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Abstract: Running routes’ elevation profiles affect their runnability and therefore athletes’ average speeds: route dis-

tances alone are not sufficient to predict or evaluate running times. This is an issue for race preparation, race

strategy, performance comparison and runner workload planning anytime the ground is sloping. This paper

proposes a methodology to establish route equivalent distances expressed as a function of their elevation pro-

files. The same expression can be used to compute gradient adjusted speeds either for athlete pacing during

races or to analyze their performances afterward. The approach is first based on race results and addresses the

problem of attendees’ level disparities by evaluating races and athletes at the same time using a race perfor-

mance model. Subsequently, this paper use polynomial and piecewise linear regressions on the instant slope

along the routes to express equivalent distances. They match previous studies with constant slopes and extend

to the case of varying slopes.

1 INTRODUCTION

Race distances alone are not sufficient to evaluate

athlete race times. For instance, an athlete who runs

a marathon distance in 3:30’ could be a well prepa-

red casual runner if it happened to be at the Berlin’s

Marathon (known to be particularly flat) or he could

be a world class champion if it was the Pikes Peak

Marathon (known to be one of world’s toughest ma-

rathon). Elevation gradient, weather conditions, alti-

tude, vegetation, uneven ground and ground firmness

affect athlete speeds. A flat equivalent distance, that

reflects all race characteristics is useful in many ways:

athletes can prepare races considering realistic race

lengths. It also makes athlete ranking possible even if

they did not attend to the same races (this also requires

a performance model). This paper describes a metho-

dology that assigns flat equivalent distances to routes

based, first, on race times and, then, on their elevation

profiles. The flat equivalent distance is defined as the

distance that would be run, on average, in the same

time if the ground was flat; all other above-mentioned

conditions being equal. The methodology is applied

on endurance races ranging from 8 to 159km.

Two paths could be taken to achieve the same

goal: through metabolic measurements or through

statistics on race results. In the first approach, flat

equivalent distance can be computed as the distance

that would lead to the same energy expenditure on flat

ground. The relationship between energy expenditure

and gradient of ascent is established by (Minetti et al.,

2002) by measuring athletes oxygen uptake on an in-

clined treadmill. This first approach is perfectly fine

to assess workload or to plan weight reduction pro-

gram but might not be accurate in what concerns race

times prediction because it does not target it specifi-

cally. The second approach infers a relationship be-

tween race average speeds and their elevation profile

(Kay, 2012; Scarf, 1998; Scarf, 2007). This paper

follows the second approach and addresses two pro-

blems that previous works do not take into account.

The first problem is that race results cannot be ea-

sily compared because races are not run by the same

set of athletes. There could be attendee level diffe-

rences that depend on the popularity of the race. For

instance, some local races may fail to attract world

elite runners. On the other hand, some very popular

races may attract a crowd of casual runners. This im-

plies that races results (race records or any race statis-

tics) do not necessarily reflect its objective runnabi-
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lity. This problem is solved by taking a collaborative

filtering approach, inspired by (de Smet et al., 2017),

that evaluates both athletes and races at the same time.

In this way, equivalent distances approximation can

be computed from a collection of race results taking

the attendees’ level into account.

The second problem is that previous attempts fully

describe race elevation profiles by two global metrics

that are either the cumulative elevation gain1 (Scarf,

2007) or the average elevation gradient of non-loop

races (fell running races) that present a relatively con-

stant gradient (Kay, 2012). This is rarely observed

in practice. In the present paper, the full elevation

profile is considered; this allows for a more realistic

relationship extraction.

To establish the desired relationship between flat

equivalent distances and route elevation profiles, one

need to possess races’ equivalent distances for which

the elevation profiles are known. For this purpose,

races equivalent distances are, first, established using

race results. This step is referred to as collaborative

filtering (Section 3). Then, taking elevation profile

data as inputs, a regression model that reproduces the

obtained race equivalent distances is built (Section 4).

These two steps are validated by assessing how equi-

valent distances improve race time prediction compa-

red to actual distances.

In the following, all equations are expressed using

SI unit system: speeds in [m/s], times in [s] and eleva-

tion gradient in [m/m]. Other units are used in figures

for convenience.

2 DATA SOURCES

The two steps methodology requires two kinds of

data. In the first step (the collaborative filtering part),

race results are used to compute flat equivalent distan-

ces for a set of races. In the second step (the flat equi-

valency modelling part), elevation profiles are used to

model flat equivalent distances as a function of the in-

stant elevation gradient along the routes.

2.1 Race Results

A set of 228 031 races times was gathered by parsing

official results of 616 Belgian races. They represent

a large variety of endurance races that took place in

2014 and 2015. From these results a subset of 179

674 race times (445 races, 7480 athletes) is kept to

obtain a data set presenting properties that allow a col-

laborative filtering approach to operate (as explained

1The cumulative elevation gain is the sum of all positive
vertical displacement along the route.

in Section 3.3). Race results are used to compute flat

equivalent distances that are then put in relation with

race elevation data.

2.2 Elevation Data

Race routes data were collected through measure-

ments made by runners during the races using their

sports watches. Runners uploaded tracks and made

them publicly available to the online community.

Those tracks contain data such as geographic coor-

dinates, timestamps and altitudes. Consumer grade

GPS-based elevations have poor accuracy (Bauer,

2013). In a previous work (de Smet et al., 2017) route

elevations were gathered by querying publicly availa-

ble topography data such as SRTM data (Shuttle Ra-

dar Topography Mission) or Google Maps APIs. They

are both based on radar topography survey made from

space. It is observed that, in such databases, the alti-

tudes of the treetops is assigned to route parts that are

covered by trees: this causes artificial high elevation

gradients on routes that pass under trees.

Fortunately, some high-end sports watches in-

clude barometric altimeter that have good relative

accuracy: the altitude is known with an additive bias

that would need to be calibrated. The relative accu-

racy is what is of primarily interest, the absolute alti-

tude accuracy being irrelevant to our purpose as our

analysis is based on elevation gradient only. Routes

recorded with such devices could be found only for

129 races of our 445. Those 129 races are used to

model our flat equivalent distance model from eleva-

tion data.

Although more than two thirds of the races were

not used in the flat equivalency modelling part, they

are still useful in the collaborative filtering part be-

cause they help to characterize athletes and therefore

improve the flat equivalent distance estimation of the

129 races that are used in the flat equivalency model-

ling section.

2.3 Instant Elevation Gradient

Elevation profiles as they are recorded, even by high-

end devices, are noisy signals that need to be filtered;

especially because our application requires to take the

gradient: the derivative of a noisy signal can take ar-

tificially high amplitudes. A simple way to take the

gradient and smoothing at the same time is to take the

average altitude on a n-meters distance ahead minus

the average altitude on the same distance behind. The

chosen distance acts then as a smoothing factor. More

formally, if the elevation profile e(x) is re-sampled

every meter, its gradient g(x) at distance x is given
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Figure 1: Elevation gradient with different smoothing dis-
tances recorded by 6 different sports watches featuring a
barometric altimeter. On the first plot, the elevation gra-
dient is under-smoothed: it shows some details that do not
correlate among measurements. At the opposite, on the last
plot, the elevation gradient is over-smoothed: some details
present in the 6 measurements vanish.

by

g(x) =
∑i=x+n

i=x+1 e(x)−∑i=x−1
i=x−n e(x)

n2
, (1)

with n being the smoothing distance in meter. Smoo-

thing reduces the measurement noise but it also redu-

ces fast changing details of the real gradient. There-

fore, choosing the smoothing distance n results in a

trade-off that is solved by analyzing its effect on se-

veral track measurements of the same routes recorded

by different runner devices. As independence of the

measurement can be assumed, if the filtering distance

is too small, the random noise is different on each of

the measurement making them less correlated. At the

opposite, a too large smoothing distance makes disap-

pear some details that are present on all the measure-

ment traces. The smoothing problem is illustrated in

Figure 1. Smoothing factor of 120 meters is observed

to be a good trade-off: average tracks pairwise corre-

lation reach a plateau and most small scale elevation

details remain visible.

3 COLLABORATIVE FILTERING

The idea of using collaborative filtering presented by

(de Smet et al., 2017) is to take benefit of a collection

of race times of many athletes on many races to le-

arn enough information about every race and every

athlete to best explain race results. The basic under-

lying model is that race times are explained by a linear

model of the race paces: the race pace pa,r of athlete

a on race r is a sum of products of N race parameters

ri times N athlete parameters ai:

pa,r =
N

∑
i=1

ai · ri. (2)

Races and athletes parameters are found by mini-

mizing the quadratic reconstruction error, i. e. the

sum of the squared differences between observed pa-

ces and paces computed with Equation (2).

The simplest case is when N = 1 meaning that the

race pace is equal to a parameter related to the diffi-

culty of the race times a parameter related to the level

of the athlete (low values for high levels). In other

words, given all the considered races results, the al-

gorithm outputs race and athlete parameters that allow

race time prediction and athlete comparison.

This paper presents a new underlying model that

is more physiologically sound and that makes the flat

equivalent distance appearing explicitly.

3.1 Race Performances Modelling

Running race times are quite well reflected by a po-

wer law (Garcı́a-Manso et al., 2012): if elevation va-

riations are small enough to not affect the race time,

an athlete a is expected to run race r with an average

speed s that depends on the distance as

log(s)≈ α1 · log(Dr)+α0 (3)

with Dr being the actual race distance and {α0,α1}
two athlete-specific parameters.

Race time t = Dr/s can be expressed as a function

of a fictive flat equivalent distance Deq.

log(t)≈ w1 · log(Deq)+w0 (4)

with {w1,w0} = {1−α1,−α0}. Flat equivalent dis-

tances are formally defined as the distances that would

be run in the same time if the ground was flat. They

reflect all parameters that may affect the average race

speed.

3.2 Equivalent Distances Estimation

Athlete parameters (wa,0,wa,1) and race equivalent

distances Deq,r in Equation(4) are unknown but race

times must reflect them.

As the number of race results is high, athlete para-

meters and race equivalent distance can be set so that

the average squared deviation to Equation(4) is mini-

mized on observed race results.

Let log(ta,r) be the log race time of athlete a

on race r and log(t̃a,r) its approximation. Using

Equation(4), they can be expressed as

log(t̃a,r) = wa,1 · log(Deq,r)+wa,0 ≈ log(ta,r). (5)
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The task at hand is now to select race and athlete pa-

rameters such that our prediction match observed log

race times.

Let Ω be the set of observed (a,r) for which we

have race results ta,r. Using the least square error cri-

terion, athlete and race parameters stored in vectors

A and R can be selected by solving the optimization

problem

argmin
A,R

∑
(a,r)∈Ω

(log(ta,r)− log(t̃a,r))
2 (6)

This problem is solved using an alternate least squa-

res algorithm that alternates between two least squa-

res problems: optimization of the athlete parameters

while holding race parameter constant and optimiza-

tion of the race parameter while holding athlete pa-

rameters constant(Jain et al., 2013). Convergence is

observed after several iterations, typically 15 to 20.

Solution to Equation (6) does not necessarily give

Deq,r that correspond to races flat equivalent distan-

ces: the optimal solution has one degree of freedom

because athlete parameters w1 are allowed to compen-

sate freely race parameters Deq,r.

Therefore, an extra constraint is required. Some

races present virtually no elevation differences, like

for instance, the Berlin Marathon or some races in co-

astal regions. For races with very flat profile, it can

be expressed that their equivalent distance is equal to

their actual distance:

Dr = Deq,r (7)

For a set Ω f of selected flat races, the constraint is

met, on average, if:

∑
Ω f

Dr = ∑
Ω f

Deq,r (8)

3.3 Data Conditioning

The above mentioned constraint assumes that aa,1 and

Deqr compensate each other in the same way for every

pair of (a,r). This is not guaranteed unless races have

several athletes in common. To ensure that this con-

dition is met. We define a proximity metric between

two races as the number of athletes who attend to both

of them. By computing this metric for all pair of ra-

ces, we get an adjacency graph from which commu-

nity detection algorithm can select clusters of densely

connected races. Using the Louvain algorithm pre-

sented by (Blondel et al., 2008), only the largest and

most densely connected cluster is kept. The later con-

tain 445 races.

In addition, every athlete must have enough race

results to be characterized (in other words, to be able

to set his w0 and w1 parameters) even when one or two

race results are kept aside for validation. Therefore,

the collaborative filtering part is applied on athletes

who have at least 4 race results. This is the case for

7480 of them.

3.4 Validation

The validation of the collaborative filtering part must

assess its ability to assign flat equivalent distances to

races. Given the proposed definition of the flat equi-

valent distance, its quality can be evaluated with the

accuracy of race time prediction.

For this purpose, 1 percent of the race results are

kept aside for validation. All race results but this 1

percent are used to fit the parameters of each athlete

in Equation (4) with the equivalent distance provided

by the collaborative filtering part. This corresponds to

a simple linear regression per athlete. The accuracy is

evaluated by computing the error at predicting the 1

percent race times that were not used while solving

Equation (6). The process is repeated 100 times to

reduce the variance of the error estimate.

4 FLAT EQUIVALENCY

MODELLING

Having flat equivalent distance approximations for a

set of known races, a regression model can be built to

obtain flat equivalent distances based on their eleva-

tion profiles.

Instant elevation gradients for each point on the

race route are computed from the elevation profile as

described in Section 2.3. Let the function F(g) the

distance correction that need to be applied to a given

sloping distance D presenting an elevation gradient g:

Deq = D ·F(g). (9)

If the considered distance presents a varying gra-

dient, it can be split in 1-meter sub-section x presen-

ting a gradient g(x). The equivalent distance of the

whole route is then the sum of the contributions of

each meter :

Deq,tot =
D

∑
x=0

F(g(x)), (10)

F(g) can take various forms. The present paper is

restricted to piecewise linear and polynomial functi-

ons. Section 4.1 presents different models that are

found in the literature. Section 4.2 show how model

coefficients can be fitted to reproduce flat equivalent

distance computed with the technique that is presen-

ted in the collaborative filtering part.
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4.1 Models

Naismith-like Model

The first rule of thumb, called the Naismith’s rule, da-

tes from 1892 and is relayed, among others, by (Scarf,

2007). Naismith’s rule formulated in terms of equi-

valent distances in the sense of our definition can be

expressed as

Deq

D
= F(g) =

{
1, if (g < 0)

1+ fN ·g, if (g > 0)
(11)

with the fN constant being evaluated to 7.92 by (Scarf,

2007).

Polynomial Models

Other papers present a 4th or 5th order polynomial ex-

pressions that take increased speed for negative gra-

dients into account. (Minetti et al., 2002) gives a rela-

tion that express the metabolic energy cost of running

by distance unit as a 5th order polynomial of the ele-

vation gradient2. This equation will be compared to

ours although their definition of equivalent distance in

that case would be the distance that would lead to the

same energy expenditure if it was on flat ground.

(Kay, 2012) gives a 4th order polynomial that can

be expressed with a definition of flat equivalent dis-

tance that matches ours.

4.2 Model Fitting

As stated earlier model fitting assigns model parame-

ter of the unknown function F() of Equation (10) so

that it best reproduce flat equivalent distance that are

established solving the optimization problem (6) dis-

cussed in the collaborative filtering section.

For the Naismith-like model, fitting Equation (11)

requires to set the parameter fN . This is done by mini-

mizing the least square error of the equation by com-

puting, for each races, cumulative elevation gain.

In previous works, the function F was fitted to

route features using global route features either by as-

suming a constant gradient or by taking the cumula-

tive elevation gain. In our case, races present varying

gradient. The general polynomial form can be expres-

sed as

Deq

D
= F(g) = 1+

i=P

∑
i=1

fi ·gi (12)

2metabolic energy cost of running was measured by
quantity of oxygen uptake

with P, the polynomial order. The independent

term is set to 1 because F(g) = 1 for g = 0 : the equi-

valent distance of a route on flat ground is the distance

itself.

The total equivalent distance (10) can then be writ-

ten as the sum for each meter x along the route as

Deq,tot =
D

∑
x=0

[1+
i=P

∑
i=1

fi ·gi
(x)], (13)

which can the be re-arranged as

Deq,tot = D+
i=P

∑
i=1

[ fi

D

∑
x=0

gi
(x)], (14)

allowing to pre-compute the inner sum for each race

route. The P model parameters fi can then be compu-

ted using a simple linear regression.

In the equation above the runnability is assumed

to only depend on the elevation gradient. This of

course not completely true in practice. The under-

lying assumption is that all other parameters (like we-

ather conditions) are independent of the elevation pro-

file so that they will be averaged out in the regression.

4.3 Validation

Just as for the equivalent distances provided by

the collaborative filtering, the quality of the equiva-

lent distance computed using gradient-based formula

F(g) is evaluated with the accuracy of race time pre-

dictions. Again, for each athlete, parameters wa,0 and

wa,0 in Equation (4) can be set using all race results

for which equivalent distance can be computed except

1 percent that is kept aside for validation. The error

between validation race results and predicted race re-

sults is computed. The process is also repeated 100

times to reduce the variability of the error estimate.

5 RESULTS

This section presents the quality of our flat equivalent

distances as predictors for athletes’ race times using

the Equation (4). As athletes experience high variabi-

lity in their performances (especially casual runners),

race time predictions can not be highly accurate: 4 to

6 percents error are observed on average. Neverthe-

less, given our definition of equivalent distance, the

accuracy of race time prediction is the best way to as-

sess the quality of the computed equivalent distances.

The boxplot presented in the Figure 2 shows the re-

lative error at predicting athletes’ race times conside-

ring different equivalent distances. Models expressed
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Figure 2: Tukey boxplot representing relative error while
predicting race times with different equivalent distances.
Computing equivalent distances from race results through
collaborative filtering gives the best results.

−20 −10 0 10 20
Elevation Gradient g [%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
eq
/D

Pre ent Paper (Poly.)
Pre ent Paper (Nai mith-like)
Minetti 2002
Kay 2012

Figure 3: Distance correction based on the elevation gra-
dient.

by Equations (11) and (12) are evaluate; both with li-

terature coefficients and with coefficients fitted on our

computed equivalent distances. The Table 1 shows

mean relative errors and model parameters.

The Figure 3 shows Naismith’s piecewise linear

model with original coefficient, two polynomial mo-

dels with original coefficients and our best polyno-

mial fitting (5th order). We can note their relative si-

milarity in the range that is displayed. As our eleva-

tion profiles do not present much gradient outside of

the range [−20%;20%], this is also the range of vali-

dity of our model.

6 DISCUSSION

The methodology presented in this paper shows simi-

lar distances correction as previous researches with a

novel approach that possess some advantages.

Table 1: Mean relative errors at predicting race times gi-
ven for different equivalent distances. Actual distances give
7.5%. Collaborative filtering equivalent distances give 4%.

Model Naismith-like 5th order polynomial
(Scarf, 2007) (Minetti et al., 2002)

Equation # (11) (12), P = 5

Coefficients fN = 7.92 { f1..5}=
{5.42,12.9,−12.0,

−8.44,43.2}
MRE 6.4 % 6.3 %

Model Naismith-like 4th order polynomial
(present paper) (Kay, 2012)

Equation # (11) (12), P = 4

Coefficients fN = 6.5 { f1..4}=
{3.64,17.8,

−3.10,−23.8}
MRE 6.3 % 6.1 %

Model 5th polynomial
(present paper)

Equation # (12), P = 5

Coefficients { f1..5}=
{3.90,220,23.6,

6.36,−5.34}
MRE 5.8 %

We obtained flat equivalent distances by applying

a collaborative filtering technique on race results.

This technique takes benefit of physiologically sound

power law to evaluate races’ equivalent distance and

athletes’ level at the same time. By doing so, we ad-

dress the problem of athlete level disparity among the

different races.

The obtained flat equivalent distances are used to

build models that take races elevation profile data as

inputs. Unlike previous works, we apply our distance

correction model to routes with varying gradient.

Results prove that the computed equivalent distan-

ces are more relevant than the actual distances as race

time predictors. The best distance correction is the

one that is computed on race results because it cap-

tures all parameters that affect race times (elevation

gradient, weather conditions, ground firmness, etc.).

Equivalent distances solely based on the routes’ ele-

vation profiles give all similar improvements.

Races considered in this paper are all loop races:

they end at the same place as they begin. Therefore,

flat equivalency formulas can not be safely generali-

zed to routes for which it is not the case. This is ob-

vious for Naismith-like formulas: in appearance, the

model only considers decreased speed in uphill secti-

ons; but actually, as it depends on race results, the mo-

del coefficient fN accounts for the fact that there are

necessarily downhill sections were the speed is at le-

ast a little increased. Indeed, a route with only uphill

sections, would be slower than what is predicted by

the Naismith-like formulas that are considered here.
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The polynomial expression that is obtained for

distance adjustment can serve as-is to correct instant

speed on a race route. This could be used, for in-

stance, to optimize race management by providing a

gradient-adjusted target speed along the route.
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