Random Adaptive Grouping Algorithm for LSGO Problems

257



Table 1: The experimental results on the CEC’10 LSGO benchmark problems. 

Problem 
DECC-
RAG(4) 

DECC-
RAG(8) 

DECC-
RAG(10) 

DECC-
RAG(20) 

DECC-
RAG(40) 

DECC-
RAG(50) 

DECC-
RAG(100) 

DECC-
RAG(4-8) 

1 7.96E-10 1.02E-17 1.97E-18 3.30E-10 1.61E+02 1.58E+04 1.91E+07 6.55E-14 

2 3.00E+03 1.23E+03 7.87E+02 1.82E+03 4.62E+03 5.16E+03 5.85E+03 2.99E+03 

3 1.09E+01 2.75E+00 1.49E+00 1.21E-08 1.09E-02 1.45E-01 3.53E+00 1.06E+01 

4 6.85E+11 9.67E+11 1.02E+12 2.24E+12 3.45E+12 4.58E+12 8.99E+12 9.35E+11 

5 7.96E+07 1.43E+08 1.63E+08 2.27E+08 3.94E+08 4.86E+08 7.00E+08 7.67E+07 

6 2.03E+01 2.03E+01 2.04E+01 2.07E+01 1.98E+07 2.00E+07 2.00E+07 2.03E+01 

7 5.93E+00 8.76E+00 1.70E+02 5.06E+05 1.08E+08 3.39E+08 3.09E+09 2.00E+00 

8 2.09E+04 1.03E+07 2.36E+07 4.07E+07 1.17E+08 1.47E+08 3.01E+08 2.76E+06 

9 4.22E+07 5.46E+07 6.60E+07 1.15E+08 1.97E+08 2.31E+08 3.44E+08 4.40E+07 

10 4.98E+03 3.70E+03 3.24E+03 2.11E+03 5.27E+03 8.85E+03 1.17E+04 4.89E+03 

11 1.11E+02 2.15E+02 2.16E+02 2.35E+02 2.35E+02 2.35E+02 2.35E+02 1.15E+02 

12 2.73E+04 9.05E+03 8.68E+03 2.51E+04 9.51E+04 1.32E+05 3.34E+05 1.38E+04 

13 1.33E+03 1.69E+03 1.30E+03 2.92E+03 1.06E+04 3.32E+04 2.20E+05 2.09E+03 

14 1.70E+08 1.70E+08 2.00E+08 4.07E+08 1.09E+09 1.40E+09 3.09E+09 1.61E+08 

15 5.78E+03 5.27E+03 5.00E+03 4.32E+03 1.29E+04 1.36E+04 1.53E+04 5.73E+03 

16 2.79E+02 4.11E+02 4.28E+02 4.29E+02 4.29E+02 4.29E+02 4.28E+02 2.63E+02 

17 2.22E+05 1.46E+05 1.67E+05 3.91E+05 9.90E+05 1.27E+06 1.74E+06 1.80E+05 

18 3.81E+03 4.92E+03 5.95E+03 9.74E+03 1.18E+05 1.07E+05 1.01E+05 5.80E+03 

19 1.86E+06 1.98E+06 2.20E+06 4.41E+06 1.29E+07 1.56E+07 1.57E+07 1.68E+06 

20 2.29E+03 1.91E+03 1.82E+03 1.13E+03 1.04E+03 1.06E+03 2.97E+03 2.16E+03 

 

Figure 1: The DECC-RAG(m) ranking. 

The experimental results for the DECC-RAG(m) 
are presented in Table 1. Figure 1 shows the results 
of ranking the investigated algorithms (ranks are 
averaged over the benchmark problems). Figures 3-
12 demonstrate the convergence of the best-found 
solutions of each algorithm averaged over 25 
independent runs. 

As we can see from the Table 1, the DECC-RAG 
algorithm performs better with small number of 
subcomponents, which contains large number of 
variables. This means that the approach is able to 
provide an efficient decomposition of a problem and 

to form efficient combinations of variables in 
subcomponents. The best results are achieved by the 
DECC-RAG(8), DECC-RAG(4) and DECC-
RAG(10). At the same time, we can see in the 
Figures 3-12 that different configurations of the 
algorithm have different speeds of the convergence. 
Some configurations have good convergence at the 
early stages of the search process, but have worse 
the best-found value. Some configurations 
demonstrate low convergence speed, but are able to 
improve the best-found value at the finally stage of 
the search process. Thus, we can conclude that the 
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dynamic sizing of subcomponents may improve the 
performance of the algorithm. 

The DECC-RAG(4-8) is a straightforward 
approach of changing the number of subcomponents 
during the run of the algorithm. As we can see in the 
Figure 1, this configuration has taken the best 
average rank over the benchmark. 

In real-world LSGO problems, the best settings 
for the algorithms are unknown beforehand and the 
m value can be chosen at random. Our hypothesis is 
that the dynamic sizing is more preferable than the 
random choice of m. The performance of the random 
choice of m can be estimated by evaluating the 
average performance of all configurations. We have 
compared the DECC-RAG(4-8) with the following 
average values: 

 The average of 4 and 8 for establishing the 
difference in the performance against the 
random choice of m=4 and m=8; 

 The average of 4, 8, 10 and 20, because we 
have found that lower values of m perform 
better; 

 The average of 4, 8, 10, 20, 40, 50, 100 for 
investigating the random choice of m. 

Figure 2 shows the results of ranking the DECC-
RAG(4-8) and the estimated performance of random 
choice of m. 

 

Figure 2: Comparison of ranks for the DECC-RAG(4-8) 
and the average of DECC-RAG(m). 

Table 2 contains the results of Mann–Whitney U 
test with p-value equal to 0.05. We use the following 
notations in Tables 2: the sign “<” means that the 
first algorithm outperforms the second one, 
otherwise the sign “>” is used, and the sign “≈” is 
used when there is no statistically significant 
difference in the results. 

As we can see from the results, the dynamic 
sizing is more preferable than the random choice 
when the optimal value of m is unknown. Also, we 
can see from Table 1 that the dynamic sizing 

(DECC-RAG(4-8)) is better than the best 
configuration of the DECC-RAG(m) with m=8. 

It is obvious that the dynamic sizing can be 
implemented with other combinations of parameter 
m. Moreover, we can use not only deterministic 
schemes, but we can change sizes adaptively using a 
feedback. We will design and investigate these 
approaches in our further works. 

Table 2: Results of Mann–Whitney U test for  
the DECC-RAG(4-8) vs Average(m). 

DECC-RAG (4-8) vs Average (4, 8) 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

< > > ≈ < ≈ < < < > 

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

< < ≈ < > < ≈ > < ≈ 

DECC-RAG (4-8) vs Average(4, 8, 10, 20) 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

< > > < < < < < < > 

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

< < ≈ < > < < ≈ < > 

DECC-RAG (4-8) vs Average(4, 8, 10, 20, 40, 50, 100) 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

< < > < < < < < < < 

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

< < < < < < < < < > 

4 CONCLUSIONS 

In this study, we have presented the investigation of 
tuning the number of subcomponents in the random 
adaptive grouping algorithm that combines the ideas 
of random dynamic grouping and learning dynamic 
grouping for solving LSGO problems. The 
experimental results have shown that the algorithm 
is able to provide an efficient decomposition of a 
problem and to form efficient combinations of 
variables in subcomponents, thus performs better 
when using subcomponents of larger size. We have 
also demonstrated that the dynamic sizing is more 
preferable than choosing the number of 
subcomponents at random, and the straightforward 
scheme DECC-RAG(4-8) outperforms the best 
configuration of the DECC-RAG. In our further 
works, we will investigate other settings of the 
proposed approach and other schemes of the 
dynamic sizing of subcomponents. 
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Figure 3: Convergence of the best found for benchmark problems 1 and 2. 

IJCCI 2018 - 10th International Joint Conference on Computational Intelligence

260



 

 

Figure 4: Convergence of the best found for benchmark problems 3 and 4. 

 

Figure 5: Convergence of the best found for benchmark problems 5 and 6. 

 

Figure 6: Convergence of the best found for benchmark problems 7 and 8. 
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Figure 7: Convergence of the best found for benchmark problems 9 and 10. 

 

Figure 8: Convergence of the best found for benchmark problems 11 and 12. 

 

Figure 9: Convergence of the best found for benchmark problems 13 and 14. 
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Figure 10: Convergence of the best found for benchmark problems 15 and 16. 

 

Figure 11: Convergence of the best found for benchmark problems 17 and 18. 

 

Figure 12: Convergence of the best found for benchmark problems 19 and 20. 
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