Hypermedia: The Key to RESTful Web Applications

Patrick B. M. Miiller, Tobias Fertig, Henry Vu and Peter Braun

Faculty of Computer Science and Business Information Systems, University of Applied Sciences Wiirzburg-Schweinfurt,
Sanderheinrichsleitenweg 20, 97074 Wiirzburg, Germany

Keywords:
REST, RESTful Web Clients, Hypermedia.

Abstract:

Model-driven, MDSD, Metamodel, Web Engineering, Web Components, Polymer, Graphical User Interfaces,

Implementing the hypermedia constraint for RESTful Systems is a challenging task for most developers. This

is due to the lack of information about how to implement hypermedia on the client-side correctly. Therefore,
new tools are required to support developers with the implementation of the hypermedia constraint. We pro-
pose a model-driven approach that allows developers to define a RESTful System as a finite-state machine:
states represent resources and transitions represent hypermedia links. We present a metamodel that our gene-
rator can process to generate Polymer Web Applications. These web applications fulfill all REST constraints
defined by Fielding. Therefore, developers do not have to implement the hypermedia constraint themselves.
Our approach simplifies the development of RESTful Web Applications and reduces the development efforts.
Moreover, we describe how RESTful Web Applications can be derived from finite-state machines.

1 INTRODUCTION

Over the past few decades, the World-Wide Web has
become a global information system. This was ena-
bled by the scalable and reliable architecture of the
Web. It was designed for the rapid growth of users
and applications without knowing the term hyperme-
dia. The precursor of hypermedia was then called hy-
pertext, which is why the Hypertext Transfer Protocol
(HTTP) was specified.

In 2000, Fielding derived Representational State
Transfer (REST) as the architectural style for distribu-
ted hypermedia systems in his thesis (Fielding, 2000).
This architectural style meets the requirements of the
modern Web and can be combined well with HTTP.
Fielding defined six constraints that determine how
a web application should behave to ensure certain
quality criteria. The quality criteria include scalabi-
lity and performance requirements. In his thesis, he
defines five mandatory and one optional constraint.
However, he just explains those constraints and gi-
ves no guidance or recommendation on how to im-
plement them. Therefore, false interpretations were
made, which is why developers misunderstand the
REST constraints. For this reason many web applica-
tions do not meet the quality requirements anymore.

The Hypermedia As The Engine Of Application
State (HATEOAS) constraint was most misunder-
stood and discussed. HATEOAS describes how the

378

Miller, P,, Fertig, T., Vu, H. and Braun, P.
Hypermedia: The Key to RESTful Web Applications.
DOI: 10.5220/0006927103780387

client and the server should communicate via hyper-
media, which is why the constraint is often referred
to as the hypermedia constraint. Many developers be-
lieve the constraint is optional, but this is denied by
Fielding in his blog (Fielding, 2008). Fielding him-
self defined the hypermedia constraint as mandatory,
while in contrast the Richardson Maturity Model defi-
nes hypermedia as the highest degree of RESTful Ap-
plications (Webber et al., 2010). Therefore, Richard-
son implies the hypermedia constraint to be optional,
which was not ever the intention of Fielding.

The implementation of all REST constraints pre-
sents many developers with a great challenge. So we
are looking for an approach to simplify the develop-
ment of RESTful Web Applications. Formal models
can support developers by providing an abstract view
of software systems. Model-driven Software Deve-
lopment (MDSD) also uses formal models to gene-
rate code (Volter et al.,, 2013). A similar approach
based on formal models are the Low Code Develop-
ment Platforms (Richardson et al., 2014).

Schreibmann et al. proposed a model-driven ap-
proach to generate RESTful APIs using metamodels
(Schreibmann and Braun, 2015). These metamodels
describe the REST domain using finite-state machi-
nes (¢-NFAs) after Zuzak et al. (Zuzak et al., 2011).
These €-NFAs are easy to understand and can be
used to describe RESTful Systems on a higher le-
vel of abstraction. However, developers still have

In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 378-387

ISBN: 978-989-758-324-7

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

to implement hypermedia-driven frontends by them-
selves. Since there is not much information avai-
lable about how to build RESTful APIs correctly,
there is even less information about hypermedia-
driven clients. Developers are facing the challenge
of implementing the complex hypermedia constraint.
Therefore, we propose a MDSD approach to generate
RESTful Web Applications that fulfill all REST con-
straints. The generator is an extension to our model-
driven approach proposed by Schreibmann et al.

Within this work we are focusing on the following
research questions:

Q1) How can RESTful Web Applications be derived
from finite-state machines?

Q2) How can a model-driven approach support deve-
lopers building RESTful Web Applications?

Q3) Can the hypermedia constraint be fulfilled trans-
parently without manual efforts of individual de-
velopers?

To answer our research questions we will summarize
related work in Section 2. We will show that models
can ease the development of software systems. After-
wards, we will give a short summary of the definition
of finite-state machines for RESTful Systems. More-
over, we will give an overview of existing approaches
for generating web applications. In Section 3 we sum-
marize our project GeMARA and give a short intro-
duction into how our metamodel works. In Section 4
we summarize the different challenges we had to face
during our work. Afterwards, in Section 5 we pro-
pose our model-driven approach. We used Polymer
as a library for web components (Evans, 2015) and
solved the previously mentioned challenges. Finally,
in Section 6 we summarize our results, give answers
to our research questions, and show some limitations
of our generators. We end with a summary of future
work and how we will continue to use our findings.

2 RELATED WORK

Models are a common practice in software engineer-
ing. Already in 1992 Jacobson et al. proposed mo-
deling as tool for object-oriented programming (Ja-
cobson, 1992). Moreover, in 1995 relational models
were introduced for databases in the third manifesto
(Darwen and Date, 1995). Since then and maybe even
earlier engineers routinely create models when analy-
zing and designing complex systems in order to ab-
stract those systems and their environment.

The adjective driven in MDSD emphasizes that
this paradigm assigns models a central and active role.
In other words models are as important as source

Hypermedia: The Key to RESTful Web Applications

code. MDSD is a discipline in software engineering
to generate runnable source code from metamodels
that allow domain developers to more accurately des-
cribe the domain’s problem space by abstracting from
the underlying programming language (Volter et al.,
2013).

Therefore, we required a formal model to describe
REST. Zuzak et al. presented a model of RESTful
Systems based on a finite-state machine (e-NFA) for-
malism, which should create a better understanding
of the architectural style REST (Zuzak et al., 2011).
They described three main parts of e-NFA operations:
the Input Symbol Generator, the Transition Function
and finally the Current State. Their mapping of REST
to an €-NFA can easily be transformed into a metamo-
del. However, they mainly focused on GET requests
in their work. So we had to extent the model for the
other HTTP verbs as well. Afterwards, we had a solid
metamodel to abstract from the complex architectural
style REST.

There is a lack of information about how to im-
plement hypermedia on the client-side. Besides Mike
Amundsen’s book there are no recommendations for
building effective hypermedia-based client applicati-
ons (Amundsen, 2017). Amundsen’s approach should
lead to a reduction of custom client code, as his ap-
proach works in general for every RESTful System.
He recommends that a server emits templates that are
processed by a client. The client uses the templa-
tes to render the Graphical User Interface (GUI) of
the web application. If actions for updating or de-
letion are included in the template, the client will
render the associated buttons. In this case, the bac-
kend developer decides what to display in the fron-
tend. Frontend developers cannot influence the appea-
rance of the web interface. Because his approach is
not model-driven, the backend developer is responsi-
ble for implementing the REST constraints correctly.
Thus, even with Amundsen’s approach, a faulty im-
plementation of the REST constraints is still possible.
Moreover, Amundsen did not use any formal models
we could use for our model-driven approach. The-
refore, we had to implement a different approach to
enable hypermedia on the client-side.

The idea to generate web frontends is not a new
one. In 2003 Shimomura et al. presented their ap-
proach to generate web applications based on images
(Shimomura et al., 2003). The motivation was to ease
the development process and help developers to built
web applications faster. In 2007 Jakob et al. released
a graphical modeling tool to define models and gene-
rators for data management web applications (Jakob
et al., 2007). The past shows that generators for web
applications worked for different domains. Even no-

379

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

wadays more and more approaches for frontend ge-
neration are proposed. Beltramelli proposed an ap-
proach to generate GUIs. His approach is based on
artificial intelligence, which analyzes a screenshot of
the desired GUI and uses it to generate the code for
the web application (Beltramelli, 2017). The disad-
vantage with this method is that a GUI must already
exist - at least in form of a screenshot. Because Bel-
tramelli works independently of the REST domain,
and we cannot provide screenshots for every RESTful
Web Application, we still need a different approach.

Another approach to generate frontends was pro-
posed in 2018 by Jaber et al. They developed a meta-
model that describes GUIs for Android Applications
at a higher level of abstraction (Jaber et al., 2018).
The developers use their metamodel to determine
which control widgets to display on each view of the
Android Application. A generator processes this me-
tamodel to generate the code of the Android Appli-
cation. Unfortunately, this metamodel is not suitable
for our purposes because of the technical reference
to the Android domain. Furthermore, Android’s pro-
gramming model is very different from conventional
web development techniques. Additionally, the me-
tamodel lacks important REST specifications because
states, resources, or attributes are not considered. For
these reasons, we decided to design our own metamo-
del for generating RESTful Web Clients.

There are many proven techniques and practices in
the literature that support the successful implementa-
tion of a model-driven solution. Voelter et al. recom-
mended an approach that is divided into three steps
(Volter et al., 2013): First, building a reference imple-
mentation. Second, separate domain-specific and ge-
neric code. Third, build the generator for the domain-
specific code. We used this approach to build our
own metamodel and our own generator for REST-
ful Web Applications. We chose MDSD because this
approach not only reduces the burden on the deve-
lopment team but can also improve the quality, effi-
ciency, and predictability of large-scale software de-
velopment due to its automation potential (Kelly and
Tolvanen, 2008).

3 GeMARA

The goal of our research project is to develop Genera-
tors for distributed Mobile Applications based on RE-
STful Architecture (GeMARA) using a model-driven
approach. Accordingly, applications are no longer de-
veloped individually, but are described by an abstract
model from which source code and other artifacts are
generated.

380

We proposed our approach in 2015 (Schreibmann
and Braun, 2015). Back then we were able to generate
RESTful APIs including the persistence layer. Our
generators were written with Xtext (Efftinge, 2014b)
and Xtend (Efftinge, 2014a). For the architecture we
used the recommendations of Bettini (Bettini, 2013).
However, as our project matured, the maintenance of
our generators got a time consuming task. Therefore,
we cut loose from Xtext and Xtend and developed
our own internal Domain-specific Language (DSL) in
Java (Fowler, 2010). The latest DSL describes RE-
STful Systems as €-NFAs according to (Zuzak et al.,
2011):

States are defined by the HTTP Verb and the re-
source representation. Transitions represent the hy-
permedia links. Subresources can also be defined
within our metamodel. With those subresources we
can describe relations between resources, for exam-
ple between users and their addresses.

We can generate every RESTful System descri-
bed as e-NFA. By now it is possible to generate web
clients. Moreover, we are generating test cases for
the RESTful API (Fertig and Braun, 2015) and hyper-
media tests (Vu et al., 2017). The generated source
code can be deployed out of the box. However, so-
metimes manual adjustments are necessary. Those are
also supported by our approach using dependency in-
jection.

In order to generate RESTful APIs, further re-
strictions of the REST domain are necessary. The six
constraints defined by Fielding (Fielding, 2000) are
not enough to apply a model-driven approach. The-
refore, we had to define a subset of the REST dom-
ain. We can guarantee that the generated RESTful
Systems fulfill the REST constraints. However, it is
possible that there are RESTful Systems we cannot
generate in the same way they were written manually
before. These restrictions of constraints mainly affect
the types of states. We believe that a RESTful API
must support at least the following five state types:
GetCollectionResource, GetSingleResource, PostRe-
source, PutResource, and DeleteResource. Figure 1
shows an example of a lecturer domain modeled as a
e-NFA.

These states can be connected according to a fixed
pattern via transitions which gives a generic structure
of a RESTful API. We also divide the e-NFA states
into a primary and secondary level. States of the pri-
mary level offer functionalities users can use to re-
trieve or manipulate main resources. Secondary level
states can be used to link resources to other resources.
The secondary level can be reached after a resource
has been retrieved at the primary level - via the Get-
SingleResource State. Table 1 shows the functionali-

Post
Create One Lecturer

GetCollection
Get All Lecturers

GetSingle
Get One Lecturer

Put
Update One Lecturer

Delete
Delete One Lecturer

Hypermedia: The Key to RESTful Web Applications

Post
Create Charge
And Link

GetCollection
Get All Charges
of One Lecturer

GetSingle
Get One Charge
of One Lecturer

Delete
Delete Link to
One Charge

Put
Create Link
To Charge

~"
Primary Layer

~
Secondary Layer

Figure 1: The e-NFA for the lecturer domain. On the left, there is the ‘Primary Layer’ containing all states for the manipulation
of lecturer resources. On the right, there is the ‘Secondary Layer’ containing all states for the manipulation of links between
lecturer resources and their charges. The arrows represent possible transitions between states. A client can always return to

the sO state: transitions were removed for sake of readability.

ties offered by the state types. Depending on which
level a state is located, the functionality changes.

The states are connected by transitions which
show the client the next possible states. Transitions
consist of a URL, a RelationType and a MediaType.
The URL indicates where the state of a resource is
located. Based on the relation type, the client can de-
cide which HTTP verb to use for the request. The
media type tells the client which representation of the
resource to use. We can set a constraint for each tran-
sition to allow filtering links based on the users’ roles.
The associated hypermedia links are only delivered if
the constraint is fulfilled. We always define the max-
imum €-NFA, but we can always omit individual sta-
tes if the permissions are not sufficient. If some of the
state types are not wanted for certain resources, the
domain expert simply cannot model them and adapt
them to their wishes.

Based on these e-NFAs, GUIs can be generated.
For this, we are taking advantage of the new standard
for web components (Cooney, 2014). Frontend de-
velopers are no longer responsible of implementing
REST by themselves. They no longer have to focus
on the correct behavior according to Fielding, they
can now focus on describing the web application as
an abstract model.

4 CHALLENGES

Since our research question is how RESTful Web Ap-
plications can be derived from finite-state machines,
we have to face different challenges. In order to solve
these challenges we try to take advantage of the bene-
fits of the Web Components Standard (Cooney, 2014).
Therefore, we analyze resources which are the key
abstraction of information in RESTful Systems (Fiel-
ding, 2000).

Resources can have different representations that
consist of simple properties and links to other repre-
sentations (Richardson and Ruby, 2008). How can a
resource with its properties be graphically displayed
in a web interface? Established design patterns such
as the Master Detail View (Jovanovic, 2011) do not
provide a clear answer to this question. The master
list view can be represented by the GetCollectionRe-
source State Type. The detail view could then be re-
presented by a GetSingleResource State Type. The
Design Pattern, however, lacks the concept of input
masks that allow users to create or update a resource.
Furthermore, it remains unclear how the design pat-
tern could be used to easily link resources. So we
need to develop our own approach on how to map the
states of a RESTful API within a web application.

The exchange of resources between client and ser-
ver causes state transitions within the e-NFA (Zuzak
et al., 2011). The client manages the current state of
the communication in its application state. During a
state transition, the server signals the next possible

381

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

Table 1: An overview of functionalities offered by different state types. The column ‘Primary’ explains the functionalities on
the primary layer, whereas the column ‘Secondary’ explains the functionalities on the secondary layer.

State Types Primary

Secondary

. Representation retrieval
GetCollectionResource p

of a collection of resources.

Retrieval of a collection of all linked or unlinked
subresources depending on the chosen mode

Representation retrieval

GetSingleResource . Retrieval of a single linked resource
of a single resource
. Creation of a new resource including a link
PostResource Creation of a resource ..
to an existing resource
PutResource Update of a resource Creation of a link between two existing resources
DeleteResource Deletion of a resource Deletion of a link between two resources

transitions from which the client can select one. In or-
der to implement the hypermedia principle correctly
in the client, the web application must detect a transi-
tion within the hypermedia links of the response. Mo-
reover, the presence of such a link must be presented
to the user. This can be done by showing or hiding
buttons (Amundsen, 2017). For example, if the cur-
rently logged-in user is allowed to create a resource,
the server will emit a corresponding hypermedia link
in the response header. The hypermedia link leads to
the state for creating a resource. This will allow the
client to display a button for resource creation in the
GUI. The transitions determine the navigation con-
cept of the web application.

To generate executable applications automatically,
restrictions have to be made in order to give the gene-
rator a framework. A model-driven approach is more
effective if several related systems are to be develo-
ped that can be grouped together under one software
system family (Volter et al., 2013).

A model-driven approach requires encapsulation
of the generic and domain-specific code sections of an
application. In object-oriented programming langua-
ges, class concepts are available that enable encapsu-
lation. This feature is easy to use to encapsulate rela-
ted code. In web development such constructs are not
available. Conventional JavaScript libraries provide
only limited support to outsource the code of a web
application into individual files (Haverbeke, 2011).
Although smaller JavaScript, HTML, and CSS files
can be created, this type of encapsulation is not desi-
rable for a model-driven approach. This concept does
not define what a reusable component might look like,
8o it is not suitable for MDSD.

Recent web technologies are introducing
component-based approaches according to the Web
Components Standard (Cooney, 2014). This allows
code sections to be easily separated from application-
specific sections. However, we still do not know how
a model-driven architecture for web components can
be designed.

382

S APPROACH

In order to generate RESTful Web Applications, we
need to commit to a fixed architecture. Our approach
is based on the generic structure of RESTful APIs in-
troduced in Section 3. We assume that every state
of the e-NFA is represented by a separate view in the
web application (Zuzak et al., 2011). In the following,
we clarify which views are to be created for the indivi-
dual states from Figure 1 on the basis of the Lecturer
Domain. We explain how RESTful Web Applications
should behave and propose our metamodel for descri-
bing their views. Finally, we give some insights into
the generator that creates web applications based on
Polymer web components.

5.1 Analysis of States

The s0 state in Figure 1 represents the dispatcher state
that embodies the entry point of the generated API.
The URL of the dispatcher state is the only one known
to the client. The dispatcher state uses transitions to
point to the next possible PrimaryGetCollection Sta-
tes and can be represented in the web application by
a navigation drawer menu that users use to navigate
between the PrimaryGetCollection States.

A PrimaryGetCollection State can be represented
by a ListView that displays a collection of resour-
ces. Each resource is represented by a Cardview. In
the ListView, a button is displayed so that users can
navigate to an input mask to create new resources.

As already mentioned, a PrimaryPost State can be
mapped to an InputView within the web application.
It consists of input widgets that allow users to more
easily set the attribute values of the resource to be cre-
ated. Depending on the attribute type, different wid-
gets must be provided. The attribute type has to be
defined by using the metamodel.

A PrimaryGetSingle State is represented by a
DetailView that is displayed after the user clic-
ked on a CardView within the ListView. In the

Hypermedia: The Key to RESTful Web Applications

View

I [
CardView Detail View

ResourceViewAttribute

LF

|
InputView

SingleResourceAttribute

GroupedResourceAttribute

\—"—1

ﬁx

DisplayResourceAttribute D| ResourceAttribute [<]

InputResourceAttribute

Q

TextAttribute | | HypermediaAttribute

DateAttribute

InputFieldAttribute | | DropdownMenuAttribute

Figure 2: Simplified version of our metamodel as UML class diagram.

DetailView, the attribute values of the resource are
also displayed differently depending on the attribute
type. A date must be displayed in the correct for-
mat, while a hypermedia link must be displayed as
a clickable link. Again, the attribute types must be
modeled by using the metamodel.

The corresponding web interface of PrimaryPut
States is similar to the InputView for creating a new
resource. However, all widgets are preallocated with
the resource’s current attribute values. The user can
then just change the attributes that need to be updated.

We do not provide additional views for Primary-
Delete States in the web application, since a generic
dialog is sufficient here. This dialog asks for the users
confirmation to delete the resource.

A SecondaryGetCollection State is represented by
a ListView that displays all linked subresources of
a resource. This view can only be reached after the
main resource was requested from the PrimaryGet-
Single State. Table 1 shows that the states located
at the secondary level provide functionality for lin-
king and unlinking resources. To simplify the linking
or unlinking of resources, the ListView has two dif-
ferent modes: In the OnlyLinkedSubresources mode,
the ListView displays all linked subresources. The
second mode is the AllPossibleSubresources mode,
which displays all resources that are already linked
and the ones that can be linked. Each Cardview dis-
plays a check box so that subresources can be easily
linked or unlinked from the main resource.

SecondaryPut States are embodied by
InputViews that are used to update the subre-
source and establish a link to the main resource.

SecondaryPost States are also represented by
InputViews. These enable the creation of a subre-
source that will be automatically linked to the main
resource.

Clicking on a CardView within the ListView
opens the DetailView of the resource. This view is
identical to the view of PrimaryGetSingle States.

A generic delete dialog can also be used to repre-
sent SecondaryDelete States. This state offers functi-
onalities to remove a link to the main resource. The
subresource itself will not be deleted.

The analysis of the different states shows that
four different views are required: CardViews, Detail-
Views, InputViews, and ListViews, that are repre-
sented by a list of Cardviews. Now we want to pre-
sent our understanding of how RESTful Web Appli-
cations should behave. The ListViews that represent
our PrimaryGetCollection States can display a button
that can be used to navigate to a POST InputView.
Due to the hypermedia constraint this button may only
be displayed under the following conditions:

e The e-NFA includes a transition to a correspon-
ding PrimaryPost State, which offers the POST
functionality.

e The client receives a link in the response header
that contains the POST URL.

The web application is responsible to analyze the
response link headers to determine if the server allows
the transition to the PrimaryPost State. If the server
does not allow the creation of a resource, the POST
button must not be displayed to the user. Therefore,
the implementation of the hypermedia constraint re-

383

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

quires a fixed structure of the e-NFA. The web appli-
cation uses the provided link headers to decide if the
navigation buttons must be presented to the user. This
behavior is what we consider as a RESTful Web Ap-
plication.

Now that we have determined how a e-NFA af-
fects a RESTful Web Application, we will present our
metamodel.

5.2 Metamodel

By using the metamodel domain experts can describe
each view of a web application at a higher abstraction
level. This metamodel can be processed by a software
generator to create functional web applications. The
key abstraction of information in REST is a resource
that has attributes in the form of key-value pairs (Fiel-
ding, 2000). Because values of attributes are shown
to the user, domain experts must use the metamodel
to define how these values should be represented.

We examined GUIs from a non-technical per-
spective to keep the metamodel generic. Because of
this, other generators can use this metamodel to create
client applications based on other frontend technolo-
gies.

The easiest way to represent a resource in a view
is to arrange its attributes vertically one by one. For
this reason, a vertical layout is used in our views. In
CardViews and DetailViews it may be necessary
to display attributes horizontally next to each other.
This is the case if the full name of a lecturer con-
sists of the academic title, first name, and surname.
In InputViews the possibility of a horizontal arran-
gement should be denied, since otherwise rendering
problems may occur on mobile devices. These often
have smaller screens and are therefore not suitable for
horizontal arrangements of input widgets.

The order in which the attributes are arranged can
be determined by the domain expert. In addition, they
can use the metamodel to define which font size and
color should be applied to the attribute values. Figure
2 shows a simplified version of our metamodel.

The metamodel defines how the attributes of a re-
source should be graphically displayed in the inter-
face. For this reason, we start by explaining the class
ResourceAttribute. This represents an attribute of
a resource in the metamodel.

In the metamodel, we distinguish bet-
ween attributes that can be read or written.
DisplayResourceAttributes represent the read-
only attributes, while InputResourceAttributes
represent the modifiable attributes. These two classes
serve as superclasses for specific attribute types,

384

which can be seen in the lowest level of the diagram
in Figure 2.

Depending on the attribute type, the attribute value
must be processed differently in the client application.
We provide some examples that show why different
attribute types are necessary:

e A first name as text can be displayed directly as
a string. In the DetailView one would use a
TextAttribute. In the InputView one would
use an InputFieldAttribute.

e Hypermedia links must present a clickable link in
the GUIL.

e Timestamps have to be converted into a human-
readable format.

These are just a few obvious examples of possible at-
tribute types. Our metamodel can easily be extended
by inheritance for additional attribute types.

A DisplayResourceAttribute can be wrapped
in a SingleResourceAttribute, informing the ge-
nerator that the attribute should occupy an entire
row within the vertical layout. If several attribu-
tes of a resource are to be displayed horizontally
next to each other, they must be grouped using a
GroupedResourceAttribute.

With the metamodel CardViews, DetailViews,
and InputViews can be described. The CardViews
are required within ListViews. Delete views
do not have to be generated separately be-
cause a generic delete dialog is sufficient. The
Cardviews and DetailViews have a collection
of ResourceAttributes, which represents the
content of each view. Since no input wid-
gets can be grouped horizontally in InputViews,
InputResourceAttributes cannot be grouped by
GroupedResourceAttributes.

The generator now has all the information nee-
ded to generate the views required by a RESTful Web
Application based on this metamodel. Each state of
the e-NFA is mapped to a specific view description
with the exception of the delete states. For example,
a PUT state receives an instance of an InputView.
The collection InputResourceAttribute describes
the content of the input mask that has to be generated.

5.3 Generators

For the implementation of a model-driven approach,
Voelter et al. proposed to start developing a reference
implementation (Volter et al., 2013). The reference
implementation, in our case, is a manually developed
web application that communicates with a RESTful
API. The API provides functionalities for managing
lecturers that work at a faculty. For each state of the

<template>
<abstract -card-view
url="[[url]]"
update_rel_type="updateLecturer"
delete_rel_type="deleteLecturer">
</abstract-card-view>
</template>
<script>
Polymer ({
is: "lecturer-card-view",
properties: {
url : { type: String, value: "" }

bl o)
</script>

Listing 1: Excerpt from the ‘lecturer-card-view’ com-
ponent. The code highlighted in orange is domain-specific
information that is inserted from the metamodel into the
generator template (black).

€-NFA, a separate view was implemented as descri-
bed in Section 5.1. The web application has imple-
mented all the required features needed in the genera-
ted web applications.

The next step is to analyze the code of the refe-
rence implementation more closely to identify the ge-
neric and domain-specific code sections. The generic
code is the same in all generated web applications.
To reuse this code, the generic code sections must
be separated into different components. The domain-
specific code is different in each project and therefore
must be generated by the generator using the meta-
model. We decided to use the Polymer library to se-
parate these two code sections. Polymer is based on
the concept of web components, whereby the neces-
sary separation of the code sections can be realized.

In the following, we explain how the two code
sections can be separated using the example of a
lecturer-card-view. The lecturer-card-view
represents a resource on a CardView within a
ListView. CardViews play an important role in our
navigation concept, as they provide buttons that al-
low the user to update or delete the resource. The
lecturer-card-view component requires the rela-
tion type for PUT and DELETE requests to imple-
ment the hypermedia constraint. Only then the client
can determine the URLs for updating and deleting the
resource. If the client finds the corresponding URLs
in the response link headers using this relation types,
the buttons have to be displayed.

We now form two components: the gene-
ric abstract-card-view and the domain-specific
lecturer-card-view. Our abstract-card-view
is the same in all web applications. Therefore, it can
be reused in every project. It contains the logic nee-
ded in every CardvView. These include the following
functionalities:

Hypermedia: The Key to RESTful Web Applications

e The network communication to request the re-
source from the server.

e The analysis of the response link headers to dis-
play the corresponding buttons.

e The navigation logic to the UpdateView or
DeleteView.

The domain-specific lecturer-card-view contains
all the information about how the attributes of the re-
source should be displayed. This component must
be generated because the information about the view
content is described in the metamodel.

Due to the necessary code separation, the generic
and domain-specific sections of the CardvView were
separated into two different components. In order to
establish the communication between these two com-
ponents they must be properly nested. The nesting is
enabled by using the content tag offered by the Poly-
mer library. We illustrate this concept within Figure 3.

According to this approach, the domain-
specific lecturer-card-view encloses the
abstract-card-view component. The inner
component requires domain-specific information that
must be set by the outer components via its proper-
ties. The generated HTML code will be inserted
into the generic component by using the content tag.
Listing 1 shows that the generic component now has
all the information needed to request resources from
the server and present the resource to the user.

These concepts also apply to the other required
components, such as ListViews, DetailViews, and
InputViews. The generator iterates over the states of
the e-NFA and generates the required components for
each state. The generated components are arranged by
the generator to create functional web applications.

6 DISCUSSION

At the beginning we summarized related work and
explained that modeling has a central role in soft-
ware development. Moreover, we showed that model-
driven approaches for developing frontends already
worked in the past. Afterwards, we introduced our
project and explained how to define RESTful Systems
as e-NFAs. After having clarified all challenges, we
presented our approach and outlined results.

To answer our first research question Q1, we take
a look at the results of Section 5.1. In order to imple-
ment RESTful Web Applications we need four diffe-
rent views within our approach: CardViews, Detail-
Views, InputViews, and ListViews, that are repre-
sented by a list of Cardviews. Moreover, the frontend
is responsible for analyzing the response link headers

385

APMDWE 2018 - 3rd International Special Session on Advanced practices in Model-Driven Web Engineering

lecturer-card-view

abstract-card-view

“updateLecturer”

N
“deleteLecturer”

JavaScript logic

<content>

<html>... </html>

</content>

|:| Generated Code

|:| Generic Code

Figure 3: This figure shows how the generator fills the missing information into our code templates. The ‘abstract-card-view’
contains all generic logic. Our generator generates the ‘lecturer-card-view’ and inserts the properties from the metamodel into
the generator template shown in Listing 1. The domain-specific information is transferred to the generic component by setting
its properties. The generic component can then access this information which will be required for the network communication.

to determine which buttons must be displayed. This
behavior fulfills all six constraints of REST. Further-
more, the four views were sufficiant to describe all
requirements within our lecturer domain in our meta-
model.

The advantage of this abstraction into four diffe-
rent views is that new developers can be onboarded
fast. Nevertheless, it is not always trivial to divide
domain requirements into only four views. Suppor-
ting more views could be helpful and ease the deve-
lopment even further. Therefore, we need to inves-
tigate if additional views are supported by the REST
constraints.

The research questions Q2 and Q3 both focus
on supporting developers via a model-driven appro-
ach. Since e-NFAs are easier to understand and easier
to define than implementing RESTful Systems from
scratch, our metamodel can reduce the development
efforts. Developers can easily define all hypermedia
aspects via the state transitions in our €-NFA. They
do no longer require any knowledge on how to im-
plement the hypermedia constraint correctly. They
only need to know the hypermedia principle itself and
how to describe RESTful Systems as e-NFA. We have
shown that viable web applications can be realized
with a model-driven approach. Especially within the
domain REST, the model-driven approach is suitable
because REST is very restrictive and repetitive. This
results in a high degree of reuse (Kelly and Tolvanen,
2008). Web components are also very well suited be-
cause the required encapsulation of the code is ena-
bled.

A disadvantage of our current metamodel is the
fixed structure of our €-NFAs. Nevertheless, we need

386

a fixed structure in our model-driven approach in or-
der to generate web applications. Any change to the
fixed structure would require all generators to be re-
written. The drawback is that our web application
cannot support every possible RESTful API which
is in conflict with Amundsen’s vision (Amundsen,
2017).

Another drawback is that the metamodel is cur-
rently very technical. Developers still have to under-
stand how to describe REST as €-NFA, and our me-
tamodel could benefit from further abstraction levels.
We already have initial approaches to create a higher
abstraction of our metamodel on the server-side (Ul-
samer et al., 2018). It would be interesting to explore
the possibility of abstraction levels for the description
of the client-side. A description in the form of featu-
res would be a possible higher level, so that develo-
pers only have to define which features are required.

Another issue is the complexity of the generated
web applications. We originally wanted to generate
reusable web components. Unfortunately our genera-
tor evolved and its complexity makes our components
difficult to reuse. A next step would therefore be to
focus on reusable web components that can be parti-
ally used in other non-generated projects.

Finally, we have to deal with platform indepen-
dence. Currently, our generators have been developed
for Polymer 1.0. However, a lot has changed in ver-
sion 2.0, so the generators are difficult to adapt. It re-
mains to be clarified whether generators can be built
that can operate independently of the platform used.

REFERENCES

Amundsen, M. (2017). RESTful Web Clients: Enabling
Reuse Through Hypermedia. O’Reilly Media.

Beltramelli, T. (2017). pix2code: Generating Code from a
Graphical User Interface Screenshot. arXiv preprint
arXiv:1705.07962.

Bettini, L. (2013). Implementing Domain-Specific Langua-
ges with Xtext and Xtend. EBL-Schweitzer. Packt Pu-
blishing, Limited.

Cooney, D. (2014). Introduction to Web Components.
https://www.w3.0rg/TR/2014/NOTE-components-
intro-20140724/.

Darwen, H. and Date, C. J. (1995). The Third Manifesto.
SIGMOD Rec., 24(1):39-49.

Efftinge, S. (2014a). Xtend Documentation. http://www.
eclipse.org/xtend/documentation.html.

Efftinge, S. (2014b). Xtext Documentation. http://www.
eclipse.org/Xtext/documentation.html.

Evans, A. (2015). Polymer Project 1.0. https://www.
polymer-project.org/1.0/start/.

Fertig, T. and Braun, P. (2015). Model-driven Testing of
RESTful APIs. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, WWW 15
Companion, pages 1497-1502, New York, NY, USA.
ACM.

Fielding, R. (2000). REST: Architectural Styles and the De-
sign of Network-based Software Architectures. Doc-
toral dissertation, University of California, Irvine.

Fielding, R. (2008). REST APIs must be hyper-text
driven. http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven.

Fowler, M. (2010). Domain-Specific Languages. Addison-
Wesley Signature Series (Fowler). Pearson Education.

Haverbeke, M. (2011). Eloguent JavaScript: A Modern In-
troduction to Programming. No Starch Press Series.
No Starch Press.

Jaber, M., Falcone, Y., Dak-Al-Bab, K., Abou-Jaoudeh, J.,
and El-Katerji, M. (2018). A high-level modeling lan-
guage for the efficient design, implementation, and
testing of Android applications. International Journal
on Software Tools for Technology Transfer, 20(1):1—
18.

Jacobson, 1. (1992). Object-oriented Software Engineer-
ing: A Use Case Driven Approach. ACM Press Series.
ACM Press.

Jakob, M., Schiller, O., Schwarz, H., and Kaiser, F. (2007).
flashWeb: Graphical Modeling of Web Applications
for Data Management. In Tutorials, Posters, Panels
and Industrial Contributions at the 26th International
Conference on Conceptual Modeling - Volume 83, ER
’07, pages 59-64, Darlinghurst, Australia, Australia.
Australian Computer Society, Inc.

Jovanovic, J. (2011). Designing User Interfaces For Bu-
siness Web Applications. Professional Web Design:
The Best of Smashing Magazine, 1:89-108.

Kelly, S. and Tolvanen, J. (2008). Domain-Specific Mo-
deling: Enabling Full Code Generation. Wiley -
IEEE. Wiley.

Hypermedia: The Key to RESTful Web Applications

Richardson, C., Rymer, J. R., Mines, C., Cullen, A., and
Whittaker, D. (2014). New Development Platforms
Emerge For Customer-Facing Applications: Firms
Choose Low-Code Alternatives For Fast, Continuous,
And Test-And-Learn Delivery. https://www.forrester.
com/report/New+Development+Platforms+Emerge+
For+CustomerFacing+Applications/-/E-RES113411.

Richardson, L. and Ruby, S. (2008). RESTful Web Services.
O’Reilly Media.

Schreibmann, V. and Braun, P. (2015). Model-Driven Deve-
lopment of RESTful APIs. In Proceedings of the 11th

International Conference of Web Information Systems
and Technologies, pages 5—14. INSTICC, SciTePress.

Shimomura, T., Takahashi, M., Ikeda, K., and Mogami, Y.
(2003). Web application generator by image-oriented
design. SIGSOFT Softw. Eng. Notes, 28(2):14—.

Ulsamer, P., Fertig, T., and Braun, P. (2018). Feature-
oriented Domain-specific Languages. In Riebisch, M.,
Huhn, M., Hungar, H., and Voss, S., editors, Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung ein-
gebetteter Systeme X1V, Schloss Dagstuhl, Germany,
2018, Tagungsband Modellbasierte Entwicklung ein-
gebetteter Systeme, pages 31-40. fortiss GmbH,
Miinchen.

Volter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czar-
necki, K., and von Stockfleth, B. (2013). Model-
Driven Software Development: Technology, Engineer-
ing, Management. Wiley Software Patterns Series.
Wiley.

Vu, H., Fertig, T., and Braun, P. (2017). Towards Model-
driven Hypermedia Testing for RESTful Systems. In
Proceedings of the 13th International Conference on
Web Information Systems and Technologies - Volume
1: WEBIST,, pages 340-343. INSTICC, SciTePress.

Webber, J., Parastatidis, S., and Robinson, 1. (2010). REST
in Practice: Hypermedia and Systems Architecture.
Theory in practice series. O’Reilly Media.

Zuzak, 1., Budiselic, 1., and Delac, G. (2011). Web Engi-
neering: 11th International Conference, ICWE 2011,
Paphos, Cyprus, June 20-24, 2011, chapter Formal
Modeling of RESTful Systems Using Finite-State Ma-
chines, pages 346-360. Springer Berlin Heidelberg.

387

