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Abstract: A control system design based on the T-S fuzzy model with uncertainty is considered in this paper. At first,

state observer is developed to estimate the state properly despite the existence of the uncertainty. Then, un-

certainty observer is derived using the estimated state. Finally, a controller based on the observers is proposed

in an effort to counteract the influence of the uncertainty whatever possible. In addition, the Nussbaum-type

function and its relevant properties are used in the controller design to cover the observers’ error and the part

of estimated uncertainty that is not possibly used through the control matrices. As a result, the closed-loop

control system becomes asymptotically stable.

1 INTRODUCTION

The T-S fuzzy model (Takagi and Sugeno, 1985) is

widely used in the control system design. Because the

consequent of fuzzy rules that compose the T-S fuzzy

model is in the form of the state-space representation,

usually the linear system theory can be applied straig-

htforwardly to the T-S fuzzy model-based control sy-

stem design. As a result, the control system stability

will be guaranteed by certain linear matrix inequali-

ties (LMIs), which can be solved by some existing

software packages. Recently, the T-S fuzzy model

has been further extended to the so-called polynomial

fuzzy model (Tanaka et al., 2009; Han et al., 2017).

However, whatever models may be, they are not more

than a mathematical description to, usually approxi-

mately, describe the dynamics of the concerned sys-

tems. In other words, it seems almost impossible to

form a model immaculately, given that nonlinear sys-

tems are usually considered, and what is more, distur-

bance from external/internal system, parameters’ per-

turbation and unmodeled dynamics always exist in the

real systems. Such a discrepancy between the concer-

ned system and its model is called uncertainty in this

paper.

The uncertainty may be called different names

such as unknown input, disturbance in different con-

texts. When it comes to controller designs, H∞ cont-

rol (Wei et al., 2016), adaptive control (Khalil, 2002;

Han et al., 2001; Liu et al., 2016) are thought to be

very effective ways to dealing with it. Nevertheless,

there is still plenty of room to improve the control per-

formance. For example, when it comes to H∞ control

approach, the influence of the uncertainty to the state

is no more than being confined to certain prescribed

indexes.

Recently, uncertainty observer-based control pro-

vides a promising approach to handle the uncertainty

and improve robustness. In the existing works (Han,

2016; Han and Lam, 2015), the observers involved are

designed under the assumption that the uncertainty is

not time varying. It is clear that such an assumption

is difficult to cope with other cases such as acute time

varying uncertainties. Therefore, observing the un-

certainty at a more general level and involving the es-

timated uncertainty in the controller design to cover

its influence as much as possible is the fundamental

notion of this paper. However, at first, a state obser-

ver is presented for the case where the state is una-

vailable. Most of state observers based on T-S fuzzy

models in literature (Liu and Zhang, 2003; Cao et al.,

2008; Chadli and Karimi, 2013; Wei et al., 2016) are

designed in the traditional sense similar to the one ba-

sed on the state-space representation, in which some

techniques such as H∞ approach (Cao et al., 2008) and

adaptive control (Lendek et al., 2010) are used to co-

ver the uncertainty. Inspired by the existing works for

the case of unknown input (Darouach et al., 1994; Hui

and Zak, 2005), the one in this paper adopts a different

structure in which some elaborately designed matri-

ces are introduced so that the uncertainty has no influ-

ence to the the state observer at all. Then, uncertainty
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observer is derived using the estimated state. Finally,

a controller based on the observers is proposed in an

effort to counteract the influence of the uncertainty

whatever possible. In addition, the Nussbaum-type

function and its relevant properties are used in the

controller design to cover the observers’ error and the

part of estimated uncertainty that is not possibly used

through the control matrices; as a result, the closed-

loop control system becomes asymptotically stable.

Throughout this paper, M− denotes the pseudo-

inverse of M ∈Rm×n, i.e., a matrix satisfying the equa-

tion MM−M = M, which means M− is either the left

pseudo-inverse M† = (MT M)−1MT or right pseudo-

inverse M‡ =MT (MMT )−1. It is clear that M†M = In,

MM‡ = Im. In addition, ‖ · ‖, and | · | denote the p-

norm with p being 2, and 1, respectively.

2 STATE AND UNCERTAINTY

OBSERVERS BASED ON T-S

FUZZY MODEL

Assume that a nonlinear system can be represented by

the following T-S fuzzy model:

Plant Rule i :

If θ1(t) is Mi
1 and · · ·and θnθ(t) is Mi

nθ
, then

ẋ(t) = Aix(t)+Biu(t)+Dd(t)
y(t) =Cx(t)

}
(1)

where θ j ( j = 1,2, · · · ,nθ) is a variable in the antece-

dent that is available; Mi
j (i = 1,2, . . . ,nr), a fuzzy

term corresponding to ith rule; x(t) ∈ Rn, the state

vector; u(t) ∈ Rm, the input vector; y(t) ∈ Rp, the out-

put vector; Ai ∈Rn×n, Bi ∈Rn×m, C ∈Rp×n, D∈ Rn×r,

some compatible matrices; d(t) ∈ Rr, uncertainty in-

cluding modeling error, external disturbance, unmo-

deled dynamics and parameter perturbations. In the

model, it is assumed that rank(CD) = rank(D).
The overall T-S fuzzy model is of the following

form accordingly:

ẋ(t) = ∑nr
i=1 αi(t)

(
Aix(t)+Biu(t)+Dd(t)

)

y(t) =Cx(t)

}
(2)

where θ(t) =
[
θ1(t) θ2(t) · · ·θnθ(t)

]
,

αi(t) =
ωi(θ(t))

∑nr
i=1 wi(θ(t))

≥ 0,
nr

∑
i=1

αi(t) = 1,

ωi(θ(t)) =
nθ

∏
j=1

Mi
j(θ j(t)).

Inspired by the approach of unknown input observer

(UIO), the following state observer is first suggested:

State Observer Rule i :

If θ1(t) is Mi
1 and · · ·and θp(t) is Mi

p, then

ż(t) = Fiz(t)+TBiu(t)+Giy

x̂(t) = z(t)+Hy(t)

}
(3)

where z(t) ∈ Rn, is the internal state vector of the

observer; x̂(t) ∈ Rn, the estimate of the state x(t);

Fi ∈ Rn×n, T ∈ Rn×n, Gi ∈ Rn×p, H ∈ Rn×p, the de-

signs parameters to be determined.

The overall observer of the following form accor-

dingly.

ż(t) = ∑nr
i=1 αi(t)

(
Fiz+TBiu+Giy

)

x̂(t) = z(t)+Hy(t)

}
(4)

From here, unless confusion arises arguments

such as t, θ will be omitted just for notational con-

venience.

From (4), we have

˙̂x = ż+HCẋ

=
nr

∑
i=1

αi

(
Fiz+TBiu+GiCx+HC(Aix+Biu+Dd)

)

=
nr

∑
i=1

αi

(
Fiz+(T +HC)Biu

+(GiC+HCAi)x+HCDd
)
. (5)

Defining the estimation error between x and x̂ as:

ex = x̂− x (6)

we have

ėx =
nr

∑
i=1

αi

(
Fiz+(T +HC)Biu+(GiC+HCAi)x

+HCDd−Aix−Biu−Dd
)

=
nr

∑
i=1

αi

(
− (Ai −GiC−HCAi)x+Fiz

+(T − (I−HC))Biu+(HC− I)Dd
)

=
nr

∑
i=1

αi

(
(Ai −GiC−HCAi)ex

− (Ai −GiC−HCAi) x̂+Fiz

+(T − (I−HC))Biu+(HC− I)Dd
)

=
nr

∑
i=1

αi

(
(Ai −G1iC−HCAi)ex −G2iCex

− (Ai −GiC−HCAi)(z+Hy)+Fiz
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+(T − (I−HC))Biu+(HC− I)Dd
)

=
nr

∑
i=1

αi

(
(Ai −G1iC−HCAi)ex −G2iC(z+Hy− x)

+ (Fi − (Ai −G1iC−HCAi))z+G2iCz

− (Ai −G1iC−HCAi)Hy+G2iCHy

+(T − (I−HC))Biu+(HC− I)Dd
)

=
nr

∑
i=1

αi

(
(Ai −G1iC−HCAi)ex

+(Fi − (Ai −G1iC−HCAi))z

+(G2i − (Ai −G1iC−HCAi)H)y

+(T − (I−HC))Biu+(HC− I)Dd
)
.

(7)

where

Gi = G1i +G2i. (8)

Let

(HC− I)D = 0 (9)

Fi = Ai −G1iC−HCAi (10)

G2i = FiH (11)

T = I −HC (12)

then we have

ėx =
nr

∑
i=1

αiFiex. (13)

Therefore, ex converges to zero if Fi is a Hurwitz ma-

trix as long as the relations (8)-(12) are held. Now,

let us elaborate on it. From (9), we have HCD = D.

When rank(CD) = rank(D) holds true, CD is a full

column rank matrix, a solution H of the equation is:

H = E (CD)† . (14)

Once H is determined, G1i in (10) can be obtained by

G1i = Q−1M1i (15)

where Q = QT ∈ Rn×n and M1i ∈ Rn×p are decision

parameters in the following LMIs that make Fi a Hur-

witz matrix:

Q > 0 (16)

AiQ+QHCAi−M1iC

+(AiQ+QHCAi−M1iC)
T < 0 (17)

for i = 1,2, · · · ,nr.

The above LMIs follow from the Lyapunov’s stability

theorem by defining a Lyapunov function V = exQex.

Finally, having H and Fi in mind, G2i, and T can be

straightforwardly obtained from (11), and (12), re-

spectively. �
After establishing the state observer, we move on

to consider how to observe the uncertainty d. As

shown later, there is no necessity to pinpoint d itself,

but the whole term of Dd from the viewpoint of con-

troller design. Letting

Dd = Dd (18)

an observer of Dd follows from (2):

D̂d =
nr

∑
i=1

αi

(
Aix̂+Biu

)
− ˙̂x. (19)

Defining the estimation error between Dd and D̂d as:

ed = D̂d −Dd (20)

it is clear that ed → 0 as long as ex → 0.

In the following, our interest is how to make most

of D̂d in controller design. Considering a special case

of the existence of B−1
i , it would be able to design a

controller that is based on a regular control input u

with an extra element such as u−B−1
i D̂d to counte-

ract the influence of Dd completely. However, such

a special case is highly unlikely to happen in the real

system due to the fact that m ≤ n which is the dimen-

sions of the control matrix Bi usually. This implies

that D̂d cannot be used in the controller design at this

stage. Nevertheless, we have to diminish the influ-

ence of Md whatever possible. For this purpose, let us

recall the following lemma.

Lemma 1. (Baksalary and Kala, 1979) Let B ∈
Rm×k,M ∈ Rl×n, and N ∈ Rm×n. The equation

BX −MY = N (21)

has a solution X ∈ Rk×n,Y ∈ Rm×l , if and only if
(
I−BB−)N

(
I−M−M

)
= 0. (22)

If this is the case, the general solution of (21) has the

form

X = B−N +B−ZM +
(
I−B−B

)
W (23)

Y =−
(
I−B−B

)
NM−+Z−

(
I −B−B

)
ZMM−

(24)

where W ∈ Rk×n,Z ∈ Rm×l being arbitrary. �
It is evident that the condition (22) is held if

M = −I. In this case, (21) admits X = B−N and

Y = −(I = BB−)NM− as a solution. Therefore, ac-

cording to Lemma 1, D̂d can be divided into the fol-

lowing form:

D̂d = Biψi +∆Edi (25)

State- and Uncertainty-observers-based Controller for a Class of T-S Fuzzy Models

553



where ψi = B
†
i D̂d and ∆Edi = D̂d −Biψi are a solution

of the equation BiX +Y = D̂d . By doing so, ψi can be

used in the controller design partially to counteract

the influence of Dd . However, as a solution of the

equation, in fact there is no guarantee that the magni-

tude of ∆Edi, for example ||∆Edi||, is less than that of

D̂d . In other words, in the case of ||∆Edi|| > ||D̂d ||,
on the contrary, ψi used in the controller design will

worsen the influence of the uncertainty. Therefore, in

order to make sure the effect of the counteraction of

the uncertainty, ψi in (25) is obtained by

ψi =

{
B

†
i D̂d ‖D̂d −Biψi‖ ≤ ||D̂d ||

0 otherwise.
(26)

From (25) we observe that ψi shares the same con-

trol matrix Bi with the control input u; therefore, it is

the maximum amount to counteract the uncertainty

Dd from the estimated D̂d . It is clear that ψi = 0 me-

ans that there is no way to use the extracted informa-

tion form D̂d to diminish the influence of Dd at this

stage. The smaller ||∆Edi|| is, the better control per-

formance can be expected.

In what follows, let us consider the boundedness

with regard to the estimation errors and solutions of

equation (25). First, define

Ξi j = (Fi −Ai)ex − ed +Bi (ψi −ψ j)+∆Edi. (27)

In view of the convergence of ex and ed along with the

relation in (25), it is clear that Ξi j is bounded.

Let qi j(k) (k = 1,2, · · · ,n) be the k-th entry of the

vector Ξi j ∈ Rn, i.e.,

Ξi j =
[
qi j(1) qi j(2) · · · qi j(n)

]T
, (28)

and bi(k) ∈ R1×m be the k-th row of Bi, i.e.,

Bi =
[
bT

i(1) bT
i(b) · · · bT

i(n)

]T

. (29)

Bearing in mind that the boundedness of Ξi in (27), it

is reasonable to assume that there exists a scalar κ> 0

such that

max
j=1∼nr

∣∣qi j(k)

∣∣≤ κ · |bi(k)|. (30)

In this case, it is easy to check that the following ine-

quality holds:

ΓΞi j ≤ κ |ΓBi| (31)

where Γ ∈ R1×n is an arbitrary vector.

Before starting the controller design, we introduce

the Nussbaum-type function (Ye and Jiang, 1998) that

is adopted to design a part of controller in compensa-

tion for the influence of Ξi j.

Any continuous function N(ζ) : R → R is a

function of Nussbaum-type function if it has the fol-

lowing properties (Nussbaum, 1983):

limsup
z→+∞

1

z

∫ z

0
N(ζ)dζ =+∞ (32)

liminf
z→+∞

1

z

∫ z

0
N(ζ)dζ =−∞ (33)

For example, continuous functions ζ2 cos(ζ),
ζ2 sin(ζ) and exp(ζ2)cos(π

2
ζ) are commonly used

as Nussbaum-type functions. Regarding Nussbaum-

type functions, there is the following lemma.

Lemma 2. (Ye and Jiang, 1998) Let V (·) and ζ(·) be

smooth functions defined on [0, t f ) with V (t)≥ 0, ∀t ∈
[0, t f ), N(·) be even smooth Nussbaum-type function.

If the following inequality holds:

V (t)≤ c0 +

∫ t

0

(
gN(ζ(τ))+ 1

)
ζ̇(τ)dτ, ∀t ∈ [0, t f )

(34)

where g is a nonzero constant and c0 repre-

sents some suitable constant, then V (t), ζ(t) and∫ t
0 (gN(ζ(τ))+ 1) ζ̇(τ)dτ must be bounded on [0, t f ).

Also, the following lemma, which is an alternative

to the Barbalat Lemma (Khalil, 2002), will be used in

the system stability analysis later.

Lemma 3. (Tao, 1997) A function f : Rn → R is

square integrable, i.e.,
∫ ∞

0
f T (t)P f (t)dt < ∞, (35)

where P=PT > 0, and has a bounded derivative, then

f (t)→ 0, as t → ∞. (36)

3 CONTROLLER DESIGN

Based on the state and uncertainty observers, the fol-

lowing controller is proposed.

Controller Rule i :

If θ1 is Mi
1 and · · ·and θp is Mi

p, then

u = kix̂−ψi +φi (37)

where ki ∈ Rm×n is the feedback control gain that

is obtained by ki = XiQ
−1 with Q = QT > 0 and

Xi ∈ Rm×n being the decision variables of the follo-

wing LMIs:

AiQ+BiX j +QAT
i +XT

j BT
i < 0 (38)

for i, j = 1,2, · · · ,nr;
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ψi is extracted from the estimated uncertainty D̂d in

(26) in an effort to counteract the influence of the un-

certainty Dd whatever possible; and φi ∈ Rm is desig-

ned in compensation for the influence of Ξi j:

φi =BT
i Px̂+N(ζ)

·
(

nr

∑
j=1

α jB
T
j Px̂+κ · sgn

(
nr

∑
j=1

α jB
T
j Px̂

))
(39)

where sgn denotes the sign function, κ is given in

(30), P= Q−1, N(ζ)∈ R is a Nussbaum-type function

(Nussbaum, 1983), and

ζ̇ =

∥∥∥∥∥
nr

∑
i=1

αiB
T
i Px̂

∥∥∥∥∥

2

+κ

∣∣∣∣∣
nr

∑
i=1

αiB
T
i Px̂

∣∣∣∣∣ . (40)

The overall fuzzy controller (37) is of the follo-

wing form accordingly.

u =
nr

∑
i=1

αi

(
kix̂−ψi +φi

)
. (41)

Substituting (6), (20), (25) and (41) into (2), the

closed-loop control system becomes as follows.

ẋ =
nr

∑
i=1

αi

(
Ai(x̂− ex)+Biu+ D̂d− ed

)

=
nr

∑
i=1

nr

∑
j=1

αiα j

(
(Ai +Bik j)x̂−Aiex +Bi(ψi −ψ j)

+Biφ j +∆Edi− ed

)
. (42)

Substituting (13) and (43) into ˙̂x = ẋ+ ėx which fol-

lows from (6), we have

˙̂x =
nr

∑
i=1

nr

∑
j=1

αiα j

(
(Ai +Bik j)x̂−Aiex +Bi(ψi −ψ j)

+Biφ j +∆Edi− ed +Fiex

)

=
nr

∑
i=1

nr

∑
j=1

αiα j

(
(Ai +Bik j)x̂+Biφ j +Ξi j

)
(43)

where Ξi j is defined in (27).

Bearing in mind that the relation in (13) where Fi

is made to be a Hurwitz matrix, an asymptotically sta-

ble system in (43) does lead to another asymptotically

stable system in (42). The stability of the system in

(43) is investigated based on the Lyapunov stability

theory. Let us consider the following quadratic Lya-

punov function candidate:

V = x̂T Px̂. (44)

Taking the time derivative of V , we have

V̇ = ˙̂xT Px̂+ x̂T P ˙̂x

=
nr

∑
i=1

nr

∑
j=1

αiα j x̂
T
(
(Ai +Bik j)

T P+P(Ai+Bik j)
)

x̂

+ 2
nr

∑
i=1

nr

∑
j=1

αiα j x̂
T PBiB

T
j Px̂

+ 2
nr

∑
i=1

αix̂
T PBiN(ζ)

·
(

nr

∑
j=1

α jB
T
j Px̂+κ · sgn

(
nr

∑
j=1

α jB
T
j Px̂

))

+ 2
nr

∑
i=1

nr

∑
j=1

αiα j x̂
T PΞi j

=− x̂T Hx̂+ 2
nr

∑
i=1

αix̂
T PBi

·
(

nr

∑
j=1

α jB
T
j Px̂+κ · sgn

(
nr

∑
j=1

α jB
T
j Px̂

))

− 2
nr

∑
i=1

αix̂
T PBi ·κ · sgn

(
nr

∑
j=1

α jB
T
j Px̂

)

+ 2N(ζ)ζ̇+ 2
nr

∑
i=1

nr

∑
j=1

αiα j x̂
T PΞi j

=− x̂T Hx̂+ 2(1+N(ζ)) ζ̇

− 2κ

∣∣∣∣∣
nr

∑
i=1

αix̂
T PBi

∣∣∣∣∣+ 2
nr

∑
i=1

nr

∑
j=1

αiα j x̂
T PΞi j (45)

where

H =−
nr

∑
i=1

nr

∑
j=1

αiα j

(
(Ai +Bik j)

T P+P(Ai+Bik j)
)
.

(46)

It is not difficult to see that, using (38), H > 0.

Taking the relations (30) and (31) into considera-

tion, let us pay attention to the last block in (45).

2
nr

∑
i=1

nr

∑
j=1

αiα j x̂
T PΞi j ≤2

nr

∑
i=1

nr

∑
j=1

αiα jκ
∣∣x̂T PBi

∣∣

=2κ

∣∣∣∣∣
nr

∑
i=1

αix̂
T PBi

∣∣∣∣∣ (47)

where the fact that αi ≥ 0 is used.

Substituting (47) into (45), it follows

V̇ ≤−x̂T Hx̂+
(

1+N(ζ)
)

ζ̇ (48)

which also implies

V̇ ≤
(

1+N(ζ)
)

ζ̇ (49)
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where the fact that H > 0 is used. Integrating (49), it

follows to we get

V (t)≤V (0)+
∫ t

0

(
1+N(ζ)

)
ζ̇(τ)d(τ). (50)

Applying Lemma 2 to (50), we conclude that V (t),

ζ(t), and
∫ t

0

(
1 + N(ζ)

)
ζ̇(τ)d(τ) must be bounded.

Again, integrating (48), we have

V (t)≤V (0)−
∫ t

0
xT (τ)Hx(τ)dτ

+
∫ t

0

(
1+N(ζ)

)
ζ̇(τ)d(τ). (51)

Because V (t) (as well as V (0)) and
∫ t

0

(
1 +

N(ζ)
)

ζ̇(τ)d(τ) are all bounded, it is evident that
∫ t

0 x̂T (τ)Hx̂(τ)dτ must be bounded. Therefore, we

conclude that x̂(t) is square integrable, and that

limt→∞ x̂(t)→ 0 according to Lemma 3. �
It is worth noting that when ψi and φi in (37) are

removed:

u =
nr

∑
i=1

αikix (52)

reduces to the regular parallel distributed compen-

sation (PDC) controller (Tanaka and Wang, 2001),

where LMIs in (38) are the stability conditions for

which the uncertainty Dd in (2) is not considered.

4 SIMULATION

Consider the following altered Van der Pol oscillator:

z̈ =−z+
(
1− z2

)
ż+ u+ f

y = 2z+ ż

}
(53)

where f denotes uncertainty in the system. In this

simulation, f is assumed to be:

f (t) =





0, if 0 ≤ t < 2

5.3, if 2 ≤ t < 4

0, if 4 ≤ t < 6

−5+ sin(t − 6)+ 2 rand(), if 6 ≤ t < 15

3, otherwise

(54)

where rand() is a function that returns a single uni-

formly random number in the interval (0, 1). The f

is depicted in Fig. 1. In the absence of u and f , the

phase plane z− ż is shown in Fig. 2, where the circle

denotes the initial point, the square the end point. It is

clear that the system is unstable without control.
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Figure 1: Uncertainty f considered in the system (53).
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Figure 2: z− ż phase plane with u = 0 and f = 0.

The above nonlinear system can be represented by

the following two-rule T-S fuzzy model:

Rule i : If z is Mi(z), then

ẋ = Aix+Biu+Dd

y =Cx

}
(55)

where xT = [x1 x2] = [z ż], i = 1,2,

M1(z) =

{
9−z2

9
, −3 ≤ z ≤ 3

0, otherwise
, M2(z) = 1−M1(z)

A1 =

[
0 1
−1 1

]
, A2 =

[
0 1
−1 −8

]
, B1 =

[
0
1

]

B2 = B1, C = [2 1] , D =

[
0
1

]

and Dd denotes the uncertainty corresponding to f in

(53). In this paper, the state x is supposed to be una-

vailable; therefore, instead of z = x1 in the members-

hip functions, z = x̂1 is used in this simulation.

By solving LMIs in (38) with the help of some

software package, ki and P = Q−1 are set to be

k1 =
[
−0.4286 −2.0714

]

k2 =
[
−0.4286 6.9286

]
}

(56)

P =

[
0.0145 0.0058

0.0058 0.0145

]
. (57)

A Nussbaum-type function, N(ζ) = ζ2 cos(ζ) is used

in this simulation. In addition, κ in (39) is set to be

κ = 0.5+ ||x̂||2.
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For comparison purposes, the plant (53) in the ab-

sence of the uncertainty f is first controlled by the re-

gular PDC controller (52), the control result is shown

in Fig. 3. It is clear that the regular PDC control-

ler is very effective in this case. However, when the

uncertainty in Fig. 1 is applied to the system, as the

control result shown in Fig. 4, the regular controller

is no longer able to control the system properly.
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Figure 3: State driven by the regular PDC controller (52)
without the uncertainty.
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Figure 4: State driven by the regular PDC controller (52)
with the uncertainty in (54).

The control results by the proposed controller are

shown in Figs. 5∼9. Figs. 5, and 6 depict the re-

sponses of x1 (dotted line), its estimate x̂1 (solid line),

and x2 (dotted line), its estimate x̂2 (solid line), re-

spectively. We observe that the proposed control is

able to make the states of x1 and x2 asymptotically

stable, while the state observer (4) is effective to esti-

mate the real state. Figs. 7, and 8 depict the real un-

certainty Dd(1) = 0 (dotted line), its estimate D̂d(1)
(solid line), and Dd(2) = f (dotted line), its estimate

D̂d(2) (solid line), respectively. It is evident from

them that D̂d follows Dd properly. The control input

is shown in Fig. 9. In comparison with Fig. 8, control

input u going in the opposite direction to the uncer-

tainty f accordingly is thought to be mainly contribu-

ted by ψi that is filtered from D̂d by (25) and (26).

Finally, the behaviors of the other parameters, N(ζ),
ζ, are depicted in Figs. 10, and 11, respectively. It can

be seen that all the parameters involved in the system

are bounded.
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Figure 5: State x1 and its estimate x̂1 driven by the propo-
sed controller (41) along with the observer (4) where the
uncertainty in (54) is applied.
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Figure 6: State x2 and its estimate x̂2 driven by the propo-
sed controller (41) along with the observer (4) where the
uncertainty in (54).
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Figure 7: Uncertainty Dd(1) = 0 (dotted line) and its esti-

mate D̂d(1) (solid line).
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Figure 8: Uncertainty Dd(2) = f (dotted line) as shown in

Fig. 1 and its estimate D̂d(2) (solid line).
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Figure 9: Control input obtained by (41).
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Figure 10: The behavior of ζ.
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Figure 11: The behavior of N(ζ).

5 CONCLUSIONS

A design of control system based on a class of T-S

fuzzy models with uncertainty was considered in this

paper. For the case that the state is unavailable, an

state observer was firstly designed, and then an uncer-

tainty observer was derived using the state estimate.

While it is almost impossible to use the whole esti-

mated uncertainty directly in control design, the pa-

per made an effort trying to use it as much as possi-

ble to counteract the influence of the uncertainty. On

the basis of the observers, a controller was proposed,

in which the Nussbaum-type function and its relevant

properties were used to make the closed-loop system

asymptotically stable.
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