
JavaScript Guidelines for JavaScript Programmers
A Comprehensive Guide for Performance Critical JS Programs

Gábor Lóki and Péter Gál
Department of Software Engineering, University of Szeged, Dugonics ter 13, 6720, Szeged, Hungary

Keywords: JavaScript, Guidelines, EcmaScript 262, Performance, Embedded.

Abstract: Programming guidelines are used for almost every programming language. Guidelines can differ for each
project and each programmer. In general, however they usually try to give a common format for the given
project in some aspect. This aspect can be code style related or even performance related. A performance
guideline tries to help programmers formulate such code which can be executed quickly by the computer. For
statically compiled languages, numerous performance guidelines are available. In the web era, the JavaScript
language is used extensively by many developers. For this language, the performance guidelines are not that
widespread, although there are a few research papers about them. Additionally, the language has incorporated
new constructs in its newer versions. In this paper, some of the new ECMAScript 6 constructs are investigated
to determine if they should be used in a performance sensitive JavaScript application. The elements are
compared with the ECMAScript 5.1 variants. To give a more usable set of guidelines, the tests are performed
on multiple JavaScript engines ranging from server side JS engines to engines which can be used in embedded
systems.

1 INTRODUCTION

Without doubt, scripting languages have been becom-
ing increasingly popular over the last decade. The
main code hosting services and developer discussion
forums are publishing the results of surveys and statis-
tics every year including the popularity of program-
ming languages (StackOverflow, 2018; GitHub, 2017;
Kumar and Dahiya, 2017). From these publications,
we can see an exponential increase in the importance
of scripting languages, for example: JavaScript, Perl,
Python, Ruby. This trend especially holds for JS,
which has become the easy-to-learn language of the
exploding web and IoT. Although there were several
experiments to substitute JavaScript with different
languages – e.g.: Dart1, TypeScript2, CoffeScript3,
Elm4 – these endeavors did not reach their goal, or
at least not completely: they either became used only
by a small community or only in a specific area of the
web. Thus, JavaScript is still the most popular option
for programming the web.

Interpretation is a very typical way of execution

1https://www.dartlang.org/
2http://www.typescriptlang.org/
3http://coffeescript.org/
4http://elm-lang.org/

for scripting languages. In the domain of JavaScript,
interpreters are usually called engines. As JavaScript
is core to the contemporary interactive web, every-
one who uses social networks, online food order-
ing services, or internet banking, is using at least
one engine built into their browser. However the
web is not the only use case of JavaScript, there are
machine-to-machine communication scenarios with
embedded devices running standalone engines. With
the widespread use of JavaScript, its capabilities came
into view, both for engine developers and the devel-
opers creating JavaScript applications. This is mainly
due to the increasing user experience requirements.
The capabilities of a JavaScript engine could be im-
proved in several areas: run-time performance, RAM
and ROM footprint, features richness, and correct-
ness. However, these capabilities are weighted dif-
ferently based on the use case: for classic browsing
scenarios, performance is the most critical aspect, but
for engines in embedded devices footprint is the im-
portant factor.

JavaScript engines are able to optimize the appli-
cation under execution to some extent. The dynamic
nature of JavaScript can however make the traditional
optimization techniques difficult (Lee et al., 2010).
JavaScript developers are able to make the engines

Lóki, G. and Gál, P.
JavaScript Guidelines for JavaScript Programmers - A Comprehensive Guide for Performance Critical JS Programs.
DOI: 10.5220/0006918903970404
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 397-404
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

397



perform better optimizations and thus the execution
speed can be influenced. In statically compiled lan-
guages, this can be achieved with different guidelines,
however for JavaScript, such guidelines are not com-
mon.

Several guidelines for JavaScript have been pub-
lished addressing this topic (Wilton-Jones, 2006; Za-
kas, 2009a; Zakas, 2009b; Herczeg et al., 2009; Her-
czeg et al., 2012; Osmani, 2012), and most of them
overlap each other. One of them presents a con-
crete comparison of different web browsers on the
available JavaScript guidelines at the time (Herczeg
et al., 2012) . It reveals several correlations between
JavaScript engines and optimal guidelines. In this pa-
per, the legacy guidelines are re-examined and it is
measured how they perform in the current version of
the JavaScript engines. Additionally, with the evo-
lution of the JavaScript language some of the new
constructs are investigated and measured, resulting in
new guidelines and optimizations.

The rest of the paper is organized as follows. In
Section 2, the guidelines and the reasons for their im-
portance are discussed. The legacy guidelines are also
introduced, and some of the new language constructs
are presented. In Section 3, the results for the guide-
lines are discussed and the new guidelines are pre-
sented. In Section 4, the related works are presented.
Finally, the paper is concluded in Section 5.

2 GUIDELINES

Developers use several kind of guidelines in their
development processes: to keep the source code in
style, to satisfy naming conventions, to apply differ-
ent kinds of APIs, and to conform to such software
requirements as optimal performance or user experi-
ence. Although formating and structure related top-
ics are well known and analyzed by many in gen-
eral, e.g. (Fard and Mesbah, 2013), performance
related guidelines are a neglected area in scripting
languages. As we have mentioned, relatively few
researches and comparisons focusing on the perfor-
mance of JavaScript in terms of guidelines have been
done.

Before going forward, we are going to define what
a guideline is. A guideline is a code transforma-
tion which shows how to convert one source code
to another while solving a previously defined prob-
lem. Guidelines are not binding and are not enforced.
In this paper, this means that code transformation is
a similar code conversion action on JavaScript code
snippets which tries to improve the performance of
the container software.

We would like to note that the reason why we are
focusing on similar and not identical code transfor-
mation is that similar transformation does not limit
the usage of code structures and language features as
opposed to identical transformation which sometimes
impossible or can be very expensive. Of course, in
many cases it is possible to create an equivalent code
transformation which tries to address the same goal,
but in these cases the domain of the transformation
will be much narrower. Consequently, we will focus
on those similar code transformations which are about
to improve the performance.

2.1 Legacy Guidelines

In the previously published researches and blog posts
(Wilton-Jones, 2006; Zakas, 2009a; Zakas, 2009b;
Herczeg et al., 2009; Herczeg et al., 2012; Osmani,
2012) several guidelines were listed. Most of them
were created to speed up execution, but not all of
them concentrated on the JavaScript module itself.
Many suggestions and guidelines are about to im-
prove the performance of the Web browser instead
of the JavaScript engine itself. We are only focusing
on the performance topic of JavaScript engines. In
the upcoming sub-sections, we present the overview
of the legacy guidelines from the previously cited re-
searches.
• Using Local Variables: This guideline describes

that it is more fruitful to use local variables instead
of global ones. The reason behind this guideline
is very simple; try to reduce the visibility of a
variable. It is a common programming paradigm.
The architecture logic behind this is that a com-
plex lookup method is called each time the global
variable is accessed, and this lookup traverses the
whole scope chain every time.

• Using Global Static Data: There is an exception
to the previously defined Using Local Variables
guideline. This exception is when the developer
wants to introduce a large global static object. In
this case, if one is about to use the large static data
as a local variable it will be constructed every time
when the data is accessed. This guideline suggests
avoiding to create the same large object in every
usage even if it is a local data. It is better to use a
global one instead.

• Caching Object Members: It is a general use-case
in the development process to access a complex
object structure within a loop. In this case, it is
possible to save the object field lookup if it is
stored in a local variable. The reason for this is
similar to the explanation given at Using Local
Variables guideline.

ICSOFT 2018 - 13th International Conference on Software Technologies

398



• Avoiding With: The JavaScript language contains
a with language construct which adds an extra
context on the top of the lookup scope chain. The
engines first try to lookup for the requested vari-
ables within the extra scope contexts, and after
that doing the regular lookup. So, if the requested
variables are not in the extra scope chains, the
lookups will do extra work anyway. This can be
avoided if the developers do not use the with lan-
guage construct.

• Creating Objects: This guideline suggests avoid-
ing to create objects like the developers do in
object-oriented languages. The reason behind this
is that creating an object in an object-oriented way
invokes a new function creation with a function
call as well. This could easily degrade the perfor-
mance, especially when doing this within a loop.

• Avoiding Eval: As the JavaScript developers say:
“all the evil and all the possibility comes from
eval” (Kovalyov, 2015). The eval construct in
JavaScript is a function which parses the string
parameter of the function, and executes the con-
tent as a JavaScript at the place of the execution.
Its purpose is to evaluate the additional dynamical
JavaScript code on-the-fly, but every time is it is
used it is a potential opening for someone to in-
ject harmful code into the JavaScript application.
However, there are a some legitimate use cases
for the eval function, but they have their price in
terms or performance and memory consumption.

• Function Inlining: A very general optimization
for non-script languages (Muchnick, 1997), but
not for JavaScript. Since none of the engines does
control flow related compiler optimization. Func-
tion inlining optimization is a missing algorithm
in the execution engines, but it can be done by
hand. With this guideline, one can save the func-
tion calls instructions for the inlined functions.

• Common Sub-expression Elimination: This is a
well known compiler optimization (Muchnick,
1997) which can be done in JavaScript as well.
The logic is to store the result of a common ex-
pression in a local variable and reuse the created
local variable within all of the representing com-
mon expression places.

• Loop Unrolling:This guideline is also a general
compiler optimization (Ueberhuber, 1997). Loop
unrolling is a loop transformation technique that
helps to optimize the execution time of the appli-
cation by removing or reducing iterations. This
technique increases performance by eliminating
loop control and loop test instructions.

2.2 ECMAScript 6-based Guidelines

The ECMAScript 6 standard (Ecma International,
2015) was introduced in 2015. Since then, the
main web browsers and JavaScript engines have been
adopting its features. This is true for JavaScript en-
gines targeting the embedded domain as well. Nowa-
days, we can see lots of support of ECMAScript 6
in the world of JavaScript engines. The main pur-
pose of introducing ECMAScript 6 was to improve
utility, and move JS closer to the actual desktop lan-
guages, and facilitate the use of the language for every
web developer. On the other hand, the characteristics
of the ECMAScript 6 have not been examined in de-
tails. One of the most important topics is totally miss-
ing: there is no such analysis which compares EC-
MAScript 6 and 5 features in terms of performance.

To validate and introduce possible new guidelines
we have analyzed and evaluated the following EC-
MAScript 6 features and constructs. Our goal is not
only to introduce new guidelines which can help de-
velopers improve the performance of their applica-
tion, but to show if a new language construct changes
performance compared to the ECMAScript 5 version
one.

• Arrow Function: The arrow function is an expres-
sion which has a shorter syntax than the function
expression and does not have its own this, argu-
ments, super constructs. Many developers’ dis-
cussions suggest using arrow function if a non-
method function is needed (Figures 1 and 2).

array.map(function(it){
return it * local_var;})

Figure 1: ECMAScript 5 Arrow Simulation.

array.map(it => it * local_var)

Figure 2: ECMAScript 6 Arrow.

• Class Definition: The class is a ”special func-
tion” in JavaScript. It has the same syntax as any-
one can define for function expression and dec-
laration. The main motivation was to move the
JavaScript language closer to the object-oriented
programing languages (Figures 3 and 4).

• Enhanced Object Properties: Object literals are
extended to support setting the prototype for
constructions, shorthands for assignments, defin-
ing methods, making super calls, and computing
property names with expressions. This brings ob-
ject literals closer to class definition (Figures 5
and 6).

JavaScript Guidelines for JavaScript Programmers - A Comprehensive Guide for Performance Critical JS Programs

399



var cat = function(name) {
this.name = name;
this.speak = function () { v++ }

}
var lion = function(name) {
parent = new cat(name);
this.speak = function() {
parent.speak(); v++;

} }

Figure 3: ECMAScript 5 Class Simulation.

class Cat {
constructor(name) {
this.name = name;

}
speak() { v++; }

}
class Lion extends Cat {
speak() { super.speak(); v++; }

}

Figure 4: ECMAScript 6 Class.

var car = {
make: make, value: value,
dep: function dep() {
this.value -= 2500;

} }
car[’make’ + make] = true;

Figure 5: ECMAScript 5 Enhanced Object Properties Sim-
ulation.

var car = {
make, value,
[’make’ + make]: true,
dep() { this.value -= 2500; }

}

Figure 6: ECMAScript 6 Enhanced Object Properties.

• Template Strings: Template strings provide an
easy to use syntax to create different strings from
a previously defined template. Many languages
use similar kinds of template strings such as
Linux’s Bash, C#, Perl or Python. The motiva-
tion behind this feature was to extend JavaScript
with a well-accepted template constructions from
other languages (Figures 7 and 8).

’abc ’+(isOK()?’’:(test?’def’:’123’))

Figure 7: ECMAScript 5 Template Strings Simulation.

‘abc ${isOK()?’’:(test?’def’:’123’)}‘

Figure 8: ECMAScript 6 Template Strings.

• Tagged Templates: A more advanced form of tem-
plate literals are tagged templates. Tags allow to
parse template literals with the help of a function.
The helper function returns the manipulated string
using the input as a string array and the variables
as additional value parameters (Figures 9 and 10).

myTag({0:"that ",1:" is a "},person,age)

Figure 9: ECMAScript 5 Tagged Templates Simulation.

myTag‘that ${person} is a ${age}‘

Figure 10: ECMAScript 6 Tagged Templates.

• Destructing Objects: In the JavaScript world de-
structing objects is a fail-soft action to unbind val-
ues from its container. In ECMAScript 6 fea-
tures, this is about to unpack values from array,
or properties from objects, into district variables.
This could be very handy for developers in many
programing situations. Similar language features
can be seen in other scripting languages (such as
Python) (Figures 11 and 12).

a=10; b=20;
var _ref=[10,20,30,40,50];
a=_ref[0]; b=_ref[1];
rest=_ref.slice(2);

Figure 11: ECMAScript 5 Destructing Objects Simulation.

[a,b]=[10,20];
[a,b,...rest]=[10,20,30,40,50];

Figure 12: ECMAScript 6 Destructing Objects.

• Spread Operator: In ECMAScript 6, an extended
parameter handling has been introduced. The
most important one is the spread operator which
spreads the elements of an iterable collection (like
an array or even a string) into both literal elements
and individual function parameters (Figures 13
and 14).

function f(x, y, z) {
return x + y + z;

}
var a = [1, 2, 3];
f(a[0],a[1],a[2]);

Figure 13: ECMAScript 5 Spread Operator Simulation.

f(...a);

Figure 14: ECMAScript 6 Spread Operator.

• Constants: One of the most noticeable change in
ECMAScript 6 is that it is possible to create con-
stant values in JavaScript. The const construct
is defined to hold only constant values. In EC-
MAScript 5, only the values stored in the global
scope can be configured to be constant.

• Iterators: This feature allows objects to customize
their iteration behavior. Additionally, it supports
”iterator” protocol to produce a sequence of val-
ues, and provide a convenient method to iterate
over all values of an iterable object (Figures 15
and 16).

ICSOFT 2018 - 13th International Conference on Software Technologies

400



for(var i=0,n=array.length;i<n;i++)
array[i]

Figure 15: ECMAScript 5 Iterators Simulation.

for (var value of array)
value
Figure 16: ECMAScript 6 Iterators.

• Generators: Many languages contain generators
and the yield construct. The same functionality
has been added to the ECMAScript 6 feature set.
Generators are the subtypes of iterators which in-
clude additional next and throw functions. These
enable values to flow back into the generator, so
the yield can return with the next value (Fig-
ures 17 and 18).

function foo(param){
this.param = param;
this.next = function() {
var res;
var done = true;
if (param >= 1) {
res = param;
param = param - 1;
done = false;

}
return {value:res, done:done};

} }

Figure 17: ECMAScript 5 Generators Simulation.

function* foo(param){
while (param >= 1) {
yield param;
param = param - 1;

} }

Figure 18: ECMAScript 6 Generators.

• Map Structure: In ECMAScript 6, several ef-
ficient data structures for common algorithms
have been introduced (for example: Map, Set,
WeakMap, WeakSet). Since these were not part
of the ECMAScript 5 standard, function objects
were used to hold the same functionality previ-
ously. In our evaluation, we focus on Map struc-
tures, since the main logic is similar to the other
as well, e.g. Map (Figures 19 and 20).

m["abc"] = 123
m[576]
"abc" in m

Figure 19: ECMAScript 5 Map Structure Simulation.

m.set("abc", 123)
m.get(567)
m.has("abc")

Figure 20: ECMAScript 6 Map Structure

• Symbols: In ECMAScript 6, there is a new fea-
ture called Symbol which is global symbol, in-
dexed through unique keys. Every symbol value
returned from Symbol() is unique. As the simu-
lated ECMAScript 5 implementation is long, the
paper omits presenting the examples for this fea-
ture.

• Binary Literals: Now, in ECMAScript 6, it is pos-
sible to enter binary literals. ECMAScript 5 only
provided numeric literals in octal, decimal, and
hexadecimal form. The new standard added sup-
port to describe numbers in binary and another oc-
tal form as well (Figures 21 and 22). This can
help developers when they are representing num-
bers for binary operations (such as binary or, xor,
and, and negation).

parseInt("111110111",2)===503
parseInt("767",8)===503

Figure 21: ECMAScript 5 Binary Literals Simulation.

0b111110111 === 503
0o767 === 503

Figure 22: ECMAScript 6 Binary Literals.

3 RESULTS

In this section, the different guidelines are compared.
The measurement was done on a Raspberry Pi 3
Model B. The reason why we choose this hardware
as the only measurement platform is that we wanted
to choose a platform which all of the JavaScript en-
gines can be applied to, and it is placed between the
two main sectors, the embedded and desktop world.
The advantage of desktop engines is the performance
at the expense of code size and memory consumption.
The restricted environment cannot pay this price. So,
the restriction of the above mentioned hardware fits
into the embedded world, and it still allows to exe-
cute the desktop engines without kill all performance
optimizations.

We used the following hardware and software en-
vironment: BCM2835 ARMv7 Quad Core CPU, 1GB
DDR2 memory, 4GB Class 10 SD card on a Raspbian
GNU/Linux 8.0 (jessie) OS with a Linux raspberrypi
4.9.35-v7+ kernel image. The measurement frame-
work was written using Python 2.7.9 and Bash scripts.
The measurement methodology was the following:

• Each legacy guideline has an original and trans-
formed code snippet.

• Each ECMAScript 6 guideline has an EC-
MAScript 6 and an ECMAScript 5 version.

JavaScript Guidelines for JavaScript Programmers - A Comprehensive Guide for Performance Critical JS Programs

401



• The measurement framework extends every test
with utility functions to measure and save the
elapsed time within the main of the test cases.

• Since the desktop engines still perform better than
the embedded ones, an additional loop iteration
was introduced for desktop engines.

• Each measurements has been executed twenty
times and the median of the results was used to
compute the relative percentages on the figures.

As previously discussed, JavaScript engines are
designed for different software and hardware stacks.
Several ones work on desktop systems, others focus
on the embedded world, and there are some of them
which try to focus on both. Due to the different target-
ing, several features might be missing or not imple-
mented in one or an other JavaScript engine, or even
working on a totally different way. If one is interested
in which functionalities are supported by JavaScript
engines there are different online comparison tables
showing the implemented and supported features 5.

On the other hand in the JavaScript engines which
are targeting at the low-end hardwares or focusing on
supporting machine to machine communication it is
not so evident to support all JavaScript language fea-
ture. Our evaluation shows that these embeddable en-
gines do not support the full spectrum of ECMAScript
6 language constructs. There is no single language
construct which is supported by all the three embed-
dable engines (see below), so we cannot do a conclu-
sive evaluation with these engines.

In this paper, six JavaScript engines are examined:

• JavaScriptCore: it is the JavaScript engine of Sa-
fari and WebKit-based web browsers. You can
find it within iPhone, and Mac desktop machines.
(Version: ToT 2017-12-10)

• V8: it is the main JavaScript engine of Google’s
Chrome and Chromium-based web browsers as
well. Most smart phones delivered with Android
OS have it, and of course, the common desktop
machines can use Google’s Chrome web browser.
(Version: 6.4.99)

• Spidermonkey: this engine is used by Mozilla’s
Firefox web browser. Firefox can run within
phones, tables, and desktop machines. (Version:
59)

• JerryScript: this engine is the first in this row
which is targeted only at the embedded world.
This engine is developed by Samsung, Intel,
ARM, and the University of Szeged with other
open source community members. You can see

5https://kangax.github.io/compat-table/es6/

it running inside several smart watches. (Version:
1.0 - da24727)

• Espurino: it is a JavaScript interpreter for micro-
controllers. The supporting company also built up
a hardware stack around the software. (Version:
1v95)

• Duktape: A small footprint, easily embeddable,
ECMAScript E5/E5.1 engine. (Version: 2.2.0)
In this paper, our target is to evaluate JavaScript

guidelines to see how they are affecting the different
engines. For each language construct and feature the
run-time was measured with, and without guidelines
and a resulting percentage was calculated in a way
that the run-time of the faster guideline was divided
by the run-time of the slower one.

0

20

40

60

80

100

local global caching with objects eval inline cse loop

jsc v8 spidermonkey jerryscript espruino duktape

Figure 23: Performance Improvement with Legacy Guide-
lines.

0

20

40

60

80

100

arrow class template tagged const map binary

jsc v8 spidermonkey

Figure 24: Performance Improvement with ECMAScript 6.

The Figure 23 shows that the legacy guidelines are
still valid, and it is worth using them in terms of per-
formance.

The evaluation of ECMAScript 6 shows some un-
expected and some very significant changes from EC-
MAScript 5. We have defined two groups; one where
the old standard performs better (Figure 25) and the
other one where the new standard has faster code
paths in the engines (Figure 24). Based on the re-
sults, we can define our guidelines for ECMAScript 6
language features as such:

ICSOFT 2018 - 13th International Conference on Software Technologies

402



0

20

40

60

80

100

120

140

obj. prop. destruction spreading iterator generator symbol

jsc v8 spidermonkey

Figure 25: Performance Improvement with ECMAScript 5.

• Arrow Function: Use the arrow functions if a non-
method function is needed. The reason for this
that although JavaScript engines reveal very small
performance improvement, the ECMAScript 6
form is clearer and easier to adopt.

• Class Definition: Use the class definition. The
reason for this is that most of JavaScript engines
perform better by using fast path implementa-
tions. The new standard can save even 95% run-
time.

• Enhanced Object Properties: Do not use the en-
hanced object properties in the ECMAScript 6
form. Use the ECMAScript 5 variant instead. Re-
sults show that significant speed-up can be seen
with most execution engines if the old standard is
used.

• Template Strings: There are no significant
changes when using the ECMAScript 5 or 6 ver-
sion of the template strings, so there is no clear
conclusion about this construct. In this case, we
suggest following the new standard. The engines
may improve this code later.

• Tagged Templates: Use tagged templates. The en-
gines implement a special code path for this con-
struct. One of the engines over-performs the oth-
ers with a more than 99% run-time improvement.

• Destructing Objects: Do not use the destructing
construct. The reason for this is that it signifi-
cantly slows down almost all engines - except one.

• Spread Operator: Do not use the spread opera-
tor. Most of the JavaScript engines perform better
when using the ECMAScript 5 form.

• Constants: Use constants construct. All engines
perform better with const. A special code path
have been implemented for this.

• Iterators: Do not use iterators. The reason for
this is that the ECMAScript 5 form is still faster.
Currently, there is no fast path implementation for
this construct in the engines.

• Generators: Do not use generators. The reason
for this is the same as in the iterators case.

• Map Structure: Use the new built-in structure, e.g.
Map construct. The engine implemented these
features with a fast code path.

• Symbols: Do not use the new symbols standard.
Although JavaScript engines have a new code path
for this feature, simulating it is currently faster.

• Binary Literals: Use the binary literals. The rea-
son for this is that the new feature implementa-
tions are very fast, and there is no need to call any
parsers to read binary literals.

4 RELATED WORKS

Although the topic of writing efficient JavaScript ap-
plications and code snippets is very important for
the software industry, the main area is to evolve the
JavaScript software stack is the improvement of the
engines themselves. Based on the well-studied re-
search area in static languages (Nielson et al., 1999;
Torczon and Cooper, 2011) the static optimization al-
gorithms can be the first good choice to use them
in the JavaScript engines as well. However the
JavaScript is a dynamic language where the static op-
timization algorithms cannot determine various prop-
erties, for example the types of the objects, variables,
or even the structure of the input script. For this chal-
lenges, user intervention is needed, for example ap-
plying guidelines to improve performance.

There is only a limited number of studies which
discuss how to improve one or the other character-
istics of a JavaScript application with source trans-
formations. There were studies on how to transform
JavaScript projects to look like an object-oriented
source code (Silva et al., 2015; Silva et al., 2016),
but the focus of these researches was to improve the
maintainability, and not to improve the user experi-
ences (such as performance, or memory consump-
tion). Another approach could be to analyze what the
best practices are for JavaScript (Ölund and Karlsson,
2016). For ECMAScript 5 features there are only a
few related papers measuring the run-time effect of
the guidelines (Herczeg et al., 2009; Herczeg et al.,
2012).

5 SUMMARY

In this paper, we have evaluated available guidelines
for JavaScript engines, and presented new ones target-
ing at the ECMAScript 6 feature set. The presented

JavaScript Guidelines for JavaScript Programmers - A Comprehensive Guide for Performance Critical JS Programs

403



results show that the guidelines are still important,
and one can get significant performance improvement
adapting them in a JavaScript project. Although the
results are very conclusive now, it is very advisable to
revisit and evaluate the importance of the guidelines
from time to time. As the JavaScript engines evolve,
it might happen that some of the guidelines become
obsolete.

A follow-up work can be to evaluate the impor-
tance of the guidelines in terms of memory consump-
tion, generated code size and even in energy con-
sumption in the embedded world. We are lack of these
kind of information which can help the JavaScript
projects independently and engine developers to im-
prove the characteristics of the execution engines as
well.

ACKNOWLEDGEMENTS

This research was supported by the Hungarian Gov-
ernment and the European Regional Development
Fund under the grant number GINOP-2.3.2-15-2016-
00037 (“Internet of Living Things”).

REFERENCES

Ecma International (2015). ECMAScript 2015 Language
Specification. Geneva, 6th edition.

Fard, A. M. and Mesbah, A. (2013). JSNOSE: Detecting
JavaScript code smells. In 2013 IEEE 13th Interna-
tional Working Conference on Source Code Analysis
and Manipulation (SCAM), pages 116–125.

GitHub (2017). Open source survey.
http://opensourcesurvey.org.

Herczeg, Z., Loki, G., Szirbucz, T., and Kiss, A. (2009).
Guidelines for JavaScript programs: Are they still
necessary? In Nordic Workshop on Model Driven
Software Engineering, pages 59–71.

Herczeg, Z., Loki, G., Szirbucz, T., and Kiss, A. (2012).
Validating JavaScript guidelines across multiple web
browsers. Nordic Journal of Computing, 15:8–31.

Kovalyov, A. (2015). Beautiful JavaScript, chapter 2. OR-
eilly Media.

Kumar, K. and Dahiya, S. (2017). Programming languages:
A survey. International Journal on Recent and In-
novation Trends in Computing and Communication,
5(5):307–313.

Lee, S.-W., Moon, S.-M., Jung, W.-K., Oh, J.-S., and Oh,
H.-S. (2010). Code size and performance optimiza-
tion for mobile JavaScript just-in-time compiler. In
Proceedings of the 2010 Workshop on Interaction be-
tween Compilers and Computer Architecture.

Muchnick, S. S. (1997). Advanced compiler design imple-
mentation. Morgan Kaufmann Publishers.

Nielson, F., Nielson, H. R., and Hankin, C. (1999). Princi-
ples of program analysis.

Ölund, H. and Karlsson, J. (2016). Investigation of the key
features in ECMAScript 2015.

Osmani, A. (2012). How to write
fast, memory-efficient JavaScript.
https://www.smashingmagazine.com/2012/11/writing-
fast-memory-efficient-javascript/.

Silva, L. H., Hovadick, D., Valente, M. T., Bergel, A., An-
quetil, N., and Etien, A. (2016). JSClassFinder: A tool
to detect class-like structures in JavaScript. CoRR,
abs/1602.05891.

Silva, L. H., Ramos, M., Valente, M. T., Bergel, A., and
Anquetil, N. (2015). Does JavaScript software em-
brace classes? In IEEE 22nd International Confer-
ence on Software Analysis, Evolution, and Reengi-
neering (SANER), pages 73–82.

StackOverflow (2018). Stack Over-
flow annual developer survey.
https://insights.stackoverflow.com/survey/2018.

Torczon, L. and Cooper, K. (2011). Engineering A Com-
piler. Morgan Kaufmann Publishers, 2nd edition.

Ueberhuber, C. W. (1997). Numerical computation: meth-
ods, software, and analysis. Springer.

Wilton-Jones, M. (2006). Efficient JavaScript.
https://dev.opera.com/articles/efficient-javascript/.

Zakas, N. C. (2009a). Speed up your JavaScript: The talk.
https://www.nczonline.net/blog/2009/06/05/speed-
up-your-javascript-the-talk/.

Zakas, N. C. (2009b). Writing Efficient JavaScript – Even
Faster Websites, chapter 7. OReilly Media.

ICSOFT 2018 - 13th International Conference on Software Technologies

404


