
Towards GUI Functional Verification using Abstract Interpretation

Abdulaziz Alkhalid and Yvan Labiche
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Keywords: Abstract Interpretation, Static Analysis, GUI Verification.

Abstract: Abstract interpretation is a static analysis technique used mostly for non-functional verification of software.
In this paper, we show the status of the technology that implements abstract interpretation which can help in
GUI-based software verification. Specifically, we investigate the use of the Julia tool for the functional
verification of a Graphical User Interface (GUI).

1 INTRODUCTION

Abstract interpretation was developed in the
seventies and has since then been used in many
aspects of computer science such as static analysis
and verification (Cousot and Cousot, 2014). For a
software S, it is impossible to write a software
system S’ that computes all possible executions
based on all possible inputs and to represent them
mathematically (Cousot, 2016). This is an
undecidable problem. Abstract interpretation can be
used in the verification of undecidable properties of
software. This is done by the use of mathematical
approximations of the data structures and possible
ranges of values (Cousot and Cousot, 2014). Hence,
abstract interpretation is used in the formal
description and verification of undecidable properties
of software (Cousot and Cousot, 2014). It is a
technique for automatic static analysis that consists in
replacing a specific part of code by a less detailed
abstraction in order to calculate some properties of
the program (Boulanger 2013). This technique
enables detecting runtime errors such as division by 0
and overflow. It can also detect shared variables and
dead code (Boulanger, 2013).

In this paper, we study the flow of data provided
by the user (input data) to the GUI, though the GUI
up to the application logic. The GUI processes the
data and passes it (output data) to the logic. We refer
to this as an input-output relation in the rest of the
paper.

We try to use abstract interpretation to verify the
Graphical User Interface of GUI-based software.
This paper answers the research question: Is it
possible to verify functional properties of the GUI of

a GUI-based software using abstract interpretation
applied on the GUI code?

The rest of this papers is organized as follows.
Section 2 presents background and related work
about abstract interpretation. Section 3 presents the
input-output relation. Section 4 explains the proposed
solution. Section 5 presents the conclusions.

2 BACKGROUND ON ABSTRACT
INTERPRETATION AND
RELATED WORK

Abstract interpretation depends on using
mathematical approximation concepts (Cousot,
2016). It can be defined as follows: “a unified model
for static analysis of programs by approximation of
fixpoints” (Cousot and Cousot, 1977). An invariant is
a property which holds for all trajectories of the
software, i.e., all software execution paths (Cousot,
2016). Abstract interpretation analyzes software
trajectories (Cousot and Cousot, 2010) and identifies
safe zones and forbidden zones. When a trajectory
does not lead to an error it is called a safe zone. A
forbidden zone is a part of a trajectory that may lead
to an error (Cousot and Cousot, 2010). An example
of an error that leads to a forbidden zone is an
overflow in a condition of a while loop. Abstract
interpretation builds global variables for the state of
the software in those trajectories and then partitions
those trajectories into stages that represent similar
behaviours of the trajectories (Cousot and Cousot,
2010). If the abstraction is safe, then each abstract
invariant represents a superset of the concrete states

Alkhalid, A. and Labiche, Y.
Towards GUI Functional Verification using Abstract Interpretation.
DOI: 10.5220/0006917103810388
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 381-388
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

381

after each instruction. In the presence of a loop, the
repeated interpretation of loop instructions leads to
the abstract invariant getting stabilized, a fixpoint
having been reached (Boulanger, 2013).

We did not notice the use of abstract
interpretation for the verification of the GUI of
software in the literature. However, we found a
framework called Bandera, which enables the
automatic extraction of finite-state models from the
source code of software (Corbett et al., 2000).
Bandera uses abstract interpretation in order to
extract the finite-state model. In addition, we noticed
the use of abstract interpretation by Airbus France in
hard real-time avionics software, such as flight
control software which is always expected to react in
time (Thesing et al., 2003).

We investigated an abstract interpretation tool
called Julia to be used in our experiments (Spoto and
Jensen, 2003). Julia performs abstract interpretation
of Java software. Julia observes conditional
statements in the code, collects information about
methods, and determines when and how they are
being called (Spoto, 2005). The abstract
interpretation using Julia is performed through a
fixpoint calculation, focusing on program points
called watchpoints (Spoto, 2005). This is done
through a software component that receives software
byte code and dumps results into a report file that
describes the output (Spoto, 2005). Spoto (author of
Julia) and Jensen observed that the information
provided by many static analyses is significant or
useful only at a limited set of software points, which
they call the watchpoints (Spoto and Jensen, 2003).
For example, information about a variable which can
contain zero at run-time is useful only before a
division (Spoto, 2005). Class analysis includes
identifying which call leads to a specific target
method (Spoto, 2005). Hence a watchpoint must be
put before the call of the software (Spoto, 2005).
Julia depends on this idea to focus on specific
software points.

Julia uses a hierarchy of semantics, which is a
concept used to classify semantics into two types:
Trace and watchpoint (Spoto and Jensen, 2003). A
trace is a sequence of states for a piece of code, while
a watchpoint is a program point that plays an
essential role in program behavior. A piece of code
can be represented by a set of traces to create a
sequence of states for that code. There is a trace for
every possible input state for the code. Abstract
interpretation tries and tests several approximation
mechanisms (Cousot and Cousot, 1977). However,
practically, Julia allows the user to add watch point at
any part of the code she/he wants.

As for our scope, we use the Julia static analyzer
as follows. Julia provides a set of features that the
user can use to analyze the software statically. We
are interested in a feature that enables us to find
numerical invariants. This feature has been
implemented in Julia version 2.3.4. In this
deployment of Julia, there is a new option named
termination checker which is available in the Julia
wizard. This option is usually used in operations
related to termination of Java programs. This has
been an issue for some researchers as some Java
programs do not terminate completely until shutting
down the Java virtual machine. There is a branch of
research on this topic that investigates how to make
sure that a program has terminated (Spoto et al.,
2010). However, in our scope of verification of
software, we are interested in an option called
dumpNumericalAssertions. By turning it on through
clicking the check box in the Julia wizard, Julia
generates an output text file with numerical
invariants at user-defined program points.

Julia observes conditional statements in the code.
It also collects information about the software
methods such as when and how they are being called.
Julia also tries to find an activation frame, which is a
description on when and how a software method is
called. Then, Julia uses a lookup procedure to find
the target software method (software function) of the
call. Then, Julia creates an activation frame for the
called method (Spoto, 2005). The activation frame
for a method is a setting that simulates the
circumstances when a call happens. Finally, Julia
moves the output of the called method into the stack
of the caller.

Abstract interpretation using Julia is performed
through software components that receive software
bytecode and dump results into a report file that
describes the output. One component is a code
preprocessor. A fixpoint engine is another
component that uses an external module to abstract
bytecode. It also has its own fixpoint strategies. A
third component is a library that works as a low-level
interface to .class files (Spoto, 2005).

3 INPUT-OUTPUT RELATION

We refer to as input variable any variable in the GUI
code that receives a value from the user. We refer to
as argument variable any variable in the header of a
method in a Control class. We use the term input-
output relation to refer to the relation between these
two kinds of variables. The input data is received
from a human actor and assigned to an input variable.

ICSOFT 2018 - 13th International Conference on Software Technologies

382

Through some control flow in the UI code this data
reaches an argument variable. This is a way to model
the flow followed by data when a Boundary class
converts data received from a human actor into a
form that can be dealt with in a Control class.

We distinguish between six different kinds of
multiplicities. In the Many to One (N-1) multiplicity,
several input variables to Boundary classes are used
to form (i.e. compute) one argument variable to a
function in a Control class. In a One to One (1-1)
multiplicity, one input variable to a Boundary class
becomes one argument variable to a Control method.
In a Many to Many (N-M) multiplicity, many input
variables to Boundary classes contribute to many
argument variables. In a Many or One to zero (1..N-
0) multiplicity, one or more variables do not
contribute to any argument variable to the Control
class. In a One to Many (1-M) multiplicity there is
one input variable to the GUI that contributes to
many arguments of methods in Control classes. In a
Zero to one or Many (0-1..M) multiplicity, there is no
input variable to the GUI but one or many arguments
to Control methods.

4 PROPOSED SOLUTION

We use Julia static analyzer (Spoto, 2005). Our
objective of using Julia is to obtain a mathematical
formula (invariant) that represents the code.
Specifically, the GUI code handles the user input to
obtain an output that will be given to the
functionality of the logic code. We want to extract a
mathematical function from the code which
implements operations from the input to the output.
We can then compare the obtained mathematical
function with the expected one. The expected
function is the predicted one. The software developer
or tester predicts that a code (related to input-output
relation) implements such a function. If the actual
and predicated mathematical functions are the same,
there is no fault in the code. Hence, we can verify the
GUI. Subsection 4.1 describes an illustrative example
using Julia. Subsection 0 describes our tries for
obtaining the invariant. Subsection 0 describes our
tries to write the invariant as Java code.

4.1 Simple, Illustrative Example

Figure 1 shows the main window of our example
software when the user enters an input, using the text
field, and presses the copy button. We use a simple
software which we use to explain how we utilize
abstract interpretation. The software that we design

uses the Entity-Control-Boundary (ECB) design
principle (Bruegge and Dutoit, 2000). Boundary
represents the GUI and Control represents the logic
(implementing use cases) while Entity classes hold
data/state.

Figure 1: The main window of simple software after typing
the input and clicking the copy button.

The Entity class is MyTextEntity, which has a
functionality for creating some text files on the hard
disk and printing text on the standard output stream.
TextControl is a Control class that receives inputs
from the Boundary class and makes a call to the
Entity class. RadioComponent,
CopyTextComponent, and MainExeFrame are
Boundary classes which receive the input from the
user, process it and pass it to the Control class.

The software takes the user input, adds the value
1 to it, and then shows it in the label under the radio
buttons. The output is 2 in this case. In this specific
example, the CopyTextComponent instance
receives the input value "1" from the MainExeFrame
instance. The class CopyTextComponent adds a
value of "1" to it, and then it passes it to the Control
class. This code intentionally introduces a fault. In
the normal execution, this software should show the
input on the output without any semantic change.
The code which increases the input value breaks the
ECB principle; the Control class should do this. Figur
shows a sample of the code from class
CopyTextComponent.

Figure 2: The part of the source code of the GUI that
changes the input value.

1 int userInput =
Integer.parseInt(inputExpression.ge
tText()); // get the user input
from the text field

2 int callArgument = userInput + 1;
// process the entered value by
simply adding 1 to it.

3 TextControl t = new
TextControl(Integer.toString(callAr
gument));// passing the value to a
constructor of class TextControl in
the Control package

4 t.printCopyMessage(evt.toString(),0
);

Towards GUI Functional Verification using Abstract Interpretation

383

The CopyTextComponent instance obtains a
value from the GUI (line 1) and stores it in the
userInput variable. Then (line 2), it declares a
variable called callArgument. The callArgument
variable takes the value of userInput and adds the
value 1 to it. Then, it passes it to the Control class
instance. When the user enters a value in the text
field and presses the copy button, the click by the
user triggers the method actionPerformed, which
creates an instance of the TextControl class. Then,
the call proceeds to the method
printCopyMessage(). The method
printCopyMessage() triggers the log() method in
the Entity class called MyTextEntity.

We can notice that the value of the input variable
provided to the GUI is passed to the constructor of
the Control class when the actor’s action results in a
call to the actionPreformed method. Hence, we
need to make sure that the input given to the
TextControl instance is the right input–in this case,
the string value received from the text field. The code
converts the string to an integer and increases the
output by a value of one. The code converts the value
(after the increment) to a string. After that, the code
passes the string to the Control class instance. One
procedure would be to add a static variable for every
single input provided by the user. We add a
watchpoint (Line 3) to the code as shown in Figure.
Figure shows a part of the class
CopyTextComponent after adding a watchpoint.

1 int userInput =

Integer.parseInt(inputExpression.getText
()); // get the user input from the text
field

2 int callArgument = userInput + 1; //
process the entered value by simply
adding 1 to it.

3 Watchpoint.analyzeHere();
4 TextControl t = new

TextControl(Integer.toString(callArgumen
t));// passing the value to a
constructor of class TextControl in the
Control package

5 t.printCopyMessage(evt.toString(),0);

Figure 3: The adding of Julia watchpoint in the source
code.

The added line should be in the part of the code
that we want to analyze. Notice that, even though we
modify the code, Julia performs a static analysis and
the code, including the added part, is not executed.
Usually, this is the part of GUI code that exists
before the code that making a call to a Control class.
It is actually at the intersection of Control and GUI.
The tester can use a tool such as Atlas (Kothari 2017)

to identify this part in the code. Then, Julia, when
checking the modified code of Figure, generates an
output log file with invariants (just one in this
example since there is only one watchpoint).

Figure 4: The content of the file NumericalInvariant.pl
generated by Julia.

There is an invariant at the call to
analyzeHere() at line 3 but applied at the bytecode
level. There, the constraint inferred by Julia is OL3 -
OL4 = -1. Specifically, Error! Reference source
not found. shows the content of a file called
NumericalInvariant.pl generated by Julia.

That is, the local variable 3 (OL3) is equal to the
local variable 4 (OL4) minus 1. Here, Julia refers to
local variables in the Java bytecode. Julia would help
by finding the mathematical function that represents
the input-output relation (the output as a function of
the input). In this case, the mathematical function is
the difference between variables (OL3 and OL4) in a
text file (Error! Reference source not found.). It is:
OL3 - OL4 = -1. We can understand from the file
NumericalInvariant.pl that the local variable
three (OL3) stands for userInput and the local
variable four (OL4) stands for callArgument. Julia
does not tell us that OL3 represents userInput. We
should find out that by ourselves by understanding
the output text file NumericalInvariant.pl.

We conclude that we verified the GUI for this
particular scenario. The fault is discovered by
reading and analyzing the text file generated by Julia.
In other words, there is a fault for the variable
callArgument (it does not have the same value
entered by the user) thereby breaking the ECB
principle.

4.2 Obtaining the Invariant

The illustrative example shown above is to obtain an
invariant. Obtaining the invariant is done by using
the termination checker.

********** PathLengthAnalysis
of public
CopyTextComponent.actionPerformed(java.aw
t.event.ActionEvent):void *

normal execution: OL3 - OL4 = -1
exceptional execution: OS0 >= 1, OL3 -
OL4 = -1

 72: open call
com.juliasoft.julia.checkers.Watchpoint.a

nalyzeHere():void []:public
CopyTextComponent.actionPerformed(java.aw
t.event.ActionEvent):void:141 (offset:

72)

ICSOFT 2018 - 13th International Conference on Software Technologies

384

Figure 5: Passing input from GUI to logic.

We tried the termination checker on a dummy
case study following the steps that the authors of
Julia mentioned. However, we faced issues /
limitations we describe next when we apply static
analysis using Julia on a real case study. In the
dummy case study, there is a text field in the GUI.
The text field receives an input from the user (Error!
Reference source not found.). Then, the GUI class
changes the value of that input. The GUI class passes
the modified input to the logic class of the software
(non-GUI classes). The following code shows the
call to Julia at the intersection of a GUI class and a
logic class. The code is inside a GUI class. We make
an instance of a Control class TexControl which is
a logic class.

1 int
userInput=Integer.parseInt(inputExpre
ssion.getText()); // get the user
input from the text field

2 int callArgument = userInput + 1; //
process the entered value by simply
adding 1 to it.

3 com.juliasoft.julia.checkers.Watchpoi
nt.analyzeHere();

4 TextControl t = new
TextControl(Integer.toString(callArgu
ment));// pass to the logic

We tried to extend the dummy case study to handle
two input variables instead of one. Hence, we had
two text fields on the GUI instead of one. So instead
of the old code, we had the following new block of
code:

1 int userInput =
Integer.parseInt(inputExpression.getT
ext()); // get the user input from
the first text field

2 int userInput1 =
Integer.parseInt(inputExpression1.get
Text()); // get the user input from
the second text field

3 int callArgument = userInput +
userInput1; // process the entered
value by simply adding 1 to it.

4 com.juliasoft.julia.checkers.Watchpoi
nt.analyzeHere();

5 TextControl t = new
TextControl(Integer.toString(callArgu
ment)); // pass to the logic

We followed Julia online-help by setting the variable
dumpNumericalInvariant to true. In the first case
(section 4.1), Julia generates a file named
dumpNumercialInvariants.pl that has the
following information: OL3 - OL5 = -1. This
means that: userInput - callArgument = -1.
We expected in this new case to obtain: OL6 - OL5=
- OL3 which means that: userInput1 -
callArgument = - userInput. Alternatively, an
acceptable output will be OL3 - OL5 = - OL6
which means that: userInput - callArgument
= - userInput1. We mention an acceptable output
because when we compare the two pieces of code,
we think that is a plausible output. We found that
Julia cannot do the second analysis though it can do
the first one. The file
NumericalInvariants.pl generated by Julia does
not include any invariant in the second case. We
conclude that Julia has limitations when the code
becomes complex.

We tried other checkers to solve this issue. For
example, we tried the injection checker (Burato et al.,
2017). This checker is supposed to report issues
related to taint analysis (Burato et al., 2017). For
example, if a parameter of a function is suspected to
be tainted (e.g., changed by malicious code), the
injection checker of Julia reports that part of the
code which contains the parameter that produces a
risk. Unfortunately, when we used the injection
checker, we got an error during the analysis. Julia did
not continue the analysis and reports an error. The
error message simply says an error while connecting
to the server. The deployed version of the tool is not
ready for such an analysis. We tried other options.
For example, we explored whether we can use an
option in Julia called the polyhedra for small
software to study the invariants. The authors of Julia
suggested the use of the polyhedra option. The
authors claim that polyhedra has a high
computational ability. We prepared a very simple
Java class in which a method a() calls a method b().
If we define two integer variables x = 1 and y = 1
inside a() and then another integer variable z = x + y
also inside a(), then we pass z to b(), Julia can find
the invariant using dumpNumericalInvariant =
true. However, if we move the declaration of x and
y to the main() function, Julia cannot find the

Towards GUI Functional Verification using Abstract Interpretation

385

invariant using the dumpNumericalInvariant. So,
we tried to set onlyPolyhedra to true and run the
analysis. We got the same error message that we
obtained when we try the injection checker. In
summary, Julia helps us with a specific case study,
but we faced an issue on a complicated case study.

Julia can also use both bounded differences
(bugseng, 2017) and polyhedra together, falling back
to bounded differences when polyhedra are not
needed. This option is unavailable online due to
internal issues related to the company that owns
Julia. One possibility would be to use polyhedra and
bounded differences for the application under
analysis and bounded differences only for the
libraries used by the software developer such as Java
swing library. However, while Julia authors suggest
this, they also they confirm that the Julia team has
never tested the polyhedra.

The fact that polyhedra does not scale up in some
cases is due to the amount of code that Julia must
check. Since static analysis tries to analyze the code
statically, it does so through approximations. If the
code uses a lot of libraries, such as any decent Java
program, then there is simply too much code (and
especially code that is not necessarily accessible to
the static analyzer, e.g., in Java libraries) for the
analyzer to finish in a decent amount of time (if at
all).

We searched for ways to proceed in such
circumstances (limitations) to help the static
analyzer. In other words, to reduce the computations
that the static analyzer need to do. For instance, some
steps can be done to help the analyzer, so that the
analyzer has fewer computations/assumptions to
make. If the code we analyze uses a function from a
library that we (humans) know returns an integer
between 1 and 10, then, we can inform the analyzer
of such a situation. Hopefully, such step could help
the analyzer. We thought of different ways to help
Julia finds relationships between variables defined in
the code. Specifically, we believe we could ourselves
look at the code and identify information that could
simplify Julia’s analysis. We wondered whether
other kinds of annotations could be of any help to us,
including: (1) Annotations to specify bounded ranges
of values for different types of variables (other than
numerical variables); (2) Annotations to specify
specific values for variables. These values could be
enumerated or continuous; (3) Annotations to specify
exceptional / illegal values. These values could be
indicated easily as we already do that for handling
invalid input. Hence, using annotation, Julia could
excludes such values from the set of possible values
of a variable. If we have an option, then, we can

express bounded ranges, using specific annotations;
(4) Annotations to tell Julia to ignore some calls
which we know are irrelevant to the analysis we ask
Julia to perform; (5) Annotations to tell Julia to
ignore some variables; (6) Annotations to tell Julia
that some calls / variables that we (humans) can tell
would not affect results. Hence, again Julia can
exclude them from computations. For instance, one
possibility might be to tell Julia to ignore a specific
call (e.g., a call to display the UI) in the analysis.

We did not find annotations in Julia to do the
listed items above. That might be related to the
analysis based on bounded difference: there are
bounded differences that Julia can automatically infer
from the code, and there are situations where Julia
needs help to do so. We found annotations for a
specific example; they are however not interesting to
us. The example is related to a checker called
GuardedBy checker. As for the termination checker
which is totally different from the GuardedBy, we
did not find if there is a way to use those annotations.
We only found annotations that Julia understands for
code synchronization issues.

4.3 Writing the Invariant as Java Code

Our objective is to know whether a mathematical
function does represent the code related to the input-
output relation. Instead of asking Julia to obtain the
invariant, we can ask Julia to tell us whether our
predicted invariant is correct. We believe that we
reduce the computations that Julia needs to do when
we write the invariant and ask Julia to verify it
instead of asking Julia to find it. The validation of an
invariant is easier than finding that invariant. Hence,
the answer of Julia will be yes or no. Yes: means the
invariant (mathematical function/condition) is a valid
one. No: means the invariant is invalid. Since our
invariant is a predicted one, it may be a subset of the
real invariant. This could be a limitation of this
solution.

In this section, we present a way through which
we write the invariant as a Java code. Recall that the
invariant is a condition that should always be
satisfied regardless of the input of the software.

We write an if-statement in the Java code that has
the invariant as a condition. If the condition is
satisfied, then the if-statement will call an infinite
loop that we write inside the body of that if-
statement. We ask Julia to analyze the code for a
possible non-termination of the software. When the
program goes into an infinite loop, it does not
terminate. Julia should warn about such a possible
scenario. The non-termination usually happens due to

ICSOFT 2018 - 13th International Conference on Software Technologies

386

bad practices by the software developer. The code
out of such practices leads the software to freeze (i.e.,
stop working, hanging). We highlight the fact that if
the condition of the added if-statement is satisfied,
then this leads the program to stop/hang (does not
terminate), hence, Julia should warn about such a
possible non-termination. It means that Julia should
statically evaluate the code to decide whether the
condition is satisfied.

Since our condition represents an input-output
relation, we can use Julia to validate whether this
mathematical function represents the code. In other
words, we try to use the termination checker to detect
if an invariant holds instead of generating the
invariant. We show next how we add an invariant in
the Java code. Hence, if the invariant does hold
(satisfied all the time), the while(true) in the
following code is called, and the termination checker
gives us a warning. Unfortunately, we faced a
limitation of Julia if the variables are uninitialized.
We show this limitation below.

We use an example to show up-to-which level
Julia can help us. The example shows that Julia
works on the simple case. When we update the
example to have more complex code, Julia does not
work well. We show this limitation in an incremental
way: we start with a working copy of the example
and ends up with an unsuccessful one.

For the following code, there is no warning
reported by Julia. The condition of the if-statement is
not satisfied. The program does not proceed to the
while loop. Julia works well with this example (it
gives no warning).

public class WhileTrue {
 public WhileTrue() {
 }
 public static void main(String[] args) {
 int x = 0;
 int y = 0;
 if (x == 1 || y== 1) while (true);
 System.out.println("Passed while ture");
 }
}

For the following code, all is fine as well, there is a
warning reported by Julia. The termination checker
finds that the program will go into an infinite loop.
This is expected because the condition in the if-
statement is satisfied. It means the program will not
terminate. The termination checker warns about a
possible non-termination.

public class WhileTrue {
 public WhileTrue() {
 }
 public static void main(String[] args) {
 int x = 0;
 int y = 0;

 if (x == 0 || y== 0) while (true);
 System.out.println("Passed while ture");
 }
}

If we use a dummy case study which takes two inputs
from the GUI, Julia throws a warning for the
while(true) whether the condition (invariant) is
stratified or not. It means that Julia cannot evaluate
the code. Here is the example:

public TextControl(String t) {
 // verification code
 int guiVariable=Integer.parseInt(t);
 int expectedGUIvariable=CopyTextComponent.

getInputExpression() +
CopyTextComponent.getInputExpression2();

 if (guiVariable == expectedGUIvariable) while
(true);

 // end of verification code
 myText = new MyTextEntity(t);
 }

The issue that we face is that Julia reports a warning
in the two cases of invariant:

guiVariable == expectedGUIvariable

or:

guiVariable != expectedGUIvariable

In our code, whenever we call the constructor of
TextControl, we pass a value that is equivalent to
the value inside the expectedGUIvariable.
Hence, if Julia were to evaluate the code, it should
warn in the case of equality. Julia does not evaluate
the whole code so it warns in both cases. Probably,
Julia works at the level of function and not the whole
software. In other words, Julia reports a warning in
both scenarios because it was unable to evaluate the
condition. The reason for this limitation with Julia is
that the variables are uninitialized, and they will get
their values only at run-time. So, Julia cannot
evaluate them. We conclude that while Julia works
with a simple example, we however cannot use Julia
when we have several variables.

5 CONCLUSION

We investigated the use of abstract interpretation to
verify the GUI of a GUI-based software. We discuss
the possibility of implementing this approach using
Julia. The technology we suggest has limitations. For
example, Julia does not generate a mathematical
function that describes a software method all the
time. However, this technology is evolving. We
expect that the technology will overcome these
limitations shortly.

Towards GUI Functional Verification using Abstract Interpretation

387

ACKNOWLEDGEMENTS

This research has been funded by the Natural
Sciences and Engineering Research Council of
Canada.

REFERENCES

Boulanger, J.-L. (2013). Static analysis of software: The
abstract interpretation, John Wiley & Sons.

Bruegge and Dutoit (2000). "Object-Oriented Software
Engineering: Using UML, Patterns and Java."

bugseng. (2017). "Numerical differences." Retrieved 2017,
2017, from http://bugseng.com/products/ppl/
abstractions.

Burato, E., P. Ferrara, et al. (2017). Security Analysis of
the OWASP Benchmark with Julia. Pro. of the First
Italian Conference on Cybersecurity (ITASEC17).
Venice.

Corbett, J. C., M. B. Dwyer, et al. (2000). Bandera:
Extracting finite-state models from Java source code.
Software Engineering, 2000. Pro. of the 2000 Int.
Conf. on, IEEE.

Cousot, P. (2016). "Abstract Interpretation in a Nutshell."
from http://www.di.ens.fr/~cousot/AI/IntroAbsInt.
html.

Cousot, P. and R. Cousot (1977). Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints.
Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages,
ACM: 238-252.

Cousot, P. and R. Cousot (2010). "A gentle introduction to
formal verification of computer systems by abstract
interpretation." Logics and Languages for Reliability
and Security 25: 1-29.

Cousot, P. and R. Cousot (2014). Abstract interpretation:
past, present and future. Proc. of the Joint Meeting of
the Twenty-Third EACSL Annual CSL and the 29th
Annual ACM/IEEE Symposium on LICS, ACM: 2.

Gomaa, H. (2000). Designing Concurrent, Distributed, and
Real-Time Applications with UML, Addison-Wesley
Professional.

Kothari, S. (2017). "Atlas." Retrieved 2017, from
http://www.ensoftcorp.com/atlas/.

Spoto, F. (2005). Julia: A generic static analyser for the
java bytecode. The 7th Workshop on FTfJP’2005,
FTfJP’2005, Glasgow, Scotland, July 2005. Available
at www.sci.univr.it/~spoto/papers.html.

Spoto, F. and T. Jensen (2003). "Class analyses as abstract
interpretations of trace semantics." ACM TOPLAS
25(5): 578-630.

Spoto, F., F. Mesnard, et al. (2010). "A termination
analyzer for Java bytecode based on path-length."
ACM TOPLAS 32(3): 8.

Thesing, S., J. Souyris, et al. (2003). An abstract
interpretation-based timing validation of hard real-

time avionics software. P. 2003 Int. Conference on
Dependable Systems and Networks, 2003, IEEE.

ICSOFT 2018 - 13th International Conference on Software Technologies

388

