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Abstract: This paper addresses the task of extracting free-text sections from scientific PDF documents, and specifically 
the problem of formatting disparity among different publications, by analysing their metadata. For the purpose 
of extracting procedural knowledge in the form of recipes from papers, and for the application domain of 
nanomaterial synthesis, we present Metadata-Analytic Text and Section Extractor (MATESC), a heuristic 
rule-based pattern analysis system for text extraction and section classification from scientific literature. 
MATESC extracts text spans and uses metadata features such as spatial layout location, font type, and font 
size to create grouped blocks of text and classify them into groups and subgroups based on rules that 
characterize specific paper sections. The main purpose of our tool is to facilitate information and semantic 
knowledge extraction across different domain topics and journal formats. We measure the accuracy of 
MATESC using string matching algorithms to compute alignment costs between each section extracted by 
our tool and manually-extracted sections. To test its transferability across domains, we measure its accuracy 
on papers that are relevant to the papers that were used to determine our rule-based methodology and also on 
random papers crawled from the web. In the future, we will use natural language processing to improve 
paragraph grouping and classification. 

1 INTRODUCTION 

MATESC is a metadata-analytic text extractor and 
section classifier that uses metadata features and 
heuristics to classify examined text elements that are 
extracted from Portable Document Format (PDF) 
scientific publications into titled sections and 
subsections. Examples of metadata features include 
font size, font type, and spatial location of elements 
that can in turn be localized using computer vision 
and pattern recognition algorithms. MATESC was 
designed to be a generalized extractor whose 
functionality is transferable across different domain 
topics and journal publishers. The purpose of section 
classification in our extraction task is to address the 
problem of IR-based and knowledge-based question 
answering (QA), which requires the extraction of 
passages directly from documents, guided by the text 
of the user question, to formulate a structured 
response (Jurafsky et al., 2009).  

Given the potentially enormous amount of text 
and information that can be retrieved from a 
document, section extraction for QA tasks entails 

narrowing down search sections, controlling a user 
interface to focus on specific sections and passages of 
interest, and reducing costs of extracting answers for 
specific predetermined user queries or search-based 
QA. In fields such as material science, QA tasks 
require the extraction of domain-specific information, 
such as recipes for synthesizing a material of interest 
(Kim et al., 2017). These are stepwise procedures 
consisting of named compounds and operations.  Our 
goal is to use MATESC to obtain specific text 
sections, such as “Materials and Methodology”, that 
can be annotated to obtain training data for machine 
learning algorithms, resulting in models for natural 
language processing such as snippet and passage 
extraction, named entity recognition (NER), set 
expansion, relationship extraction, chunk parsing, 
and semantic role labelling. This in turn allows new 
documents to be tagged with mark-up for snippets or 
passages, named entities, chemical terms and the 
acronyms and synonyms, “verbs” denoting unit 
operations or sub-procedures, unknown terms in the 
form of noun phrases, and recognizable roles of 
recipe ingredients. The end-to-end function of this 
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cognitive computing pipeline uses text and 
knowledge features to drive a process based on semi-
supervised learning to produce material synthesis 
recipes. 

This paper presents a rule-based algorithm used to 
extract section titles, beyond header information, and 
group lines of text in their corresponding paragraphs 
while placing those paragraphs in their correct 
sequential order. To measure the effectiveness of our 
algorithm in section classification and ordering, we 
developed a user interface to manually extract section 
titles and their content from 300 documents to create 
our ground truth. With the purpose of creating a 
transferable tool across different domain topics, we 
compared efficiency measures between the domain-
topic used to develop MATESC, material synthesis, 
and other random domains. Half of the documents 
were relevant to material synthesis determined by 
field professionals, and the other half were randomly 
crawled from the web using the open-source web-
crawling platform, Scrapy (Myers et. al., 2015). The 
length of the longest common subsequence (LLCS) 
(Paterson et. al., 1994), and the length of the longest 
common substring, (LLCSTR) (Crochemore et al., 
2015) were measured to determine similarity, 
precision, recall and accuracy between the manually 
extracted ground truth and the sections extracted by 
MATESC. For ordering of section measurements, we 
use different variations of k, which determines 
comparison of sections only if they k indices apart.  

1.1 Background 

QA tasks rely heavily on the amount of information 
publicly available in the world wide web (Jurafsky et. 
al, 2009). With the tremendous growth of scientific 
documents publicly available, the format disparity 
across different publishers and domain topics 
increases. Although there seems to be a general 
guideline for scientific papers, there are various 
format differences that bring challenges in handling 
this disparity to create a generalized tool. In some 
documents, section subtitles are not included, making 
it difficult for natural language processing to parse 
header data.  

To address format disparity challenges, metadata 
extraction tools have been developed for specific 
entities extraction, specifically headers (e.g. title, 
authors, keywords, abstract) and bibliographic data. 
Apache PDFBox (Apache, 2018), PDFLib TET 
(PDFLib, 2018) and Poppler (Noonburg, 2018) 
extract text and attributes of PDF documents. Open-
source header and bibliographic data parsers include 
GROBID (Lopez, 2009), ParsCit (Prasad et al., 2018) 

and SVMHeaderParse (Han et al. 2003) For table and 
figures extraction, PDFFigures (Clark et. al., 2016) 
and Tabula (Aristaran et. al., 2013) have been 
developed for general academic publications. To 
encapsulate all of these various open source tools into 
one framework, PDFMEF (Wu et al., 2015) brings 
users a customizable and scalable tool to bring the 
best capabilities of each tool into one tool. Extraction 
of first-page header information is useful for 
clustering documents and identifying duplicates, 
where a combination of authors and title are assumed 
to be unique to each document. For structured recipe 
extraction, sections beyond the first page and 
bibliographic data are necessary to extract step-like 
recipe entities. GROBID has been shown to have 
advantages over other methods in first-page and 
bibliographic sections (Lipinski et al., 2013).  Other 
sections, e.g. materials, methodology, results and 
discussion, are not fully extracted or classified by the 
mentioned tools and are often in the wrong order. For 
recipe extraction, sequential order is essential for the 
accurate extraction of synthesis steps. In this paper, 
we compare the accuracy, precision, and recall (based 
on edit distance) of three products of information 
extraction: (1) manually extracted ground truth (text 
selected and ordered by manual annotation); (2) the 
section output of GROBID (Lopez, 2009); and (3) the 
output of MATESC.  

1.2 Applications 

MATESC is the metadata-aware payload extraction 
component of a broader project whose long-term goal 
is to acquire a corpus of scientific and technical 
documents that are restricted to a specific domain and 
extract free-text recipes consisting of procedural steps 
and entities organized in a sequential form.  For our 
specific application domain of nanomaterials 
synthesis, the documents of interest are academic 
papers collected from open-access web sites using a 
custom crawler and scraper ensemble. The initial 
seeds for the document crawl were provided by the 
subject matter expert.  The papers to be analyzed by 
MATESC are PDF files, from which structured 
information such as titles, author lists, keyword lists, 
sets of figures with captions, and specific named 
sections such as the introduction, background and 
related work, experimental method, result data, and 
summary and conclusions, are captured.  The next 
stage of analysis is to extract recipes, which are 
sequences of steps that specify materials needed and 
methods utilized to produce a nanomaterial. These are 
similar in structure and length to cooking recipes. 
Steps of a recipe may consist of basic unit operations 
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or intermediary multi-step methods that are 
composed of more primitive steps.  The framework 
and algorithms of MATESC itself are not limited to 
the domain of nanomaterials alone; there are 
applications in many other scientific and technical 
fields that require reading large numbers of 
documents and would benefit from being able to 
filter, rank, and extract structured information by 
means of section and passage extraction, followed by 
shallow parsing at the sentence level.  Examples of 
such applications include the medical and legal 
domains, where there are large text collections for 
specific professional purposes that practitioners 
regularly sift through in order to obtain procedural 
information. 

2 METHODOLOGY 

MATESC takes as input text information extracted 
using PyMuPDF (Liu et. al, 2018), a tool that 
provides metadata features about each character, 
including font type, font size and spatial location 
relative to each pdf page. The input text is filtered and 
cleaned by removing rare Unicode characters and 
irrelevant information usually found in the margins of 
each document page, using their spatial location. 
These include publication identifiers, headers and 
footers with page numbers, and watermarks. After the 
text is cleaned, our algorithm uses heuristics to merge 
each character into its corresponding line, while 
considering font and spatial location differences to 
differentiate between section titles and section 
content. Those lines are then grouped into paragraphs 
and ordered, considering single, double and triple-
column documents in reconstructing a sequential 
order. Figure 1 shows the workflow of MATESC, 
from the input data stage to the output stage, which is 
customizable for XML, HTML or JSON output. Each 
step is described in detail in the following section. 

2.1 Line Assembly 

Spatial location is helpful when determining whether a 
character belongs to the same line as the previous word or 
to the following line. MATESC uses x, y coordinates, 
font type, and font size to merge lines of characters. 
If the character is within a specified y range, that 
considers subscripts and superscripts, of the previous 
character, we append the character to that line. 
Moreover, during line assembly, if the next 
character’s y range (line height) is overlapping the 
current line’s y range, then it is appended to it, 
otherwise it is the beginning of a new line. Because  
 

 

Figure 1: MATESC’s input processing and section 
classification. 

mathematical and chemical formulae are important 
for information extraction in material synthesis, 
MATESC checks for subscripts as well; this can be 
challenging because the y range can extrude a 
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variable amount above or below a character, causing 
the algorithm to assign the subscript or superscript to 
a new line. To handle this issue, x coordinates are 
considered: if the character is off in the y range but is 
in proximity of the previous and next character in 
terms of x coordinates, then it is recognized as a 
subscript and merged with the line of the preceding 
character. Moreover, for each character, font type and 
size are considered. If font type or size changes and 
the list of those characters are between a certain range 
length, then that line is extracted as a subtitle, their 
position and metadata features are saved and are later 
used for section extraction and ordering. 

2.2 Paragraph Assembly 

After all characters have been merged into their 
corresponding lines, and subtitles have been extracted 
based on their metadata features, those lines are 
grouped into paragraphs. Here, the x and y 
coordinates are considered. If two lines are in an 
extremely close range of x coordinates and their 
distance in y (vertical distance) is less than the height 
of a character, then those two lines are assigned into 
the same paragraph. Each paragraph is assigned a 
bounding box for which spatial location, and an 
associated average font size and type, are calculated. 
It is important to pass these metadata features for the 
paragraph down the pipeline because these features 
will be used for paragraph sequential ordering. 

2.3 Paragraph Order 

Before we can classify each paragraph into sections, 
we must sequentially order all paragraphs. Here, we 
must consider the number of columns used in that 
particular section, which determines the heuristics 
used to order the paragraphs by x or y coordinates 
first. We get an idea of the structure of each page by 
calculating the ratio between each the x coordinate 
length and the length of the page without margins. 
This ratio allows us to determine the number of 
columns in each page (e.g., single, two-column, and 
three-column). Then, depending on the column, we 
use different rules for paragraph ordering. If the page 
contains a single column, then we simply order by x. 
If it consists of two or three columns, we order 
separately by y for those paragraphs that are in the 
same x range. Those groups are assigned to a column, 
and then those columns are ordered by the x 
coordinates of their bounding boxes.  
 
 

2.4 Paragraph Classification 

Once all the paragraphs are in the correct order, we 
can begin to classify each paragraph onto their 
corresponding sections. We use the subtitles extracted 
in Section 2.1, and, based on their spatial location, we 
assign everything between that section title and the 
next one to that section title. Moreover, once all of the 
paragraphs have been assigned to a section, we use 
the spatial location and page number of each subtitle 
to perform an overall sequential ordering of all the 
sections. If no subtitles were found, we use column 
information to differentiate between abstract and 
body. Since it is common for an abstract to be single-
column, while the rest of the paper is two-column.   

3 EXPERIMENT DESIGN 

3.1 Evaluation Method: Manual 
Extraction for Ground Truth  

To evaluate the output of MATESC, we manually 
extracted sections from 300 papers to obtain a 
reference version (the designated ground truth) and 
compared this against two automatically-generated 
outputs: that of the chemical IE system GROBID and 
that of MATESC.  

The manual extraction process to produce each 
payload, a reference extract in raw unformatted text 
form, consists of simple highlighting (copying) of 
contiguous sections of text, one column block at a 
time. A human annotator must exercise judgement to 
make decisions on the extent of a column block and 
the ordering of these blocks when pasting them into a 
file.   

Because MATESC was designed for the purpose 
of IE from papers in a specific domain of interest - 
nanomaterials synthesis - it is important to test its 
generalization quality. To test transferability across 
various domain fields and journals, the experimental 
corpus was deliberately constructed using 150 papers 
known to be relevant to our application domain plus 
another 150 random PDFs scraped from the web 
using a built-in random file selection function of the 
Scrapy web crawling framework (Myers et. al., 
2015).  

3.2 Distance Metrics for Text 

The evaluation approach consists of computing 
distance metrics between reference (ground truth) and 
automatic extracts. We use distance metrics for text 
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alignment as in common practice in bioinformatics 
(Xia, 2007) and payload-extraction approaches to 
web page cleaning (Marek et al., 2008, Weninger et 
al., 2010).  

The overall IE system within which our text 
payload extraction task fits is geared towards 
capturing all text related to a recipe, and ultimately 
extracting a structured representation of that recipe. 
The system thus includes a separate pipeline to 
extract images, tables, figure captions, chemical and 
mathematical formulas. However, the output of 
MATESC omits such text snippets, resulting in a 
penalty to its score because such omissions would be 
scored as deletions from the reference extract.   

To account for this issue, we consider two 
measures of string comparison: Longest Common 
Substring (LCSTR) and Longest Common 
Subsequence (LCS). LCSTR finds the longest 
substring(s) between two strings, while LCS finds the 
longest string that is a shared subsequence between 
two strings, allowing for position disparity in 
individual words. LCS is thus a more tolerant 
measure for standalone algorithms and heuristics 
designed to extract separate components of the 
payload.  This metric is more salient to our task as it 
can ignore strings that are passed to an independent 
pattern recognition subsystem, rather than penalizing 
for their omission.  

We use the length of these two resulting strings, 
LCSTR and LCS, to compute precision, recall, and 
accuracy.  

4 RESULTS 

4.1 Random Documents 

Table 1 shows the average scoring results for all 
sections on random papers. Using LCS, the null 
hypothesis that GROBID classifies a greater number 
of words into their corresponding section than 
MATESC is rejected with p < 0.000000122 (1.22 ✕ 
10-7) at the 95% level of confidence using a paired, 
one-tailed t-test on their F1 scores. On the other hand, 
using LCSTR the null hypothesis fails to be rejected 
with p < 0.09449 at the 95% level of confidence using 
a paired, one-tailed t-test on their F1 scores. 
 
 
 
 
 
 

Table 1: Precision, Recall, Accuracy and F1 for random 
papers across MATESC and GROBID using LCS and 
LCSTR. 

Random Papers 
 TPR FPR PPV ACC F1 

MATESC 
LCSTR 

0.119 0.208 0.166 0.681 0.106 

MATESC 
LCS 

0.629 0.109 0.631 0.849 0.573 

GROBID 
LCSTR 0.095 0.132 0.148 0.716 0.097 

GROBID 
LCS 

0.418 0.066 0.566 0.819 0.437 

4.2 Domain-Relevant Documents 

For domain-relevant papers, Table 2 shows the 
average scoring results for all sections. The null 
hypothesis that GROBID classifies a greater number 
of words into their corresponding section than 
MATESC using LCSTR and LCS is rejected with p < 

8.99 ✕ 10-10 and p < 2.38 x 10-29 at the 95% level of 
confidence using a paired, one-tailed t-test on their F1 
scores. 

Table 2: Precision, Recall, Accuracy and F1 for relevant 
papers across MATESC and GROBID using LCS and 
LCSTR. 

Domain-Relevant Papers 
 TPR FPR PPV ACC F1 

MATESC 
LCSTR 0.133 0.267 0.179 0.601 0.128 

MATESC 
LCS 0.737 0.082 0.776 0.879 0.723 

GROBID 
LCSTR 0.087 0.161 0.210 0.631 0.091 

GROBID 
LCS 0.373 0.063 0.580 0.755 0.392 

4.3 Sections 

Averages for each individual section are shown on 
Table 3, we show precision, recall, accuracy and F1 
scores for only general sections (title, authors, 
abstract, keywords, methodology, results, 
conclusions, acknowledgments, references) using 
both LCS and LCSTR for MATESC. While Table 4 
shows the results for only random papers are shown 
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given the importance of transferability across 
different domains. Other sections that are specific to 
each paper are not shown in the table as they cannot 
be averaged across documents. For LCS, it is 
observed that the precision, recall and F1 score of 
GROBID are on average higher than those of 
MATESC for title and abstract, and introduction; 
while for all other sections, the output of MATESC 
scores higher. For LCSTR, the precision, recall and 
F1 score of GROBID are on average higher than those 
of MATESC for title, abstract, introduction, 
methodology and results.  These findings are in 
keeping with the modular design principle of our 
overall IE system including MATESC and the 
hypothesis that LCS is a more lenient metric across 
the board but also a more salient one for such modular 
systems. 

5 CONCLUSIONS 

5.1 Summary and Interpretation of 
Results 

As expected, the results for LCS are on average better 
than the results for LCSTR across both types of 
papers and extractors. For random papers, in the case 
of LCSTR, results for GROBID and MATESC are 
not statistically different, which can be explained by 
the development focus of MATESC on a scientific 
domain relevant to those for which GROBID was 
designed. However, the LCS score for the output of 
MATESC was slightly better than that of GROBID 
for random paper; the LCSTR scores for MATESC 
were comparable to those of GROBID for relevant 
papers and the LCS scores were substantially better, 
as expected due to our development focus.  

In the case of particular sections, for titles, authors 
and reference sections, the output of GROBID is 
expected to be more accurate than that of MATESC, 
as that is the design focus of GROBID and not of our 
system. From the results reported in the preceding 
section we infer that GROBID outperforms 
MATESC on authors and references because its 
output for those more structured sections contain 
more information (e.g., university, address, phone  
numbers) than our manually extracted authors, which 
only contained the first and last name of each author, 
similarly with references.  

Overall, MATESC performed in average similar 
or better than a well-established text extractor such as 
GROBID.  

5.2 Future Work 

Machine learning approaches using as features 
computer vision data and text analytics are likely to 
improve MATESC heuristics on header and footer 
text, figure and table text, and subtitle recognition. 
Learning to classify techniques on header and footer 
text can increase the FPR on section bodies. Similar 
techniques can be used to determine whether text 
belongs to the body of a section or if it is part of a 
figure or table. Finally, MATESC uses section titles 
as section delimiters, therefore a better section title 
recognition mechanism can aid in identifying correct-
ly whether a new section begins and where it ends. 

For future experimentation, a larger experimental 
corpus is needed, and is being developed. 
Furthermore, we plan to compare our approach to 
other text extraction and section classification 
approaches. Another measurement that could help to 
draw further insights would be the Levenshtein 
Distance (LD) which calculates the edit distance of 
two strings considering deletions, insertions and 
substitutions. This would give us a penalty score in 
which we can compare different extractors (or 
versions of our extractor) without the cost of 
performing the calculations for both LCS and 
LCSTR. This could help in the development task by 
decreasing the time of testing. 

Finally, the document analysis task presented in 
this paper constitutes a key part of a procedural 
pipeline for recipe extraction, namely, taking a 
clipping of a document.  Continuing work on machine 
learning explores the use of deep reinforcement 
learning for this clipping subtask, to learn extraction 
policies and representation. Related tasks of semi-
supervised and transfer learning also arise from the 
need to extract sections that have a positive 
downstream impact on capture of procedural 
knowledge, and ultimately actionable recipes. 
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