
On using UML Diagrams to

Identify and Assess Software Design Smells

Thorsten Haendler

Institute for Information Systems and New Media,

Vienna University of Economics and Business, Vienna, Austria

Keywords: Software Design Smells, Unified Modeling Language (UML2), Smell Detection and Assessment, Code

and Design Review, Software Design Documentation, Refactoring, Architectural Smells, Technical Debt

Management.

Abstract: Deficiencies in software design or architecture can severely impede and slow down the software development

and maintenance progress. Bad smells and anti-patterns can be an indicator for poor software design and

suggest for refactoring the affected source code fragment. In recent years, multiple techniques and tools have

been proposed to assist software engineers in identifying smells and guiding them through corresponding

refactoring steps. However, these detection tools only cover a modest amount of smells so far and also tend

to produce false positives which represent conscious constructs with symptoms similar or identical to actual

bad smells (e.g., design patterns). These and other issues in the detection process demand for a code or design

review in order to identify (missed) design smells and/or re-assess detected smell candidates. UML diagrams

are the quasi-standard for documenting software design and are often available in software projects. In this

position paper, we investigate whether (and to which extend) UML diagrams can be used for identifying and

assessing design smells. Based on a description of difficulties in the smell detection process, we discuss the

importance of design reviews. We then investigate to which extend design documentation in terms of UML2

diagrams allows for representing and identifying software design smells. In particular, 14 kinds of design

smells and their representability in UML class and sequence diagrams are analyzed. In addition, we discuss

further challenges for UML-based identification and assessment of bad smells.

1 INTRODUCTION

Deficiencies in software design or architecture can se-

verely impede and slow down the maintainability and

extensibility of a software system (technical debt),

see e.g., (Kruchten et al., 2012). Bad smells and anti-

patterns can be an indicator for poor software design

and suggest for refactoring the affected source code

fragment (Fowler et al., 1999). Smells can be found at

different levels (i.e. on level of software source code,

software design, and software architecture). Software

design smells, in particular, represent flaws in soft-

ware design by violating design rules (Suryanaray-

ana et al., 2014). They can be categorized into AB-

STRACTION, ENCAPSULATION, HIERARCHY, and

MODULARIZATION smells.

In recent years, multiple tools and techniques have

been proposed for assisting software engineers in de-

tecting and assessing refactoring candidates as well as

planning and performing refactoring steps, see, e.g.,

(Fernandes et al., 2016). Despite these efforts and ad-

vances, several difficulties in the process of smell de-

tection and refactoring still demand for an individual

assessment of smell candidates by human experts,

also see, e.g., (Tempero et al., 2017). For instance,

smell detectors only cover a modest amount of smell

kinds and are mostly only available for selected pro-

gramming languages, see, e.g., (Fontana et al., 2012;

Fernandes et al., 2016). Moreover, smell detection

tools also produce smell false positives (Fontana et al.,

2016).

These issues in the detection process demand for

a design or code review in order to identify (missed)

design smells (false negatives), to re-assess detected

candidates in order to discard false positives and/or

to prioritize the candidates for refactoring, see, e.g.,

(Ribeiro et al., 2016). For this review, often an expli-

cit software design documentation, e.g., in terms of

diagrams of the Unified Modeling Language (UML2)

(Object Management Group, 2015), can be consulted

by software engineers to investigate the design quality

of the software system.

Haendler, T.
On using UML Diagrams to Identify and Assess Software Design Smells.
DOI: 10.5220/0006938504130421
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 413-421
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

413

In this position paper, we investigate the applica-

bility of UML-based documentation for identifying

and assessing software design smells. The hypothesis

is that UML design diagrams are suitable as decision-

support for recognizing software design issues. Ba-

sed on an overview of difficulties in the process of

detecting and assessing design smells, we focus on

answering the question, whether and to which extend

software design smells can be identified via reviewing

UML-based design documentation of the system un-

der analysis. For this purpose, we analyze 14 diffe-

rent kinds of software design smells reported in rese-

arch literature (see, e.g., (Fowler et al., 1999; Sury-

anarayana et al., 2014)) regarding their representabi-

lity via UML class and sequence diagrams (based on

smell symptoms and relevant design context). Mo-

reover, we discuss further challenges for using UML

diagrams to identify and assess bad smells, such as

the availability and quality of design documentation,

the identifiability of false positives and alternative

decision-support techniques.

Paper Structure. The remainder of this paper is

structured as follows. Section 2 gives an overview

on several difficulties in detecting and assessing de-

sign smells in general for motivating the importance

of design reviews. In Section 3, we investigate the

identifiability of design smells via reviewing UML2

diagrams. In particular, we analyze the applicability

of UML diagrams for representing 14 kinds of design

smells and discuss further challenges for the UML-

based identification/assessment. Section 4 reflects on

related work. In Section 5, the limitations of the ap-

proach are discussed, and Section 6 concludes the pa-

per.

2 DIFFICULTIES IN

IDENTIFYING AND

ASSESSING DESIGN SMELLS

The process of identifying candidates for refactoring

can be roughly divided into the following two steps:

first, detecting smell candidates and, second, assess

the candidates in order to rule out whether the candi-

date should be refactored or not. Table 1 provides

an overview of 14 kinds of software design smells

with aspects relating to difficulties in identification

and assessment. The smells represent a subset of the

design smells covered by (Fowler et al., 1999) and

(Suryanarayana et al., 2014)1 and will later be ex-

1(Fowler et al., 1999) describe symptoms, causes and
variants as well as refactoring options for 22 code smells,

amined regarding their representability in UML di-

agrams (see Section 3). For each smell kind, po-

pular aliases (or very similar smells) used in rese-

arch literature or industrial practice are listed. The

smells are categorized by the violated design princi-

ple (or rule; i.e. ABSTRACTION, ENCAPSULATION,

HIERARCHY, and MODULARIZATION). Also a short

description of smell symptoms is provided, based on

(Fowler et al., 1999; Suryanarayana et al., 2014).

Smell Coverage of Detection Tools. In recent ye-

ars, multiple tools and techniques addressing the de-

tection of smells (first step) have been proposed. For

an overview, see, e.g., (Fontana et al., 2012; Fernan-

des et al., 2016). For spotting smell candidates via

symptoms, detection tools apply rules and threshold

based on different metrics mostly by leveraging static

program analysis techniques. In general, these tools

come with certain limitations regarding the availabi-

lity for programming languages (mostly only a few

languages) and the quite moderate coverage of smell

kinds, especially for smells that are categorized as de-

sign smells (see below).

Table 1 illustrates the smell coverage of two popu-

lar smell detectors (DECOR and JDeodorant which

analyze the source code using static analysis techni-

ques) and of one popular UML model smell detec-

tor (EMF Refactor). The chosen detectors are exem-

plary, but representative regarding the amount of co-

vered smell kinds; see, e.g., (Fontana et al., 2012).

The detectors DECOR (Moha et al., 2010) and JDeo-

dorant (Tsantalis, 2017) are available for Java-based

programs only; both also provide automated refacto-

ring for the detected smells.

• Among the 9 smells detected by DECOR only 4

can be categorized as design smells, which are in

particular DATACLASS, LARGECLASS, MESSA-

GECHAIN and SPECULATIVEGENERALITY.

• JDeodorant covers 5 smells, of which 3 are design

smells; i.e. FEATUREENVY, MULTIFACEDAB-

STRACTION (in terms of GODCLASS), and DU-

PLICATEABSTRACTION (in terms of DUPLICA-

TEDCODE).

• EMF Refactor is a Eclipse plugin i.a. for de-

tecting and refactoring smells in UML models.

In total, it addresses 27 kinds of smells, of

which 6 can be seen as design smells; i.e. DA-

TACLUMPS, LARGECLASS, SPECULATIVEGE-

NERALITY, DIAMONDINHERITANCE, UNUSE-

DCLASS, and DUPLICATEABSTRACTION (but

only in terms of EQUALLYNAMEDCLASS).

of which some are design smells. (Suryanarayana et al.,
2014) destinguish 25 explicit software design smells.

ICSOFT 2018 - 13th International Conference on Software Technologies

414

Table 1: Overview of 14 software design smells categorized by design principles (violated by the smells) with aliases and
symptoms. The smell coverage by popular smell detectors and the exemplary false positives illustrate the importance of
design reviews for identifying and assessing smell candidates.

V
io

la
te

d

D
e

s
ig

n
P

ri
n

c
.

Software design smell

based on (Fowler et al.,

1999; Suryanarayana

et al., 2014)

Aliases

(used in research or in-

dustry) and smells with

similar symptoms

Symptoms description

based on (Fowler et al., 1999; Suryanarayana

et al., 2014)

D
E

C
O

R

J
D

e
o

d
o

ra
n

t

E
M

F
R

e
fa

c
to

r

Smell false positives

oriented to (Fontana et al.,

2016)

A
B

S
T

R
A

C
T

IO
N

DATACLUMP (a kind of) MISSINGAB-

STRACTION

Clumps of data used instead of a unit (e.g.,

class)

– –
√

–

MULTIFACEDABSTRACTION LARGECLASS, GOD-

CLASS, lack of cohesion

Unit (e.g., classes) with more than one respon-

sibility

√
*

√
*

√
* STATE DP, generic class, e.g.,

configuration class, GUI widget

toolkits

UNUTILIZEDABSTRACTION UNUSEDCLASS, SPECU-

LATIVEGENERALITY

Not or barely used units (e.g., class or method)
√

–
√

recently developed program ele-

ments not yet covered by tests,

null implementation

DUPLICATEABSTRACTION CODECLONE, DUPLICA-

TEDCODE, functionally

similar methods (as

kind of DUPLICATEAB-

STRACTION)

Multiple units (classes or methods) with identical

(or similar) internal and/or external structure or

behavior

–
√

*
√

* inherited or overridden method

DEFICIENTENCAPSULATION Hideable public attributes

or methods

The accessibility of attributes or methods is

more permissive than actually required

– – – –

E
N

C
A

P
S

.

LEAKYENCAPSULATION – A unit that exposes implementation details via

its public interface

– – – –

SPECULATIVEHIERARCHY SPECULATIVEGENERALITY,

speculative general types

One or more types in a hierarchy are used spe-

culatively (only based on imagined needs)

√
–

√
–

UNNECESSARYHIERARCHY TAXOMANIA (taxonomy

mania)

A variation between classes is mainly/only cap-

tured in terms of data (structural features)

– – – –

DEEPHIERARCHY DISTORTEDHIERARCHY An unnecessarily deep hierarchy – – – –

H
IE

R
A

R
C

H
Y

MULTIPATHHIERARCHY REPEATEDINHERITANCE,

DIAMONDINHERITANCE

A subtype inherits both directly and indirectly

from a supertype

– –
√

–

FEATUREENVY (a kind of) BROKENMO-

DULARIZATION, Misplaced

operations

Methods are more interested in features owned

by foreign classes than in features of the owning

class

–
√

– VISITOR DP, STRATEGY DP, DE-

CORATOR DP, PROXY DP, ADAP-

TER DP

DATACLASS (a kind of) BROKENMO-

DULARIZATION, RECORD-

CLASS, DATACONTAINER

Classes providing data but having no (or only

few) methods for operating on them

√
– – EXCEPTIONHANDLINGCLASS,

LOGGERCLASS, SERIALIZABLE-

CLASS, configuration class, Data

Transfer Object (DTO)

CYCLICDEPENDEND-

MODULARIZATION

CYCLICDEPENDENCY,

(DEPENDENCY) CYCLES

Two or more units (e.g., classes, methods) mu-

tually depend on each other

– – – VISITOR DP, OBSERVER DP, AB-

STRACTFACTORY DP

M
O

D
U

L
A

R
IZ

A
T

IO
N

MESSAGECHAIN (a kind of) BROKENMODU-

LARIZATION

A client unit (e.g., method) calls another unit,

which then in turn calls another unit, and so on

(navigation through class structure)

√
– – BUILDER DP, FACADE DP, test-

class method

As also can be seen from Table 1, some of the se-

lected smell kinds are not covered or are only covered

partially.

Smell False Positives. Due to the ambivalence of

metrics-based smell detection, tools tend to produce

false positives. The symptoms which indicate a bad

smell can also be the result of code and design con-

structs, which have been consciously implemented by

a software engineer. (Fontana et al., 2016) identi-

fied based on a literature review such false positives

for 12 code smells and anti-patterns, which represent

mainly ABSTRACTION and MODULARIZATION de-

sign smells, and provide corresponding false positi-

ves. These smell false positives can be categorized as

follows (Fontana et al., 2016):

• imposed anti-patterns and smells (consciously

implemented) which are, e.g., the result of ap-

plying a design pattern or imposed by using a spe-

cific programming language or framework, or by

performing optimizations.

• inadvertent anti-patterns and smells (created by

tools) which are, e.g., caused by source-code ge-

nerators or program representation, or result in the

analysis scope.

We extended this list based on experience from soft-

ware projects (see the row at the right in Table 1).

For an overview of design patterns, also see (Gamma

et al., 1995).

Design Reviews. The difficulties reflected above il-

lustrate that even by applying automated decision-

support tools for smell detection further human inves-

tigation is necessary in order to identify false negati-

ves (i.e. smells not detected by tools) and/or to (re-)

assess detected candidates for discarding false posi-

tives. In addition, it is often necessary for software

design evaluation to include contextual knowledge on

the design rationale provided by design experts such

as software architects. For this purpose, code and de-

sign reviews are performed. However, the direct ma-

nually investigation of the source code can be tedious

and erroneous, especially for large software systems.

In addition, since some design issues do not manifest

via the source code, it can become difficult to identify

them via a code review alone.

For this reason, in software projects often de-

sign documentation based on the Unified Modeling

On using UML Diagrams to Identify and Assess Software Design Smells

415

Language (UML2) is available which represents the

quasi-standard for documenting software design. The

UML provides notations for modeling structural and

behavioral software design aspects.

3 IDENTIFYING SOFTWARE

DESIGN SMELLS IN UML

DIAGRAMS

3.1 Representability of Design Smells in

UML Diagrams

In this section, we analyze the applicability of UML2

class and sequence diagrams to provide relevant infor-

mation for software engineers to identify and/or as-

sess software design smells during a design review.

The Unified Modeling Language (Object Manage-

ment Group, 2015) provides different diagrams types

for documenting structural and behavioral aspects of

object-oriented software systems.

Based on several studies, see, e.g., (Arisholm

et al., 2006; Scanniello et al., 2018), there is evi-

dence that the availability of design documentation

in software projects in terms of UML diagrams en-

hances the comprehensibility of program source-code

and can lead to significant improvements regarding

the functional correctness of modification tasks, es-

pecially for complex tasks (such as the identification

and refactoring of design smells).

For our investigation, we focus on UML2 class

and sequence diagrams, since they are the most com-

mon in industry projects for modeling structural and

behavioral design aspects respectively, see, e.g., (Lai-

tenberger et al., 2000):

• In particular, UML class diagrams represent the

class structure of a software system (i.a., with

attributes and operations) and relations between

these classes (e.g., in terms of associations, gene-

ralizations, and dependencies).

• UML sequence diagrams in turn represent inte-

ractions between class instances (i.e. objects) at

runtime. The objects are represented by lifelines

which interact by mutually exchanging messages

(e.g., method calls). This way, sequence diagrams

allow for documenting the intended or actual be-

havior of objects during (system) usage scenarios.

For investigating the UML-based representability

of the design smells, we describe the minimal structu-

ral and behavioral design scope which include all ele-

ments that are affected by the smell symptoms.2 De-

2For smell symptoms, see Table 1; for other aspects of

pending on the kind of smell, this relevant context can

include structural and/or behavioral design aspects of

the system under analysis. Based on the design con-

text, we then present exemplary UML class and se-

quence diagrams. For the purpose of comprehensibi-

lity, the diagrams are simple, synthetic and syntacti-

cally reduced. Figs. 1, 2, 3 and 4 depict the structural

and behavioral design scopes with exemplary UML-

based representation in terms of UML class and se-

quence diagrams. The smell symptoms are highligh-

ted in red. For each smell, we then discuss whether

the design smell can be represented via the UML dia-

grams and whether reviewing the diagram allows for

identifying the smell. This is, we reflect, whether the

corresponding diagram provides the information nee-

ded for smell identification. In addition, where ap-

propriate, we reflect on other relevant difficulties for

smell identification and assessment, especially based

on the UML diagrams.

ABSTRACTION Smells. Fig. 1 depicts the four AB-

STRACTION smells with exemplary UML diagrams

reflecting the structural and behavioral design scopes.

• DATACLUMP: Since no information on the data

usage is available in class diagrams, it does not

allow for identifying the smell. Based on multi-

ple sequence diagrams reflecting different usage

scenarios, a repeated joint usage of the data can

indicate a DATACLUMP smell.

• MULTIFACEDABSTRACTION: A class diagram

can weekly indicate a candidate for MULTIFA-

CEDABSTRACTION, e.g., by multiple relations-

hips (e.g., dependencies) from/to other classes.

This information can be complemented by se-

quence diagrams (reflecting different usage scena-

rios), which might illustrate that a class interacts

with certain other classes in different scenarios,

which can be seen as an indicator for multiple re-

sponsibilities.

• UNUTILIZEDABSTRACTION: In case that a class

has no (or very little) relationships to other clas-

ses, a class diagram indicates such a UNUTILI-

ZEDABSTRACTION. Given that the relationships

are defined in source code, but never actually

used at runtime, the sequence diagrams can indi-

cate candidates for functionally UNUTILIZEDAB-

STRACTIONs.

• DUPLICATEABSTRACTION: Candidates for syn-

tactical duplicates can be spotted via class dia-

grams by comparing the owned features and rela-

smell detection/assessment and its refactoring (such as po-
tential causes, variants, or refactoring techniques), please
consult research literature such as (Fowler et al., 1999; Su-
ryanarayana et al., 2014).

ICSOFT 2018 - 13th International Conference on Software Technologies

416

A A'DuplicateAbstraction :A :B :C

sd 1

:A' :B :C

sd 2

DataClump
:A :B :C

sd 1

:A :B :C

sd 2

B

C

A

D

MultifacedAbstraction :D :B

sd 1

:A :B :C

sd 2

UnutilizedAbstraction :A :B

sd

A B C :C

Classes owning the

candidate data,

e.g., getter methods

a2(), b1(), and c3(),

used during a speci�c or

multiple usage scenarios

Interactions between

instances of owning

classes during

usage scenario(s)

(indicating that methods

a2(), b1() and c3() are

repeatedly used

together, in multiple

scenarios)

Design Smell Structural Scope Behavioral ScopeExemplary Class Diagram Exemplary Sequence Diagram

A CB

Candidate class (B)

with used/using methods

or attributes and

corresponding using/

used methods with

owning foreign classes

Interactions of candidate

class (B) with multiple

classes during di�erent

usage scenarios

(indicating that B holds

probably multiple

responsibilities)

Candidate class (C)

with using

classes/methods

(if rarely used)

In case of rarely used

class, interactions of it.

(else, no interaction

available for instances

of class C)

Candidate class

(A') with owned features

(e.g., methods and

attributes) and

relationships (if any)

(indicating syntactical

clone)

Interactions of instances

of candidate class (A')

in terms of calls from

and to the lifeline

(indicating functional

similar clone)

a2()
b1()

c3()

a2()

b1()

c3()

c3()

b1()

a2()

Figure 1: Selected ABSTRACTION smells with exemplary UML class and sequence diagrams reflecting the structural and
behavioral design scope and smell symptoms (see Tab. 1). Smell symptoms are highlighted in red.

tionships. In addition, sequence diagrams allow

for identifying candidates for semantic duplicates

in terms of functionally similar clones. For in-

stance, in case the sequences of calling and called

method (and the types of the passed arguments)

are identical, a candidate is identified.

For all four ABSTRACTION smells (except for the

syntactical variants of UNUTILIZEDABSTRACTION

and DUPLICATEABSTRACTION) sequence diagrams

reflecting the usage scenarios are necessary to iden-

tify the corresponding smell candidates.

ENCAPSULATION Smells. In Fig. 2, the DEFI-

CIENTENCAPSULATION smell is depicted. A UML

class diagram alone provides information on the

access modifier of the candidate feature. To investi-

gate how the attribute is actually used, sequence di-

agrams reflecting usage scenarios are needed which

indicate that a candidate feature is not used by other

classes (which points to a DEFICIENTENCAPSULA-

TION smell).

HIERARCHY Smells. Fig. 3 depicts the four ad-

dressed HIERARCHY smells with UML examples.

• SPECULATIVEHIERARCHY: Based on the class

diagram alone, it can not be seen whether a hier-

archy is speculative, sinc no information on the

actual usage is available. The sequence diagram,

in addition, might indicate that the inherited featu-

res of the candidate class are actually never used.

• For the three HIERARCHY smells UNNECESSA-

RYHIERARCHY, DEEPHIERARCHY and MULTI-

PATHHIERARCHY, class diagrams obviously can

indicate the corresponding smell candidates via

generalization relationships; UML sequence dia-

grams can not be used for identification here.

MODULARIZATION Smells. Fig. 4 depicts the dif-

ferent MODULARIZATION smells addressed in this

analysis with corresponding UML examples.

• FEATUREENVY: Based on a class diagram alone,

a FEATUREENVY candidate can not be spotted,

since the UML does not provide elements to mo-

del dependencies between features. The relations-

hips (including dependencies) between classes do

not indicate a FEATUREENVY. However, a se-

quence diagram reflecting the method calls trig-

gered by the candidate method during one or mul-

tiple usage scenarios might illustrate that more fo-

On using UML Diagrams to Identify and Assess Software Design Smells

417

ADeficientEncapsulation

a1()
a2()
a3()

:B :A

sd 1

a3()

:C :A

sd 2

a1()

a3()

Design Smell Structural Scope Behavioral ScopeExemplary Class Diagram Exemplary Sequence Diagram

a2()

Candidate attributes

and/or methods

(a2()) with owning class

(indicating that feature

is publicly available)

All interactions with

class of candidate

attribute/method

(indicating that a2()

is not used by other

classes)

Figure 2: Selected ENCAPSULATION smells with exemplary UML class and sequence diagrams reflecting the structural and
behavioral design scope and smell symptoms (see Tab. 1). Smell symptoms are highlighted in red.

A

C

B

Multipat��i����c��

A

C

B

D

���	�i����c��

AB
S	�c
lativ��i����c��

A

C

B

U���c�ee����i����c��

Design Smell Structural Scope Behavioral ScopeExemplary Class Diagram Exemplary Sequence Diagram

b1()
b2()
b3()

:C :A

sd 2

a1()

a2()

Candidate class (B)

with subclasses

(and superclasses)

A�� ������tions of

subclasses (here A)

(indicating that

features of candidate

class B are not used)

C�������e classes A and

B (with features) and

subclasses (indicating

that variability of

subclasses only in terms

of attributes)

C�������e class

(inher����� ��������l

class C)

w��� ��� ��������

��s��classes

(indicating a deep

hierarchy)

C�������e class

(inher����� ��������l

class A) w��� ��� ��������

��s��classes

(indicating multiple

hierarchy paths

to superclass C)

Figure 3: Selected HIERARCHY smells with exemplary UML class and sequence diagrams reflecting the structural and beha-
vioral design scope and smell symptoms (see Tab. 1). Smell symptoms are highlighted in red.

reign methods are used than by the own class and

can indicate a FEATUREENVY.

• DATACLASS: A class diagram can show that a

class provides no methods at all. In addition, a

sequence diagram can indicate DATACLASS can-

didates which have methods that do not access the

own data.

• CYCLICALLYDEPENDENTMODULARIZATION:

Relations (e.g., associations and dependencies)

can indicate a circular dependency (direct or

transitive) between classes. Also in sequence

diagrams, these dependencies can be illustrated

via corresponding messages between lifelines.

• MESSAGECHAIN: Chains of relationships bet-

ween classes in class diagrams do not indicate a

MESSAGECHAIN smell. In contrast, messages in

sequence diagrams can obviously illustrate them

(including their depth level).

Preliminary Findings on UML-based Represen-

tability of Design Smells. The examples shown

above illustrate that all selected design smells can

be represented and identified by combining UML

class and sequence diagrams. By only reviewing

UML class diagrams, most of the smell kinds are

not identifiable (with exception of most HIERARCHY

smells). In particular, in order to express relations-

hips between classes, the UML provides different

kinds of Relationship, such as Association and

Dependency, see (Object Management Group, 2015).

In contrast, it does not allow for expressing dependen-

cies between Operations (in terms of method-call

dependencies). For identifying dependency-related

symptoms (especially relevant for MODULARIZA-

TION, ABSTRACTION, and also ENCAPSULATION

SMELLS), the sequence diagrams can provide additio-

nal information by representing method/feature calls

in terms of sequences of (mutual) Messages, which

allows for investigating the details of method-call de-

pendencies, e.g., for identifying method-based CY-

CLICDEPENDENCIES. A prerequisite for this is that

the UML sequence diagrams reflect actual/intended

ICSOFT 2018 - 13th International Conference on Software Technologies

418

A CB
:A :B :C

sd

MessageChain

A CB
DataClass

:A :B :C

sd

FeatureEnvy
A CB :A :B :C

sd

CyclicDependency
:A :B :C

sd

A CB

Design Smell Structural Scope Behavioral ScopeExemplary Class Diagram Exemplary Sequence Diagram

Candidate method

(c2()) and its

owning class

as well as used

features with classes

c2()
c2()

All method calls tr����red

b !"� #andidate method

c2() dur�$� % &'%��

scenario (indicating that

more foreign features are

used than by own class)

(%$)�)%!e class (B) with

pro*�)�))%!% +,�%!ures)

and the classes usin�

the data (indicating that

no methods exist)

All interactions of

the candidate class (B)

(indicating that B uses no

methods for operating

on own data)

All classes with

featur�' �$*o-*�) �$

)�p�$)�$# # #-�

(indicating structural

dependencies; B and C

direct, A and C indirect)

All inter.#-%'' /ethod calls

between t"� �$*o-*�)

classes)&r�$� a usa��

scenario (indicating cyclic

call dependencies, B and

C as well as A and C)

(%--�$� %$d called

methods in the chain

with own�$� #-%''es

All method calls tr����red

(dir�#!- %$d tra$'�!�*�- n

b #%$didate method a2()

)&r�$� % 'p�#�0c us%��

scenario (indicating a

chain with depth of 3)

a123
a123

Figure 4: Selected MODULARIZATION smells with exemplary UML class and sequence diagrams reflecting the structural and
behavioral design scope and smell symptoms (see Tab. 1). Smell symptoms are highlighted in red.

usage scenarios. Moreover, class diagrams seem suf-

ficient for identifying most of HIERARCHY smells

(via the Generalization relationship).

3.2 Further Identification and

Assessment Challenges

In the following, we reflect on selected further chal-

lenges for UML-based smell identification and asses-

sment.

Locating the Relevant Design Context. Manually

created and maintained UML diagrams often lack

with regard to up-to-dateness and consistency with

the documented software system. In contrast, (auto-

matically) reverse-engineered UML diagrams (espe-

cially by applying dynamic analysis techniques) come

with the problem of large model size and a high de-

tail level which impedes comprehending the diagram

(Fernández-Sáez et al., 2015). For this reason, in re-

cent years, different techniques for interactively ex-

ploring or configuring the scope of the diagrams have

been proposed, see, e.g., (Bennett et al., 2008; Ha-

endler et al., 2015). Independent from the method of

creating the design documentation, the challenge re-

mains to locate the relevant part of a design diagram

(design scope, see above), especially in case of asses-

sing a given smell candidate.

Distinctiveness of Smells. Another aspect is the

distinctiveness of the symptoms represented via the

UML diagrams. As seen by the examples in Section

3, the diagrammatic representation alone would pre-

sumably not allow to identify and to distinguish spe-

cific kinds of smells, or even false positives. For in-

stance, the examples of UML class diagrams repre-

senting FEATUREENVY, CYCLICDEPENDENCY and

DATACLASS smells have a very similar appearance.

However, it becomes clear that a UML-based visuali-

zation not in every case can support in comprehending

the analyzed issue.

4 RELATED WORK

To the best of our knowledge, so far there is no rese-

arch addressing the specification or identification of

software design smells via UML diagrams. However,

closely related is research aiming at modeling code

smells and corresponding refactorings in UML dia-

grams:

The model-smell detector EMF Refactor, see, e.g.,

(Arendt et al., 2009), provides several techniques for

assuring the model quality of Ecore and UML2 mo-

dels. In particular, the tool provides 23 quality me-

trics for Ecore models which cover 3 kinds of smells

for Ecore models and 22 corresponding refactoring

techniques. For UML2 models, it provides in total

107 metrics which cover 27 model smells. The ad-

dressed smells largely do not reflect software-design

issues as reflected in this paper (see Section 2). The

study reported in (Arendt and Taentzer, 2010) focu-

ses on model smells for the early stage of a model-

based software-development process. Among other

On using UML Diagrams to Identify and Assess Software Design Smells

419

things, Arendt et al. present a catalog with 17 UML

model smells consisting of a description, detection

techniques, refactorings, quality characteristics af-

fected, and an example represented in terms of a UML

diagram. (Rojas et al., 2017) analyze the effects of

creating and refactoring smells in conceptual models

(based on smell definitions by EMF Refactor) on the

technical debt of the underlying source code measu-

red by applying SonarQube (Campbell and Papape-

trou, 2013). They mainly focus on the refactoring

effort in correlation with the measured TD. Within

this, they also map correlations between smells in

Java source code and model smells in UML class di-

agrams. However, both studies do not address design

smells as described in this paper and do not reflect on

their representability.

Moreover, approaches are related that evaluate the

impact of applying UML diagrams for the localization

of design defects and for performing software mainte-

nance activities in general. (Laitenberger et al., 2000)

investigate in a controlled experiment how design de-

fects can be located via UML diagrams. As a result,

they provide mappings between defects and diagram

types. However, they address defects that can not be

categorized as design smells and pursue a more gene-

ral approach based on model quality attributes (such

as completeness or consistency). For instance, (Aris-

holm et al., 2006; Scanniello et al., 2018) investiga-

ted in empirical studies that the availability of UML-

based design documentation enhances the compre-

hensibility of the system source code, especially with

regard to performing complex maintenance tasks.

As a complement to both groups of research, we

present a conceptual investigation of the applicabi-

lity of UML diagrams for identifying software design

smells.

5 DISCUSSION

In this position paper, we report on work-in-progress

and present results of an investigation on the appli-

cability of UML2 diagrams for identifying and asses-

sing software design smells. The analysis has a con-

ceptual and exploratory character. It provides a first

systematization with preliminary results that demand

for empirical evaluation which will be approached in

future work.

We only focused on UML2 class and sequence

diagrams because of their popularity in industry and

since they are most common for structural and beha-

vioral aspects respectively on the design level. Ho-

wever, other diagram types of the UML2 such as

state charts, activity diagrams or component diagrams

might also serve as a basis for the identification of

certain smell kinds, which should be investigated in

further research.

For the purpose of comprehensibility, simple,

synthetic and syntactically reduced UML diagram ex-

amples have been presented. Moreover, we focused

on an exemplary set of 14 software design smells with

representatives for each violated design principle.

6 CONCLUSION

In this paper, we investigated whether UML2 class

and sequence diagrams provide the information nee-

ded for identifying and assessing 14 kinds of software

design smells. In particular, we analyzed the smell

representability by creating synthetic diagram exam-

ples which reflect the minimal structural and beha-

vioral design context to include all system elements

directly affected by the corresponding smell. In addi-

tion, we discussed further challenges for UML-based

smell identification and assessment. As a result of this

exploratory approach can be stated that all selected

kinds of software design smells with their symptoms

can be represented and identified by combining UML

class and sequence diagrams. By using UML class di-

agrams alone, only a few smell kinds are identifiable

(i.e. mostly HIERARCHY smells). However, the ex-

amples also illustrate that an identification of design

smells or a distinction between the different smells via

reviewing the UML diagrams provides some difficul-

ties, since the diagrammatic appearance of smells can

be partially very similar. Especially, it seems chal-

lenging to recognize patterns for identifying design

smells in UML diagrams, due to the various manife-

stations of smell symptoms.

This analysis represents a first step to investigate

the possibilities of a UML-based smell evaluation.

For future work, we plan to validate the findings in

an empirical setting by comparing the occurrence of

software design smells detected in source code with

their appearance in corresponding reverse-engineered

UML-based design documentation. Moreover, we

aim to develop an intelligent tutoring system (ITS)

for guiding software engineers in acquiring techni-

ques for assessing and refactoring design smells. For

decision support within the ITS for refactoring tasks,

we plan to provide reverse-engineered and tailorable

UML diagrams, also see (Haendler et al., 2017).

ICSOFT 2018 - 13th International Conference on Software Technologies

420

REFERENCES

Arendt, T., Mantz, F., Schneider, L., and Taentzer, G.
(2009). Model refactoring in eclipse by LTK, EWL,
and EMF refactor: a case study. In Model-Driven Soft-
ware Evolution, Workshop Models and Evolution.

Arendt, T. and Taentzer, G. (2010). UML model smells
and model refactorings in early software development
phases. Universitat Marburg.

Arisholm, E., Briand, L. C., Hove, S. E., and Labiche, Y.
(2006). The impact of UML documentation on soft-
ware maintenance: An experimental evaluation. IEEE
Transactions on Software Engineering, 32(6):365–
381.

Bennett, C., Myers, D., Storey, M.-A., German, D. M.,
Ouellet, D., Salois, M., and Charland, P. (2008). A
survey and evaluation of tool features for understan-
ding reverse-engineered sequence diagrams. Journal
of Software: Evolution and Process, 20(4):291–315.

Campbell, G. and Papapetrou, P. P. (2013). SonarQube in
action. Manning Publications Co.

CoderGears (2017). JArchitect. [last access: June 8, 2018].

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figuei-
redo, E. (2016). A review-based comparative study
of bad smell detection tools. In Proceedings of the
20th International Conference on Evaluation and As-
sessment in Software Engineering, page 18. ACM.

Fernández-Sáez, A. M., Genero, M., Chaudron, M. R., Cai-
vano, D., and Ramos, I. (2015). Are forward designed
or reverse-engineered UML diagrams more helpful for
code maintenance?: A family of experiments. Infor-
mation and Software Technology, 57:644–663.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Auto-
matic detection of bad smells in code: An experimen-
tal assessment. J. Object Technology, 11(2):5–1.

Fontana, F. A., Dietrich, J., Walter, B., Yamashita, A., and
Zanoni, M. (2016). Antipattern and code smell false
positives: Preliminary conceptualization and classifi-
cation. In Proc. SANER’16, volume 1, pages 609–613.
IEEE.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: improving the design of exis-
ting code. Addison-Wesley Professional.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Haendler, T., Sobernig, S., and Strembeck, M. (2015). Deri-
ving tailored UML interaction models from scenario-
based runtime tests. In International Conference on
Software Technologies, pages 326–348. Springer.

Haendler, T., Sobernig, S., and Strembeck, M. (2017). To-
wards triaging code-smell candidates via runtime sce-
narios and method-call dependencies. In Proceedings
of the XP2017 Scientific Workshops, pages 1–9. ACM.

hello2morrow (2017). Sonargraph. [last access: June 8,
2018].

Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Techni-
cal debt: From metaphor to theory and practice. Ieee
software, 29(6):18–21.

Laitenberger, O., Atkinson, C., Schlich, M., and El Emam,
K. (2000). An experimental comparison of reading
techniques for defect detection in UML design docu-
ments. Journal of Systems and Software, 53(2):183–
204.

Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur,
A.-F. (2010). Decor: A method for the specification
and detection of code and design smells. IEEE Tran-
sactions on Software Engineering, 36(1):20–36.

Mohagheghi, P., Dehlen, V., and Neple, T. (2009). Defini-
tions and approaches to model quality in model-based
software development–a review of literature. Informa-
tion and Software Technology, 51(12):1646–1669.

Object Management Group (2015). Unified Modeling Lan-
guage (UML), Superstructure, Version 2.5.0. [last
access: June 8, 2018].

Panichella, S., Arnaoudova, V., Di Penta, M., and Antoniol,
G. (2015). Would static analysis tools help developers
with code reviews? In Proc. SANER’15, pages 161–
170. IEEE.

Ribeiro, L. F., de Freitas Farias, M. A., Mendonça, M. G.,
and Spı́nola, R. O. (2016). Decision criteria for the
payment of technical debt in software projects: A sys-
tematic mapping study. In ICEIS (1), pages 572–579.

Rojas, G., Izurieta, C., and Griffith, I. (2017). Toward
technical debt aware software modeling. In IEEE-
ACM Ibero American Conference on Software Engi-
neering, CibSE, pages 22–35.

Scanniello, G., Gravino, C., Genero, M., Cruz-Lemus, J. A.,
Tortora, G., Risi, M., and Dodero, G. (2018). Do
software models based on the UML aid in source-
code comprehensibility? aggregating evidence from
12 controlled experiments. Empirical Software Engi-
neering, pages 1–39.

Sharp, R. and Rountev, A. (2005). Interactive explora-
tion of UML sequence diagrams. In Visualizing Soft-
ware for Understanding and Analysis, 2005. VIS-
SOFT 2005. 3rd IEEE International Workshop on, pa-
ges 1–6. IEEE.

Stroulia, E. and Systä, T. (2002). Dynamic analysis for re-
verse engineering and program understanding. ACM
SIGAPP Applied Computing Review, 10(1):8–17.

Sunyé, G., Pollet, D., Le Traon, Y., and Jézéquel, J.-M.
(2001). Refactoring UML models. In International
Conference on the Unified Modeling Language, pages
134–148. Springer.

Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2014). Refactoring for software design smells: ma-
naging technical debt. Morgan Kaufmann.

Tempero, E., Gorschek, T., and Angelis, L. (2017). Bar-
riers to refactoring. Communications of the ACM,
60(10):54–61.

Tsantalis, N. (2017). JDeodorant. [last access: June 8,
2018].

ZEN PROGRAM (2017). NDepend. [last access: June 8,
2018].

On using UML Diagrams to Identify and Assess Software Design Smells

421

