Applying Cartesian Genetic Programming to Evolve Rules for Intrusion

Keywords:

Abstract:

Detection System

Hasanen Alyasiri', John Clark? and Daniel Kudenko!

' Department of Computer Science, University of York, UK.
2Department of Computer Science, University of Sheffield, U.K.

Cartesian Genetic Programming, Intrusion Detection System, Stacking Ensemble.

With cyber-attacks becoming a regular feature of daily business and attackers continuously evolving their
techniques, we are witnessing ever more sophisticated and targeted threats. Various artificial intelligence
(AD) algorithms have been deployed to analyse such incidents. Extracting knowledge allows the discovery
of new attack methods, intrusion scenarios, and attackers’ objectives and strategies, all of which can help
distinguish subsequent attacks from legitimate behaviour. Amongst Al approaches, Evolutionary Computation
(EC) techniques have seen significant application, particularly in the area of intrusion detection. In this paper,
we show how one EC approach, namely Cartesian Genetic Programming (CGP), can construct rules (checks)
for detecting malicious behaviour in a system. Experiments are conducted on up-to-date datasets and compared
with state of the art approaches. We also introduce an ensemble learning paradigm, indicating how CGP can

be used as stacking technique to improve learning performance.

1 INTRODUCTION

“Intrusion detection is the process of monitoring the
events occurring in a computer system or network
and analysing them for signs of possible incidents,
which are violations or imminent threats of violation
of computer security policies, acceptable use policies,
or standard security practices” (Scarfone and Mell,
2007). In recent years, security threats have had a
major effect on the confidentiality, privacy and inte-
grity of on-line services. Intrusion detection can help
prevent or mitigate some of these threats. Intrusion
detection relies extensively on the analysis of attack
vectors and intentions. However, IDS systems face
various problems such as large traffic volumes, unba-
lanced data distributions, the need to recognize nor-
mal and abnormal behaviour, and continuously chan-
ging environments (Wu and Banzhaf, 2010).
Researchers have applied a variety of machine le-
arning and data mining approaches to address IDS
problems. Evolutionary Computation (EC) techni-
ques have been used by researchers to tackle nume-
rous tasks in IDSs, for example searching for an op-
timal probe placement, automatic model design, and
learning of classifiers (Wu and Banzhaf, 2010). EC
approaches have a number of attractive features, such
as producing readable outputs, producing lightweight

176

Alyasiri, H., Clark, J. and Kudenko, D.
Applying Cartesian Genetic Programming to Evolve Rules for Intrusion Detection System.
DOI: 10.5220/0006925901760183

rules, and an ability to make trade-offs between con-
flicting objectives (Sen, 2015). These features are
very significant for security teams (Orfila et al., 2009).
In addition, EC makes possible the automated synthe-
sis of computer programs. It is often used when the
desired solution is an ‘expression’ or program. EC-
based techniques can be data distribution free, i.e., no
prior knowledge is needed about the statistical distri-
bution of the data and the approaches can operate di-
rectly on the data in their original form.

Various researchers have reported the use of some
sort of EC for evolving IDS rules. In this paper we use
a form of Genetic Programming (GP) called Cartesian
Genetic Programming (CGP). CGP was introduced in
(Miller and Thomson, 2000). CGP individuals take
the form of directed acyclic graphs instead of the tree
structures used by standard forms of GP. It represents
these graphs as a two-dimensional grid of computati-
onal nodes (Miller, 2011). An individual’s genotype
is a linear string of integers that decodes to a directed
graph. A set of predefined inputs and functions, en-
coded as graph nodes, are then sequentially evaluated
(‘executed’) to give the desired output. CGP has been
applied in a significant number of domains and pro-
blems (Miller and Smith, 2006). This paper demon-
strates the use of CGP to discover intrusion detection
rules.

In Proceedings of the 10th International Joint Conference on Computational Intelligence (IJCCI 2018), pages 176-183

ISBN: 978-989-758-327-8

Copyright © 2018 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

Applying Cartesian Genetic Programming to Evolve Rules for Intrusion Detection System

Section 2 summarises past use of EC algorithms
for IDS rule synthesis. Section 3 introduces our pro-
posed method. Section 4 introduces the experimen-
tal datasets and the standard CGP implementation re-
sults. Section 5 introduces the stacking ensemble con-
cept, implementation and results. The last section gi-
ves conclusions and identifies future work.

2 RELATED WORK

(Crosbie et al., 1995) gave the first GP application to
intrusion detection, training autonomous agents to de-
tect intrusive behaviours. Obvious intrusions that are
misclassified during the evolution process are penali-
sed heavily. (Folino et al., 2005) presented a GP en-
semble for a distributed IDS. GP runs on a distributed
hybrid multi-island model-based environment to mo-
nitor security-related activity within a network. Each
island contains a cellular genetic program whose aim
is to generate a decision-tree predictor, trained on the
local data stored in the node and enhanced with the
boosting algorithm AdaBoost.M2. Every genetic pro-
gram operates cooperatively, yet independently of the
others. After the classifiers compute their results, ma-
jority voting is used to form an ensemble. (Abraham
et al., 2007) use three GP variants: linear genetic pro-
gramming, multi-expression programming and gene
expression programming to build an intrusion de-
tection program. The evolved detectors are effective
against a variety of attacks such as denial of service,
probe, user-to-root and remote-to-local attacks. The
work demonstrated the ability of GP techniques to de-
velop lightweight and accurate detection rules com-
pared to some of the conventional intrusion detection
systems based on machine learning paradigms. (Sen
and Clark, 2011) applied GP and Grammatical Evo-
Iution (GE), another evolutionary computation para-
digm, to build IDS rules for deployment in mobile
ad hoc networks (MANETS). Their research shows
that GP and GE can be used to evolve efficient detec-
tors automatically for known attacks, namely ad hoc
flooding and route disruption against the routing pro-
tocol on MANETS. The experimental outcomes show
that GP and GE are good at discovering complex re-
lations on MANET data and that GP gives a better
performance than GE under their (approximation to)
optimal parameter settings.

3 CARTESIAN GENETIC
PROGRAMMING

“CGP is a form of automatic evolution of compu-
ter programs and other computational structures using
ideas inspired by Darwin’s theory of evolution by na-
tural selection” (Miller, 2011). In CGP, a program is
encoded as a linear string of integers representing a
directed graph. Each program is divided into subsets
of genes (i.e. genotype) of the same length, represen-
ting the nodes of the graph.

The genotype describes from where a node re-
ceives its data, what operations the node carries out
on the data, and how user output data is extracted.
When the genotype is decoded, some nodes are ig-
nored. This happens when a node’s outputs are not
subsequently used in the calculation of output data.
When this happens, we refer to the nodes and their ge-
nes as ‘inactive’. Previous investigations (Miller and
Thomson, 2000)(Miller and Smith, 2006) have shown
how a significant percentage of inactive nodes can
help the efficiency of the evolution process. Unlike a
tree structure, where there is always a unique path be-
tween any pair of nodes, graphs permit more than one
path between any pair of nodes. If we assume all no-
des perform some computational function, graph re-
presentations of functions are more compact than tree
representations since they permit the reuse of previ-
ously calculated subgraphs. EC algorithms are also
susceptible to bloat, a phenomenon where a large por-
tion of the evolved program code has no influence on
the fitness but whose execution still consumes resour-
ces (and so typically extends execution times). CGP
avoids such bloat (Miller and Smith, 2006).

CGP’s genotype decoding process is recursive in
nature. Decoding starts with the output genes. CGP
programs may have as many output nodes as ne-
cessary. These final output nodes are deemed to
be ‘active’. The decoding process identifies the no-
des whose outputs are used as inputs to these nodes.
These input nodes themselves become ‘active’ and
the same procedure is repeatedly applied until the full
function is identified, ending with the identification
of appropriate terminal input nodes. The decoding
process extracts the active nodes; inactive nodes are
not processed and so having inactive genes presents
little computational overhead. Consider the example
shown in Figure 1.

There are three input nodes, which are indexed by
0,1, and 2. (These do not form part of the genotype,
but may be indexed by it.) The remaining (computati-
onal) nodes of the system are now numbered contigu-
ously, from 3 to 8. System inputs and computational

177

1JCCI 2018 - 10th International Joint Conference on Computational Intelligence

Figure 1: CGP genotype and corresponding phenotype.

nodes are therefore numbered contiguously over the
range 0 to 8.

The genotype contains structures of three integers
for each of its computational nodes. The underlined
genes in the genotype encode the specific function for
each node. There are six possible functions, denoted
by the integers O to 5: add (0), subtract (1), multi-
ply (2), divide (3), sin (4) and cos (5). The remaining
integers in each node structure are associated with ter-
minal inputs or with other function nodes that are lo-
cated to the left. The number of actual inputs depends
on the arity of the function. The number of formal
inputs to a computational node is the maximum arity
of any function in the function set. Any extra inputs
will be neglected by function nodes that require fewer
inputs than this maximum.

The last nodes in the genotype identify the output
nodes. Here there is only one such node, which takes
the value 7. The choice of node 7 as the output node
coupled with the value of earlier node triples induces
the active and inactive status of all earlier nodes.

Crossover operators have not been widely adop-
ted in CGP. Originally, a one-point crossover operator
was used (similar to the n-point crossover in genetic
algorithms) but was found to disrupt the subgraphs
within the chromosome (Miller, 2011). In another in-
vestigation (Clegg et al., 2007), a new floating-point
crossover operator was found to improve performance
for symbolic regression problems. However, further
work is needed on a range of problems in order to
evaluate its advantages. In a point mutation, a value at
a randomly chosen gene location is changed to anot-
her valid random value. If a function gene is selected
for mutation, then a valid value is the label of any
function in the function set, whereas if an input gene
is selected for mutation, then a valid value is the la-
bel of the output of any previous node in the genotype
or of any program input. In addition, a valid value
for a program output gene is the label of the output
of any node in the genotype or the label of a program
input. The user defines the number of genes in the ge-
notype that can be mutated in a single application of
the mutation operator. An example of the point mu-
tation operator is shown in figure 2. A single point
mutation takes place in the program gene, altering the

178

output node input connection from 7 to 8. This makes
nodes 6 and 8 to become active, whilst making nodes
4, 5 and 7 inactive. The inactive areas are shown in
dashes. This highlights how a small change in the ge-
notype can sometimes produce a large change in the
phenotype.

3 4 5 8

6 7

Figure 2: CGP genotype and corresponding phenotype after
mutation.

For individual selection the (1+ A) Evolutionary
Strategy (ES) is normally used in CGP. Usually A is
chosen to be 4. ES configures a single parent to breed
four children using mutation at each generation. The
best individual among the parent and children is kept
in the next generation and the process is repeated. In
an ES approach, child genotypes are favoured over the
parent. The parent is replaced by one of its offspring
when offspring genotypes have the same fitness as the
parent and there is no offspring that is better than the
parent. This is an important characteristic of the algo-
rithm, which makes good use of redundancy in CGP
genotypes (Miller, 2011).

The method we propose uses a supervised lear-
ning CGP algorithm for detecting the Internet and
computer network threats. We will use existing data-
sets for which reasonable features have already been
extracted. The training phase will finish when one of
two criteria met: either all instances are categorised
correctly; or an identified maximum number of gene-
rations have been produced. Then, the best evolved
rules are evaluated in a test phase.

3.1 Parameter Settings for CGP

The ECJ (Luke, 1998) toolkit is used for the CGP
implementation. The population size chosen was 5.
CGP generally uses very small population sizes and
large numbers of generations (Miller, 2011). The
number of generation was 10,000, except for the mo-
dern DDoS dataset where a value of 2,000 was adop-
ted. This is because we did not witness any change in
the fitness value after reaching 2,000 generation for
all runs. The mutation rate used was 0.01. The max-
imum number of nodes was 500. (This does not in-
clude inputs and outputs nodes.) These settings were
determined empirically via preliminary experimenta-
tion. We do not claim that these values are optimal.

Applying Cartesian Genetic Programming to Evolve Rules for Intrusion Detection System

Function nodes consist of a set of mathematical, re-
lational and logical operators. The single input arity
functions used were sin, cos, log, loglp, sqrt, abs,
exp, ceil, floor, tan and tanh. The binary functi-
ons were +, —, *, protected (/), power, max, min,
percent, >, >, <, <, =, #, AND and OR. The rest of
the parameters were determined automatically by the
packages. In our implementation, we evolve two out-
put nodes and compare them using the ” > function
to obtain a binary classification decision (normal vs.
anomaly).

3.2 CGP Performance Measure

The effectiveness of proposed algorithms can be me-
asured according to how malicious and normal be-
haviours are classified. Our datasets are labelled as
normal or anomalous. We calculate the numbers of:
true positives (TP), where malicious events are accu-
rately classified as such; true negatives (TN), where
normal events are classified as such; false positives
(FP), where normal events are classified as malici-
ous; and false negatives FN), where malicious events
are classified as normal. Both false classifications are
problematic. FPs waste a great deal of time and can
lead to loss of confidence and FN are examples of the
detector system not performing its primary task, i.e.
they are attacks that go undetected.

Three derived performance metrics are used to as-
sess our IDS optimize rule. The Detection Rate (DR)

(%) indicates the fraction of real attacks that

are detected; this is sometimes is referred to as Re-

call. Accuracy (m%mm) defines the fraction

of all instances (attacks or non-attacks) that are cor-
rectly classified. IDS experts consider both False
Positive Rate (FPR) ((and False Negative

FP
FPiTN))
Rate (FNR) (%) to be as important as the de-

tection accuracy. Finally, the False Alarm Rate (FAR)

(M) gives the rate of misclassified instances.

3.3 Cost Function

The cost function measures how much an indivi-
dual’s performance deviates from the ideal. The

cost function used in our experiments is defined

TP—Anomaly Count \2 TN—Normal Count \2
as ((Anomaly Count) +(Normal Count)) When

classification is perfect the cost is 0.

4 EXPERIMENT

The performance of the proposed techniques have
been evaluated using four different datasets: Kyoto

2006+ (Song et al., 2011), Phishing websites (Mo-
hammad et al., 2015), UNSW-NB15 (Moustafa and
Slay, 2015), and modern DDoS (Alkasassbeh et al.,
2016). These datasets are fully labelled and contain
realistic normal and malicious scenarios. Extracted
features are numeric, symbolic or binary. However,
we did not employ all sets of features available for dif-
ferent aspects. We did not want to increase learning
algorithm complexity by processing symbolic featu-
res such as protocol type, packet type and flag. Some
attributes, such as IP addresses and port numbers,
may be changing constantly for a variety of reasons.
Any detectors relying on these attributes may not ge-
neralise well in real world applications. To obtain a
statistically significant measure that does not depend
on the initial random seed, CGP algorithm results cor-
respond to an average of 20 independent runs. The
results from the testing phase are presented here.

4.1 Description of the Benchmark
Datasets

The datasets used in this study are publicly accessible
labelled and suitable datasets for training and testing
intrusion detection system. Four widely different ty-
pes of environment are used to generate them. The
scientific community is currently using these datasets.
More details on the feature names, types, possible va-
lues and descriptions of environments and threats are
given in the corresponding references.

To allow a fair comparison with the published re-
sults of other detection systems, the same dataset sam-
ples and splitting percentages (training/testing) are
chosen for evaluation . The relation between accuracy
of the best evolved program out of all runs from each
dataset and number of generations is examined and
demonstrated in figure 3. The best program shows
a performance on the testing dataset almost as good
as that on the training dataset, except on UNSW-
NB15 dataset due to its complexity (Moustafa and
Slay, 2016).

4.2 Results

Table 1 shows the performance of the evolved rules.

Table 1: Proposed method performance (%).

Dataset CGP

DR | FAR | Accuracy
Kyoto 2006+ 99.65| 0.70 99.35
Phishing Websites | 89.99| 8.31 91.88
UNSW-NB15 94.20|13.46| 87.31
Modern DDoS 87.38| 7.13 97.19

179

1JCCI 2018 - 10th International Joint Conference on Computational Intelligence

0.88 !

o
o
8

°
o
£

Classification accuracy

°
0
S

0.9
—— Best of Train
—m— Best of Train Applied for Test

0 2% 4k 6k 8k 10k
Number of generations

(a) Kyoto 2006+

0.85

Classification accuracy
°
%

0.7 —— Best of Train
—&— Best of Train Applied for Test

0 2k ak 6k 8k 10k
Number of generations

(c) UNSW-NB15

0.9
08
> b
5
&
=
21
S
B
€ o7
3
%
=
3}
0.6
0.5 —e— Best of Train
—&— Best of Train Applied for Test
0 2k 4k 6k 2k 10k
Number of generations
(b) Phishing Websites
0.98
0.96
0.94
0.82
=
g
s
=
a1
& oo
=
g
3
H o088
&
[3)
0.86
0.84
0.82 —k— Best of Train
A —m— Best of Train Applied for Test
0.8

0 500 1000 1500 2000
Number of generations

(d) Modern DDoS

Figure 3: CGP: Relation between classification accuracy and number of generations from each of the datasets.

To demonstrate the performance of the propo-
sed method, results obtained by CGP are compared
with those of other paradigms. (Ambusaidi et al.,
2016) build an IDS using Least Square Support Vec-
tor Machine algorithm integrated with feature se-
lection algorithm Flexible Mutual Information Based
Feature Selection (LSSVM-IDS+FMIFS). The main
idea is to remove redundant and irrelevant features in
data, as these features not only slow the classification
process but also affect IDS classification accuracy.
The evaluation showed that feature selection algo-
rithm contributes more critical features for LSSVM-
IDS to achieve better accuracy and lower computatio-
nal cost. The performance of LSSVM-IDS+FMIFS
tested on Kyoto 2006+ dataset were 99.64% DR,
0.13% FPR ,and 99.77% accuracy, while CGP accom-

180

plished 99.65% DR, 1.06% FPR, and 99.35% accu-
racy. To combat phishing website threats, (Thabtah
et al., 2016) proposed anti-phishing model deploying
improved Self-Structuring Neural Network (iISSNN)
combined with a feature selection method. Informa-
tion Gain, Chi-Square and Gain Ratio have been utili-
zed for the purpose of feature selection. iSSNN when
epoch size is set to 500 combined with Information
Gain for preprocessing achieved the higher perfor-
mance in most cases. iISSNN-500 experiment results
were 93.06%, 92.30%, 91.12%, 93.71% of accuracy,
F1-score, recall and precision respectively. This com-
pare to 91.88%, 90.69%, 89.99%, and 91.44% achie-
ved by CGP. (Moustafa and Slay, 2016) have imple-
mented Network Anomaly Detection System (NIDS)
using five techniques, namely, Naive Bayes, Deci-

Applying Cartesian Genetic Programming to Evolve Rules for Intrusion Detection System

sion Tree (DT), Artificial Neural Network, Logis-
tic Regression, and Expectation-Maximisation Clus-
tering. NIDS was tested on nine types of modern
attacks fashions and new patterns of normal traffic.
The DT technique accomplishes the highest accuracy
(i.e. 85.56%) and the lowest FAR (i.e. 15.78%) tes-
ted on UNSW-NBI15 dataset. Finally, (Alkasassbeh
et al., 2016) proposed an IDS to detect and classify
Distributed Denial of Service Attacks (DDoS) using
three well-known data mining techniques: Multilayer
Perceptron (MLP), Naive Bayes and Random Forest.
The IDS were evaluated on the modern DDoS dataset.
The experimental results show that MLP achieved the
highest accuracy of 98.63%.

So far, we have focused on developing an IDS
using standard algorithm implementations. However,
modern IDS model building can be integrated with a
wide variety of machine learning methods. For in-
stance, feature selection, various ensemble and hy-
brid techniques, and these methods generally produce
favourable results (Aburomman and Reaz, 2017).
These approaches are commonly used combined with
a single stage learner. An ensemble approach gene-
rally produces better performance than the individual
classifiers. Another advantage of ensemble approa-
ches is their design. Ensembles allow substitution one
or more algorithms with more accurate ones. Conse-
quently, we adopt an ensemble technique in our lear-
ning phase.

S ENSEMBLE

The concept of combining a collection of weak lear-
ners and forming a single, strong learner is referred to
as an ensemble. An ensemble may combine multiple
(heterogeneous or homogeneous) models to obtain re-
liable and more accurate prediction. Different sche-
mas can be considered to generate the detectors and
to combine them, i.e. the same learning algorithm can
be trained on different datasets or/and different algo-
rithms can be trained on the same dataset (Folino and
Pisani, 2015). Popular conventional ensemble met-
hods include bagging, boosting and stacking (Abu-
romman and Reaz, 2017). Stacking is the abbreviated
term used to refer to Stacked Generalization (Wolpert,
1992). The main idea behind stacking is finding the
optimal combination of a collection of base learners.
Stacking is a class of algorithms that involves training
a second level “meta-learner” to find the combination.
Unlike bagging and boosting, the goal in stacking is
to combine strong, diverse sets of learners. Moreo-
ver, ensemble techniques like bagging and boosting
are often used to generate homogeneous ensembles,

whereas stacking can be used to produce heterogene-
ous ensembles.

The algorithms used to generate the pool of clas-
sifiers for this experiment are implemented in the
H20.ai platform (H2O.ai, 2018). H20.ai includes
many common machine learning algorithms and im-
plements best in class algorithms at scale. It also in-
cludes a stacked ensemble method that finds the op-
timal combination of a collection of prediction algo-
rithms using stacking. The Automatic Machine Le-
arning (AutoML) function in the platform is used to
build base learning models. This function automates
the supervised machine learning model-training pro-
cess. AutoML performs basic data preprocessing if
required such as imputation, one-shot encoding and
standardization. During the model generation stage,
it implements random grid search and model parame-
ter tuning using the validation set to produce best per-
forming models. AutoML trains and cross-validates
a Distributed Random Forest (DRF), an Extremely-
Randomized Forest (XRT), a random grid of Gra-
dient Boosting Machines (GBMs), a fixed grid of
Generalized Linear Model (GLM), a random grid of
Deep Neural Nets (DNNs). In AutoML, the maxi-
mum number of models to generate is set to 10 and
the rest of the parameters determined automatically
by the platform. Note it is possible to produce more
than one model from the same family. However these
models may have different parameters.

5.1 Evolving Stacking through CGP

In this work, various algorithms are applied to the
same dataset to create different learner models. Af-
ter a number of models are created usually utilizing
part of the dataset i.e. training, the decisions of these
models are combined and a common decision is ta-
ken. In phase two, CGP is applied to create the ac-
tual ensemble model. Ensembles are coded as genetic
programs, each individual act as a possible aggrega-
tion of the available base learners. More specifically,
each ensemble is represented as a graph, while input
vector elements (i.e. base learners) are input nodes.
We considered the continuous outputs of the base le-
arners, rather than the discrete outputs. This ensemble
model is then used to predict class labels for a new da-
taset (i.e.the testing dataset). To avoid a further phase
of training, we split the training dataset into 80% trai-
ning used to train base learners and 20% validation set
used to build stacked ensemble model through CGP
(see figure 4).

CGP offers an intelligent self-configuration
environment to perform dynamic model selection
and integration for constructing the ensemble. The

181

IJCCI 2018 - 10th International Joint Conference on Computational Intelligence

| Training Dataset I

| | l
[MoTeIl] [MocIieIZ] [Modeis] - - - [MoclleIL]

[Building Ensemble Model] <:I I Validation Dataset I

| Ensemble Model I <:| | Testing Dataset I

Figure 4: Proposed ensemble.

CGP parameter settings introduced in section 3 are
extended to evolve a detection rule of the ensemble
model. However, all CGP stacking runs used 2,000
generations. An example of CGP generated output
of the stacking model (taken from UNSW-NBI15
dataset) are shown in figure 5. Besides being readable
output and ready for deployment, the solution showed
the 6 learner models that were selected out of 10.
This helps experts to understand how the ensemble
model works. Furthermore, it can be seen from this
figure that the cos GBM _Model_4 node is reused 3
times in this rule which shows one of CGP graph
representation’s advantages.

00 = sqrt (— (cos GBM _Model 4) GBM _Model 3)
ol = log (/ (power (+ (sqrt DNN) GBM Model_1)
(cos GBM _Model 4)) (sqrt (exp (min(exp XRT)
(min (sqrt (cos GBM Model 4))(=
GBM _Model 3 DRF))))))

Figure 5: CGP stacking output.

5.2 Stacking Experiment Results

In practice, the default cross-validation folds in Au-
toML is 5 while training the base learners. The results
of applying the proposed technique to the testing data-
sets are shown in table 2. Comparing the standard and
ensemble implementations, it can be seen that adop-
ting the ensemble learning phase helped to enhance
the DR, reduce FAR and improve overall accuracy.
The most striking result to emerge was the CGP per-
formance on the phishing dataset. In this dataset, our
CGP stacking can provide a score of 96.29% F1-score
and 95.28% precision. CGP demonstrated a supe-
rior performance for all datasets except for modern
DDoS. Although CGP stacking managed to improve
DR compared to standard CGP, FAR and accuracy
performances slightly declined. It is worth noting that
this is the only unbalanced dataset distribution and
we treated both classes as equally important in this
implementation. Finally, ensemble synthesis by me-
ans of stacking heterogeneous base learners produced

182

Table 2: Stacking method performance (%).

CGP Stacking
DR | FAR | Accuracy
Kyoto 2006+ 99.94| 0.14 | 99.87
Phishing Websites |97.33| 3.22 | 96.70
UNSW-NBI5 96.29 (11.29| 89.47
Modern DDoS 87.40| 7.18 97.10

Dataset

the best classifier performance compared with other
detection systems tested on the same dataset in most
cases.

6 CONCLUSIONS

This paper investigates an application of CGP to
the automated discovery of intrusion detection ru-
les. CGP has not been previously considered for this
problem. We used four publicly available datasets.
These datasets contain contemporary threats gathered
from various environments. Our proposed approaches
are capable of mapping the input vector space into a
decision space to allow effective discrimination bet-
ween classes (i.e. normal vs. anomaly). In addition,
we have considered the use of stacking to ensemble
synthesis to improve intrusion detection performance.
CGP stacking was generally able to generate, given a
domain, a good stacking configuration. Our approach
determines not only which base learners must be pre-
sent but also the combining method of these learners.
The obtained results highlight clearly the benefits of
adopting stacking heterogeneous ensembles over ot-
her paradigms.

One interesting feature of the approach is the abi-
lity to evolve a detector that can detect a wide range
of threats. However, we now intend to investigate
CGP ability to cope with new attacks (i.e. zero-day
attacks). Though we have not done so here, it should
also be possible to examine how the use of comple-
mentary classifiers can be applied to the problem at
hand (i.e. we would aim to synthesise classifiers for
complementary weaknesses).

ACKNOWLEDGEMENTS

Hasanan Alyasiri would like to thank the Iraqi Mini-
stry of Higher Education and Scientific Research and
the University of Kufa for supporting his PhD study.

Applying Cartesian Genetic Programming to Evolve Rules for Intrusion Detection System

REFERENCES

Abraham, A., Grosan, C., and Martin-Vide, C. (2007). Evo-
lutionary design of intrusion detection programs. 1J
Network Security, 4(3):328-339.

Aburomman, A. A. and Reaz, M. B. 1. (2017). A survey
of intrusion detection systems based on ensemble and
hybrid classifiers. Computers & Security, 65:135—
152.

Alkasassbeh, M., Al-Naymat, G., Hassanat, A. B., and
Almseidin, M. (2016). Detecting distributed denial of
service attacks using data mining techniques. Inter-
national Journal of Advanced Computer Science and
Applications, 7(1).

Ambusaidi, M. A., He, X., Nanda, P,, and Tan, Z. (2016).
Building an intrusion detection system using a filter-
based feature selection algorithm. [EEE transactions
on computers, 65(10):2986-2998.

Clegg, J., Walker, J. A., and Miller, J. F. (2007). A new cros-
sover technique for cartesian genetic programming. In
Proceedings of the 9th annual conference on Gene-
tic and evolutionary computation, pages 1580-1587.
ACM.

Crosbie, M., Spafford, G., et al. (1995). Applying genetic
programming to intrusion detection. In Working No-
tes for the AAAI Symposium on Genetic Programming,
pages 1-8. Cambridge, MA: MIT Press.

Folino, G. and Pisani, F. S. (2015). Combining ensemble
of classifiers by using genetic programming for cyber
security applications. In European Conference on the
Applications of Evolutionary Computation, pages 54—
66. Springer.

Folino, G., Pizzuti, C., and Spezzano, G. (2005). Gp ensem-
ble for distributed intrusion detection systems. Pattern
Recognition and Data Mining, pages 54—62.

H20.ai (2018). h20: R Interface for H20. Package version
3.18.0.2.

Luke, S. (1998). ECIJ evolutionary computation li-
brary. Available for free at http://cs.gmu.edu/
~eclab/projects/ecj/.

Miller, J. F. (2011). Cartesian genetic programming. In
Cartesian Genetic Programming, pages 17-34. Sprin-
ger.

Miller, J. F. and Smith, S. L. (2006). Redundancy and com-
putational efficiency in cartesian genetic program-
ming. [EEE Transactions on Evolutionary Computa-
tion, 10(2):167-174.

Miller, J. F. and Thomson, P. (2000). Cartesian genetic pro-
gramming. In European Conference on Genetic Pro-
gramming, pages 121-132. Springer.

Mohammad, R. M., McCluskey, L., and Thabtah, F.
(2015). UCI machine learning repository: Phis-
hing websites data set. https://archive.ics.uci.edu/
ml/datasets/Phishing+Websites.

Moustafa, N. and Slay, J. (2015). Unsw-nbl5: a com-
prehensive data set for network intrusion detection
systems (unsw-nbl5 network data set). In Mili-
tary Communications and Information Systems Con-
ference (MilCIS), 2015, pages 1-6. IEEE.

Moustafa, N. and Slay, J. (2016). The evaluation of net-
work anomaly detection systems: Statistical analysis
of the unsw-nbl15 data set and the comparison with
the kdd99 data set. Information Security Journal: A
Global Perspective, 25(1-3):18-31.

Orfila, A., Estevez-Tapiador, J. M., and Ribagorda, A.
(2009). Evolving high-speed, easy-to-understand net-
work intrusion detection rules with genetic program-
ming. In Workshops on Applications of Evolutionary
Computation, pages 93-98. Springer.

Scarfone, K. and Mell, P. (2007). Guide to intrusion de-
tection and prevention systems (idps). NIST special
publication, 800(2007):94.

Sen, S. (2015). A survey of intrusion detection systems
using evolutionary computation. Bio-Inspired Com-
putation in Telecommunications, pages 73-94.

Sen, S. and Clark, J. A. (2011). Evolutionary computation
techniques for intrusion detection in mobile ad hoc
networks. Computer Networks, 55(15):3441-3457.

Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., and
Nakao, K. (2011). Statistical analysis of honeypot
data and building of kyoto 2006+ dataset for nids eva-
luation. In Proceedings of the First Workshop on Buil-
ding Analysis Datasets and Gathering Experience Re-
turns for Security, pages 29-36. ACM.

Thabtah, F., Mohammad, R. M., and McCluskey, L. (2016).
A dynamic self-structuring neural network model to
combat phishing. In Neural Networks (IJCNN), 2016
International Joint Conference on, pages 4221-4226.
IEEE.

Wolpert, D. H. (1992). Stacked generalization. Neural net-
works, 5(2):241-259.

Wu, S. X. and Banzhaf, W. (2010). The use of computa-
tional intelligence in intrusion detection systems: A
review. Applied Soft Computing, 10(1):1-35.

183

