
Grasping Primitive Enthusiasm
Approaching Primitive Obsession in Steps

Edit Pengő and Péter Gál
Department of Software Engineering, University of Szeged, Dugonics ter 13, 6720, Szeged, Hungary

Keywords: Code Smells, Primitive Obsession, Primitive Enthusiasm, Static Analysis, Refactoring.

Abstract: Primitive Obsession is a type of a code smell that has lacked the attention of the research community. Alt-
hough, as a code smell it can be a useful indicator of underlying design problems in the source code, there was
only one previously presented automated detection method. In this paper, the Primitive Obsession is discussed
and multiple variants for Primitive Enthusiasm is defined. Primitive Enthusiasm is a metric designed to high-
light possible Primitive Obsession infected code parts. Additionally other supplemental metrics are presented
to grasp more aspects of Primitive Obsession as well. The current implementation of the described metrics is
for Java and the evaluation was done on three open-source Java systems.

1 INTRODUCTION

During the development the initial structure of the
source code will degrade. It will be more difficult to
identify the original design and understand the code,
therefore later changes and bug fixes will have hig-
her costs. Refactorings, i.e, modifications that im-
prove different attributes (e.g., readability, complex-
ity, or maintainability) without changing the external
a functionallity (Fowler, 1999), should be applied re-
gularly to preserve the quality of the code.

Several indicators are already known that suggest
the need for refactoring in the code. The 22 code bad
smells listed by Fowler and Beck (Fowler, 1999) can
act as such indicators. Code smells are not actual co-
ding erros, although they are the symptoms of deeper
design problems that might cause trouble in the fu-
ture. Thus, it is not surprising that there is a lot of
discussion within the research community about code
smells, their significance and impact on maintenance
costs. Over the years, many new smell types were in-
troduced besides the original 22 and various detection
techniques were recommended for them to help deve-
lopers identify and refactor problems in the code.

Some code smells received much less attention
than the others. Primitive Obsession, that can be va-
guely interpreted as the overuse of primitive data ty-
pes, is one of them. Besides our previous work (Gál
and Pengő, 2018), we have found only one work (Ro-
peria, 2009) that suggests an automated detection ap-
proach, whilst most of the research papers consider

this smell on the periphery. Therefore, we have de-
cided to study Primitive Obsession and work out a
novel detection technique for Java programs. Since
its definition can be broadly interpreted multiple de-
tection criteria were investigated and several metrics
were defined based on them. The introduced metrics
were implemented as parts of a Java static source code
analyser framework. The authors evaluated them on
three open-source Java systems, then manually vali-
dated and compared the results.

The rest of the paper is organised as follows. In
Section 2, the related work is discussed. Section 3 in-
troduces Primitive Obsession through an example and
examines the difficulties in its definition. The pro-
posed detection methods are presented in Section 4,
whilst the results can be found in Section 5. Finally,
the paper is concluded in Section 6.

2 RELATED WORK

Primitive Obsession previously lacked the interest of
the research community. Zhang and his team analy-
sed the state of the art knowledge about code smells
in a systematic literature review (Zhang et al., 2011).
They collected 319 papers from 2000 to 2009, and
examined 39 in detail. In their first research ques-
tion, they investigated which code smells attracted the
most research attention. The results showed that Du-
plicated Code smell was discussed the most – in 21
papers out of 39 – whilst many code bad smells re-

Pengõ, E. and Gál, P.
Grasping Primitive Enthusiasm - Approaching Primitive Obsession in Steps.
DOI: 10.5220/0006918803890396
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 389-396
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

389

ceived very little attention. Primitive Obsession was
among the unpopular smells having only 5 correspon-
ding papers, although these papers examined all 22
of Fowler’s bad smells. This indicates that Primitive
Obsession was not studied individually in the inves-
tigated period. A more recent systematic literature
review (Gupta et al., 2017) came to a similar conclu-
sion. Gupta et al. examined 60 research papers bet-
ween 1999 and 2016, and found that four of Fowler’s
bad smells – including Primitive Obsession – had no
detection method in any of the papers. A study on
five known tools which could detect code smells as
well (Fontana et al., 2011) reported that none of them
was capable of finding Primitive Obsession.

Only one occurrence was found about how to de-
tect Primitive Obsession in the literature (Roperia,
2009). In his thesis, Roperia introduced an automa-
ted bad smell detection tool, named JSmell for Java
programs. He proposed a detection technique for Pri-
mitive Obsession based on the number of primitive
data types declared in a class. If the number of pri-
mitive data types was above than the average for the
whole project and the class was not instantiated JS-
mell reports Primitive Obsession. Unfortunately, we
were unable to get hold of JSmell, therefore no com-
parison or closer study was possible.

Mäntylä et al. carried out an empirical study
on the subjective smell evaluations of develo-
pers (Mäntylä et al., 2004). They found that human
factors (knowledge, work-experience, role in the pro-
ject) have an impact on the identification of a code
part as bad smell. Moreover, they compared the re-
sults of the subjective evaluations and metric based
detection techniques for three smells, and found that
the metrics and smell evaluations did not always cor-
relate. One of the smells they used in the compari-
son was the Long Parameter List that had the largest
correlation value. They also observed that the Long
Parameter List smell mainly consisted of primitives,
which could indicate a connection with the Primitive
Obsession smell.

Many papers discuss how good indicators of
maintenance problems are the code smells (Yamashita
and Moonen, 2013; Moonen and Yamashita, 2012).
Although they are not silver bullets for defect pre-
diction code smells, they can still provide valuable in-
sights on some important maintainability factors, es-
pecially when more of them are combined.

3 BACKGROUND

In most programming languages there are two cate-
gories of data types: primitive and complex. Primi-

tive types are the most basic data types provided by
a language, e.g. boolean, integer, char etc. Com-
plex types like classes and structs are the composites
of other existing data types. Complex types have the
advantage that they usually also include some seman-
tic knowledge about the data they represent. Instead
of using scattered functions all over the source code
they let the programmer encapsulate the operations on
the data, which is an important principle of object-
oriented programming. For example, it is a conve-
nient and more readable solution to place three inte-
gers that represent a 3D point into a class instead of
using them separately. However, in the pressure of de-
adlines programmers – especially novice ones – tend
to neglect small, but necessary refactorings. Adding
one or two new method parameters to an already long
parameter list might seem a fast and effortless solu-
tion, although in the long run changes like this will
decrease the maintainability of the source code.

3.1 Definition of Primitive Obsession

Primitive Obsession is the excessive use of primitive
data types. The programmer does not create small ob-
jects for small tasks, instead s/he is obsessed with the
use of primitive data types. The taxonomy of Mäntylä
et al. classifies Primitive Obession as a type of bloa-
ter smell (Mäntylä et al., 2003), yet it is not really a
bloat, but a symptom for the existence of overgrown,
chaotic code parts.

Figure 1 shows several examples of Primitive Ob-
session. The class constants ENGINEER and SALESMAN
at Lines 3 and 4 can be considered as type codes. Type
codes are a set of integer or string variables that usu-
ally have an understandable name, and they are em-
ployed to simulate types, e.g. different types of em-
ployees. Although they are widely used in projects,
they are a kind of Primitive Obsession as they violate
the object oriented paradigm and can cause hidden de-
pendencies (Yu and Rajlich, 2001). Type codes can
be removed by forming a class or, for example, with
a State or Strategy pattern (Gamma et al., 1995).

At Line 6, the parameter list of the work function
is described. Three of its parameters are integers,
whilst the fourth is a string. Parameter lists like this
are Primitive Obsession especially if they appear
several times in the code. (Strictly speaking, strings
are not primitive types, but logically it is practical to
include them in the definition.) They can be refacto-
red by introducing a parameter object. Lines 8 and 9
also confirm the need for refactoring, because value
checks like this should usually be encapsulated. More
examples are available in Steven A. Lowe’s GitHub

ICSOFT 2018 - 13th International Conference on Software Technologies

390

1 class Employee
2 {
3 static const int ENGINEER = 1 ;
4 static const int SALESMAN = 2 ;
5
6 public void work (int from , int to

, int numberOfBreaks , String
task)

7 {
8 if (task == null
9 | | task . length () == 0) {

10 /∗ . . . ∗ /
11 }
12 }
13 }

Figure 1: Sample code containing three Primitive Obsessi-
ons.

project1 that shows step-by-step how to clean up a he-
avily Primitive Obsession infected code.

3.2 Challenges in Definition

As the previous section highlights it, it is challenging
to give Primitive Obsession an exact, quantifiable de-
finition. It has not only many various aspects, but
every program is unique with its own traits and crite-
ria. Developers also abstract and implement the com-
ponents differently. Therefore, it is impossible to find
an absolute threshold for how many times the primi-
tive types can be used and to apply it to every project.

Since defining Primitive Obsession is hardly pos-
sible with a single formula, the deconstruction of the
bad smell is a logical approach. One such decon-
struction is the Primitive Enthusiasm metric presented
in the next subsection.

3.3 Primitive Enthusiasm

Primitive Enthusiasm is a method level metric that
captures and reports one important aspect of the Pri-
mitive Obsession bad smell (Gál and Pengő, 2018). It
is based on Formulas 1 and 2. The definitions of the
parameters are the following:
• PrimitiveTypes is the set of types that are handled

as primitive ones.

• N represents the number of methods in the current
class.

• Mi denotes the ith method of the current class.

• Mc denotes the current method under investiga-
tion in the current class.

• PMi denotes the list of types used for parameters
in the the Mi method.

1https://github.com/stevenalowe/kata-2-tinytypes

• PMi, j defines the type of the jth parameter in the
Mi method.

Primitives(Mi) := 〈PMi, j|1≤ j ≤ |PMi |
∧PMi, j ∈ PrimitiveTypes〉 (1)

Formula 1 describes how the primitive-typed pa-
rameters are collected for a given Mi method. That is,
select all the parameters from the Mi method that can
be found in the previously introduced PrimitiveTypes
set and return them in a list.

The calculation of Primitive Enthusiasm is de-
picted in Formula 2.

LPE(Mc) :=

N
∑

i=1
|Primitives(Mi)|

N
∑

i=1
| PMi |

<
|Primitives(Mc)|

| PMc |
(2)

The left-hand side of the inequality in Formula 2
denotes the percentage of how many of the parameters
of the current class are primitive types. Sum the num-
ber of primitive types in the parameter list for each
method in the currently processed class and divide
this value with the total number of parameters in the
class methods. The right-hand side of the inequality
in Formula 2 calculates the percentage of the primi-
tive types used in the currently investigated method.
The number of primitive types in the current method
is divided by the total number of parameters. Both si-
des of the inequality will calculate a number between
0.0 and 1.0 as the number of all parameters is always
greater than or equal to the number of parameters that
are primitive types. It is important to note, that only
methods with at least one parameter can be used as the
subject for the Formula. Methods without parameters
do not use any primitive types as input, thus they are
not the target of Primitive Obsession code smell.

The formula is calculated method-by-method in a
given class context, therefore it is considered as a lo-
cal value. Thus, in the upcoming parts of the paper
this formula will be referred as Local Primitive Ent-
husiasm (LPE). The value of LPE for a given Mc met-
hod (LPE(Mc)) is either true or false depending on
the satisfiability of the inequality in Formula 2.

4 PROPOSED METRICS

As LPE captures only a small part of the Primitive
Obsession bad smell, it is a good idea to refine the for-
mula through various changes. In this section, diffe-
rent variants of LPE for methods are constructed and
also new metrics that capture other aspects of Primi-
tive Obsession are presented. These formula variants
and their combinations can be used to pinpoint smelly
code parts in the program.

Grasping Primitive Enthusiasm - Approaching Primitive Obsession in Steps

391

4.1 Local Primitive Enthusiasm Variant

The original implementation of LPE was for Java,
therefore the PrimitiveTypes set contained the follo-
wing types: boolean, byte, short, int, long, char,
float, double, and String. In Java however there
are wrapper classes for the primitives defined by the
language standard, namely: Boolean, Byte, Short,
Integer, Long, Character, Float, Double. Alt-
hough these types are classes, they can be conside-
red as primitives so the construction of the Local Pri-
mitive Enthusiasm with Wrapper classes (LPEW+) is
proposed by extending the PrimitiveTypes set of LPE
with the previously listed boxing types.

4.2 Global Primitive Enthusiasm

Global Primitive Enthusiasm (GPE) is shown in For-
mula 3, where G is a list which contains all the met-
hods in the analysed application. The right-hand side
of the inequality is the same as in Formula 2, the dif-
ference can be seen on the left-hand side. Unlike in
LPE, the global primitiveness ratio is calculated ba-
sed on every method in the project and the examined
method is compared to it.

GPE(Mc) :=

|G|
∑

i=1
|Primitives(Gi)|
|G|
∑

i=1
| PGi |

<
|Primitives(Mc)|

| PMc |
(3)

The idea behind GPE is that it can be profitable
to compare classes with each other to see which ones
are outstanding in regard to the primitive type usage
in the parameter lists of their methods.

Similarly to LPEW+, a new variant can be con-
structed from the GPE by including the boxing types
of Java in the PrimitiveTypes set. This new variant
will be referred to in the upcoming sections as Global
Primitive Enthusiasm with Wrapper classes (GPEW+).

4.3 Hot Primitive Enthusiasm

Both LPE and GPE report a set of methods that might
be affected by Primitive Obsession. To focus the at-
tention of the developer on the more suspicious code
parts, the combination of LPE and GPE is propo-
sed. The combined formula, Hot Primitive Enthusi-
asm (HPE) is presented in Formula 4. HPE reports
only the methods that are reported by both LPE and
GPE.

HPE(Mc) := LPE(Mc)∧GPE(Mc) (4)

The Hot Primitive Enthusiasm with Wrapper clas-
ses (HPEW+) can be seen in Formula 5. HPEW+ is

based on LPEW+ and GPEW+ where the Java wrapper
classes are included in the PrimitiveTypes set.

HPEW+(Mc) := LPEW+(Mc)∧GPEW+(Mc) (5)

4.4 Result Aggregation

When evaluating a Primitive Enthusiasm variant on a
project, a set of methods is returned for which the for-
mulated inequality was true. However, for large pro-
jects the list of reported methods can be long, making
the review a demanding task. Therefore, a class level
aggregation of the results is proposed. This way, the
classes can be ordered by the number of their reported
methods.

4.5 Method Parameter Clones

After examining the nature of the Primitive Obses-
sion, it is reasonable to assume that if a class suffers
from Primitive Obsession, certain method parameters
will appear multiple times in the parameter lists of its
methods. They will have the same type and – usu-
ally – the same name because logically they corre-
spond to the same data. These are the parameters that
could be extracted to a value object instead of using
them separately. To grasp this property the Method
Parameter Clone (MPC) metric is presented, which
performs the following steps for each class in a pro-
ject:

1. Initially the MPC value for a class is set to zero.

2. For each method parameter in the class, create a
(type,name) pair.

3. Select only the pairs where the type is in the
PrimitiveTypes set.

4. Increment MPC value by one for every
(type,name) pair that appears at least three
times.

The reason that only three or more repetitions are
counted is The Rule of Three (Fowler, 1999).

4.6 Static Final Primitives

Another aspect of the Primitive Obsession bad smell
is the usage of class constant values as type codes. To
check if a variable can be a candidate for further in-
vestigation the Static Final Primitive function is used
which is described in Formula 6.

ICSOFT 2018 - 13th International Conference on Software Technologies

392

SFP(V) := isClassLevel(V)

∧ isStatic(V)

∧ isFinal(V)

∧ isU pperCase(V)

∧ typeO f (V) ∈ PrimitiveTypes

(6)

The SFP function will return true for a varia-
ble (V), if it has all the following properties, thus it
might serve as a type code:

• V is a class level variable,

• V is static (e.g. has a static modifier in Java)

• V can be assigned only once (e.g. has a final mo-
difier in Java),

• the name of V contains only upper case characters,
numbers, and underscores,

• and the type of V is included in the previously de-
fined PrimitiveTypes set (i.e. primitive).

Otherwise SFP returns false. With this function it is
possible to filter out static final primitive variable usa-
ges in methods.

The Static Final Variable Usage (SFPU) function
is defined in Formula 7. It has three parameters: Mc
and V denote the function and variable under inves-
tigation, respectively, while F is a filter function. In
the formula, UV denotes one usage of variable V . The
UV ∈ Mc relation means, that the UV variable usage
(access or modification) is preformed in the Mc met-
hod. By applying the F filter function it is possible to
select a subset of the UV variable usages. The SFPU
function collects the access and modification state-
ments for variable V in the Mc method for which both
the SFP function and the supplied F filter function
returns true.

SFPU(Mc,V,F) :={UV
∣∣

UV ∈Mc∧SFP(V)∧F(UV)}
(7)

A concrete application of the SFPU function is
the calculation of the number of static final primitive
variables which are used as case labels in switch sta-
tements. This can be achieved by defining an F fil-
ter function for the SFPU that determines for a gi-
ven UV variable usage if it is a case label. By using
the SFPU and the given F filter function a class le-
vel metric is constructed, which is named Static Final
Primitive - Switch Case Usage (SFP-SCU). The cal-
culation is done for each class to see how many times
its SFP variables appear as case labels globally in the
project. This heuristical approach is based on the idea
that type code variables most probably will appear in
branching structures, especially in switch-case sta-
tements.

5 EVALUATION

To implement and evaluate the proposed formu-
las and their variants, the OpenStaticAnalyzer2 was
used, which is an open-source, multi-language, sta-
tic code analyser framework developed at the Depart-
ment of Software Engineering, University of Szeged.
The prototype implementation processes Java source
code, however with a minor modification the metrics
could be applied to other object oriented languages as
well.

The Primitive Enthusiasm variants, Method Para-
meter Clones, and the SFP-SCU metric was evaula-
ted on three open-source Java projects. As there is no
benchmark for Primitive Obsession detection manual
validation was performed.

5.1 Eliminated Methods

The formulas introduced in Section 4 for Primitive
Enthusiasm calculation do not take into account that
some methods have only one parameter or none at all.
Also there are certain types of methods that should be
eliminated form the calculation of the metrics. During
the implementation this was taken into account.

The original implementation of LPE skipped the
investigation of constructors, the methods with empty
parameter list, and methods that could be considered
a class member setter method. Upon further work the
restriction was enhanced to skip the processing of all
the methods that had less than two parameters. A
comparison on the two elimination approaches was
performed.

5.2 Results

As the result validation was done manually, first the
study of the analysed projects was done: joda-time-
2.9.93, log4j4 and commons-math-3.6.15. Table 1
summarizes the major properties of the investigated
systems to get an overall image about them.

5.2.1 Exclusion Strategy

As it was stated in Section 5.1, two strategies was eva-
luated for eliminating methods: to skip only setter
methods (Skip Setter Methods - SSM) or skip every

2https://github.com/sed-inf-u-szeged/
OpenStaticAnalyzer

3https://github.com/JodaOrg/joda-time
4https://github.com/apache/log4j
5https://github.com/apache/commons-math

Grasping Primitive Enthusiasm - Approaching Primitive Obsession in Steps

393

Table 1: Properties of the examined projects: thousand li-
nes of code (KLOC), number of classes (NC), number of
methods (NM), longest parameter list (LPL)

Project KLOC NC NM LPL

log4j 16 189 1561 9
joda-time 28 249 4265 10
commons-math 100 1033 8808 14

method with just one parameter (Skip Ones - SO). Ta-
ble 2 sums up the details of the two strategies for the
examined three systems.

Table 2: Comparison of the two elimination stategies: num-
ber of not eliminated methods (NNM), average parameter
list length of not eliminated methods (AVG)

SSM SO

Project NNM AVG NNM AVG

log4j 1371 1.33 429 3.01
joda-time 3787 0.98 893 2.55
commons-math 7229 1.12 1953 2.93

The numbers show that with the SO strategy only
a subset of the methods was processed for the calcu-
lation. During the manual validation it was observed
that the SSM strategy causes noise in the results. It is
not surprising as it is hard to interpret Primitive Ob-
session on methods with only one parameter.

5.2.2 Wrapper Classes

In the paper different variants of the Primitive Enthu-
siasm metric are defined, based on the content of the
PrimitiveTypes set. LPEW+, GPEW+ and HPEW+ take
into account the wrapper classes of Java during the
Primitive Enthusiasm calculation, whilst LPE, GPE,
and HPE do not. To compare the effect of including
boxing types into the PrimitiveTypes set, the num-
ber of methods with at least one (AL1) and at least
three (AL3) privitive typed parameters were counted.
During this calculation only the constructor methods
were eliminated, the previously introduced skip stra-
tegies were not applied. With this it can be obser-
ved how the inclusion, or exclusion of wrapper clas-
ses changes the number of investigated methods.

Based on the results the contrast is much less than
expected. These results are summarized in Table 3.
It shows that the extension of the PrimitiveTypes set
with boxing types has a very little consequence on the
set of methods that use primitive types in their para-
meter lists. The difference is only one or two methods
or none at all. Concluding these results, the SFPU,
SPU-SCU, and MPC calculations was done by using
the extended PrimitiveTypes set.

Table 3: Investigating the impact of wrapper classes by
the number of methods: at least one primitive parameter in
the parameter list (AL1), at least three primitive parameters
in the parameter list (AL3), exclude wrapper classes from
the PrimitiveTypes set (W-), include wrapper classes in the
PrimitiveTypes set (W+)

AL1 AL3

Project W- W+ W- W+

log4j 577 577 35 35
joda-time 1580 1583 95 96
commons-math 2758 2759 556 556

5.2.3 Primitive Enthusiasm Metrics

The Primitive Enthusiasm metrics suggest such met-
hods for refactoring that use unusually lot primitive
parameters. A result aggregation on the warnings is
also performed according to Section 4.4.

Table 4 shows the number of reported methods of
the three studied Java systems on the left side, while
on the right side, the number of classes which have
at least one reported method can be seen. The results
of Table 4 were produced with the Skip Ones (SO)
strategy.

To validate the results of the various Primitive Ent-
husiasm metrics, the given warnings were processed
manually. After randomly sampling the reported met-
hods they were checked in the source code. Addi-
tionally the class level aggregations were processed
with great attention to the classes with the most and
least reported methods. As both the evaluation, and
the judgement of Primitive Obsession itself are sub-
jective, deciding if a warning is true positive or not is
hard to tell, therefore the the significance of the war-
ning was investigated.

It is clear from the results of Table 4 that the Pri-
mitive Enthusiasm metrics report many methods and
classes. However, the number of reported methods
are less than 8% of the total number of methods in
average. The other important aspect of Table 4 is that
there is almost zero difference between the metrics
which include and which do not include the wrapper
classes. Considering the results of Section 5.2.2 it is
not surprising, nevertheless, it is recommended to in-
clude these types in the PrimitiveTypes set as their
usage might depend on the nature of the project or the
habits of the programmer.

GPE and GPEW+ express how different the com-
position of the parameter list of a method is from the
global average, whilst LPE and LPEW+ express only
a class level distinction. The combined metrics HPE
and HPEW+ perform well as they are able to further
fine tune the results given by the LPE and GPE va-
riants. In most cases the reduction in the number of

ICSOFT 2018 - 13th International Conference on Software Technologies

394

Table 4: Comparison of Primitive Enthusiasm methods using the SO exclusion strategy.

Number of reported methods Number of reported classes

LPE LPEW+ GPE GPEW+ HPE HPEW+ LPE LPEW+ GPE GPEW+ HPE HPEW+

log4j 165 165 217 217 153 153 29 29 74 74 29 29
joda-time 301 301 429 431 230 231 92 92 104 105 65 66
commons-
math 698 698 1192 1192 553 553 213 213 390 390 145 145

reported methods and classes was more than 25% per-
cent. Based on this information it is recommended
that first the HPE or the HPEW+ reports should be in-
vestigated by the developer as they report both class-
localized and application-global suspicions.

Reviewing hundreds of methods can be tedious
work, however, by integrating the warnings into an
IDE this burden can be dramatically reduced.

5.2.4 MPC Metric

The main interest in the MPC metric was to study
how well the reported classes align with the classes
reported by the aggregated Primitive Enthusiasm me-
trics. For this evaluation the SO exclusion strategy
was used and the wrapper classes were included in
the PrimitiveTypes set.

MPC reported 6, 50, and 90 classes on log4j, joda-
time and commons-math, respectively. The highest
MPC count was 11 for log4j, meaning that in the
logMF and logSF classes there are 11 parameter type
- parameter name pairs that appeared at least three ti-
mes in different parameter lists. Both of these classes
were the top two results of the aggregated Primitive
Enthusiasm metrics. They contain numerous methods
that have a similar signature with multiple primitive
typed parameters, so the metrics report a repetitive-
ness in the code that sometimes indicates a design
flaw in the program. The logXF class, the base for
logMF and logSF is also reported with an MPC count
of 2 and has a high rank in the aggregated Primitive
Enthusiasm results. The other three classes were also
reported by at least one of the Primitive Enthusiasm
variants.

The findings are similar for the other two pro-
jects too. The top ten classes in the aggregated
HPEW+ results could be found in the MPC result set
as well. Classes that have many methods with above
the average primitive typed parameters usually have
lots of method parameter clones too. Therefore the
MPC metric can be a candidate for weighting the re-
sults of the aggregated Primitive Enthusiasm metrics
and highlight more repetitive parts in the code.

The intersection of the aggregated HPEW+ and
MPC result sets for log4j, joda-time and commons-
math has the following size: 5, 31, and 56. The num-

bers show that by intersecting the result sets, a signifi-
cant number of warnings were pruned from both me-
trics. Although we may lose some useful warnings,
this way we eliminate many noisy results.

5.2.5 SFP-SCU Metric

The metric was designed to detect type codes which
were introduced in Section 3. It follows from the na-
ture of type codes that they appear in conditional sta-
tements. The heuristical approach was to spot them
through their usage in switch-case statements. Ta-
ble 5 shows the results of SFP-SCU. It is important
to note that during the evaluation no exclusion stra-
tegy was used, thus all methods were considered. Ho-
wever, the effects of the SO exclusion strategy com-
bined with excluding constructors were also investi-
gated and the results were the same for the studied
projects. The wrapper classes were included in the
PrimitiveTypes set.

The number of classes reported by SFP-SCU is in
the second column of Table 5. These classes have
primitive-typed static final class members that are
suspected to be type codes. The size of intersection
between the results of the aggregated HPEW+ and
SFP-SCU is presented in the third column, whilst the
size of the intersection with the MPC metric in the
fourth column. As this metric grasps a different as-
pect of Primitive Obsession than the Primitive Enthu-
siasm metrics no significant overlap was expected.

Table 5: Results of SFP-SCU. From left to right: the num-
ber of classes(NOC) found in the result of the SFP-SCU
metric, number of classes in the intersection of the aggrega-
ted HPEW+ and SFP-SCU results, number of classes in the
intersection of the MPC and SFP-SCU results

Project NOC NOC
∩ HPEW+

NOC
∩MPC

log4j 8 5 1
joda-time 13 4 2
commons-math 1 0 0

The constant variables, that can be found in the re-
ported class of the commons-math project are used to
distinguish between random number generation stra-
tegies. They have only one switch-case occurrence

Grasping Primitive Enthusiasm - Approaching Primitive Obsession in Steps

395

and could be replaced, for example, with an enum.
The joda-time relies more on static final variables than
the other two projects. These variables are members
in multiple classes with the same name, making it har-
der to understand the code. A generalized solution
could be considered instead of the scattered constant
usage. In log4j a typical example for type codes can
be found in the PatternParser class, which also ap-
pears in both intersections.

Though no hidden dependency check was done
to study the seriousness of the possible type codes it
might be rewarding to refactor them for a more object
oriented and readable solution.

6 CONCLUSION

In this paper several variants for the basic Primitive
Enthusiasm metric were introduced and other three
metrics were defined to grasp more aspects of the Pri-
mitive Obsession bad smell. The metrics were imple-
mented in a Java static analyser, evaluated on three
large systems and the results were analysed.

The Primitive Enthusiasm variants can find met-
hods that use more primitive types in their parameter
lists as the average. It is not just a readability issue but
can be a sign for other bloater type smells as well. The
SFP-SCU metric is useful for typed code detection. In
the future the authors would like to consider if a static
final variable can be seen outside its class or not by gi-
ving the usages outside its class or package a different
weight than the inner usages. Additionally involving
other conditional statements in the calculation besi-
des switch-cases can be another improvement. The
MPC metric reports classes that have repetitive, the-
refore possibly smelly method signatures. The metric
could be refined with ordinal information among the
parameter clones.

The findings showed that the new metrics can
highlight many smelly and hardly readable code seg-
ments. In the future we would like to continue the
study of these metrics and their combinations. The
inclusion of enum constants in the PrimitiveTypes set
could be an interesting experiment. Creating a Primi-
tive Obsession benchmark is also a goal to provide a
more objective comparison of the metrics.

ACKNOWLEDGEMENTS

This research was supported by the EU-funded Hun-
garian national grant GINOP-2.3.2-15-2016-00037
titled “Internet of Living Things” and by the pro-
ject ”Integrated program for training new generation

of scientists in the fields of computer science”, no
EFOP-3.6.3-VEKOP-16-2017-0002. The project has
been supported by the European Union and co-funded
by the European Social Fund.

REFERENCES

Fontana, F. A., Mariani, E., Mornioli, A., Sormani, R., and
Tonello, A. (2011). An experience report on using
code smells detection tools. In 2011 IEEE Fourth In-
ternational Conference on Software Testing, Verifica-
tion and Validation Workshops, pages 450–457.

Fowler, M. (1999). Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA.

Gál, P. and Pengő, E. (2018). Primitive enthusiasm: A road
to primitive obsession. In The 11th Conference of PhD
Students in Computer Science.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Gupta, A., Suri, B., and Misra, S. (2017). A systematic lite-
rature review: Code bad smells in java source code. In
Computational Science and Its Applications – ICCSA
2017, pages 665–682, Cham. Springer International
Publishing.

Mäntylä, M. V., Vanhanen, J., and Lassenius, C. (2003). A
taxonomy and an initial empirical study of bad smells
in code. In Proceedings of the International Con-
ference on Software Maintenance, ICSM ’03, pages
381–, Washington, DC, USA. IEEE Computer So-
ciety.

Mäntylä, M. V., Vanhanen, J., and Lassenius, C. (2004).
Bad smells - humans as code critics. In Proceedings
of the 20th IEEE International Conference on Soft-
ware Maintenance, ICSM ’04, pages 399–408, Wa-
shington, DC, USA. IEEE Computer Society.

Moonen, L. and Yamashita, A. (2012). Do code smells re-
flect important maintainability aspects? In Procee-
dings of the 2012 IEEE International Conference on
Software Maintenance (ICSM), ICSM ’12, pages 306–
315, Washington, DC, USA. IEEE Computer Society.

Roperia, N. (2009). Jsmell: A bad smell detection tool for
java systems. Master’s thesis, Maharishi Dayanand
University.

Yamashita, A. and Moonen, L. (2013). To what extent can
maintenance problems be predicted by code smell de-
tection? an empirical study. Information and Soft-
ware Technology, 55(12):2223 – 2242.

Yu, Z. and Rajlich, V. (2001). Hidden dependencies in
program comprehension and change propagation. In
Proceedings 9th International Workshop on Program
Comprehension. IWPC 2001, pages 293–299.

Zhang, M., Hall, T., and Baddoo, N. (2011). Code bad
smells: A review of current knowledge. Journal of
Software Maintenance and Evolution, 23(3):179–202.

ICSOFT 2018 - 13th International Conference on Software Technologies

396

