
On Graphical User Interface Verification

Abdulaziz Alkhalid and Yvan Labiche
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Keywords: System Testing, Graphical User Interface (GUI), GUI Testing, Verification.

Abstract: Graphical User Interface (GUI) testing, for instance by means of capture and replay tools, is
computationally expensive. In this paper, we present an approach for GUI verification that is not GUI
(verification) testing. Using this approach, we study the input provided by an actor to the GUI and the
output of the GUI to the underlying functionality. We also verify relations between those inputs and outputs.
We describe the approach and discuss some first steps towards its validation in terms of fault detection
using a real, though simple GUI-based software as well as a synthetic GUI-based software.

1 INTRODUCTION

GUI-based software is more and more prevalent and
verifying they function as expected is therefore more
and more important, especially since users are less
and less willing to accept failures. Our own
experience (Alkhalid and Labiche, 2017) with the
verification of GUI-based software, specifically with
a capture and replay tool such as GUITAR (Nguyen
et al., 2014) (as a representative example of what is
available in the field), indicates that capture and
replay tests do not necessarily entirely exercise the
application logic functionality. This may suggest that
GUI testing is not functional system testing applied
directly on the UI. Another observation we made is
that using a capture and replay tool such as GUITAR
is extremely expensive, to the point that this may not
be practical on real, large-scale GUI-based software.
These observations led us to rethink the verification
of a GUI-based software.

In this paper, assuming a GUI-based software is
designed according to the Entity-Control-Boundary
(ECB) design principle (Bruegge and Dutoit, 2000),
we suggest to decompose the verification of that
software into the (static) verification of its UI part
(i.e. no testing) combined with the (verification)
testing of its application logic code at the system
level (thereby bypassing the UI). For the (static)
verification of the UI we rely on user-defined
contracts that can be verified statically by a checker,
in our case the Extended Static Checker (Flanagan et
al., 2013) for Java; for the functional, system level
tests, we rely on high-level functional requirements

to derive tests. We evaluate our proposed solution on
a real, though simple GUI-based software as well as
a synthetic GUI-based software.

The rest of the paper is structured as follows.
Section 2 discusses related work. Section 3 describes
our solution in details. Section 4 describes an initial
attempt to validate our approach. We conclude in
section 5.

2 RELATED WORK

The application of static analysis is not only the use
of sophisticated tools such as symbolic execution
(King, 1976) using Java Path Finder (NASA, 2015)
for instance, abstract interpretation (Cousot and
Cousot, 1977) for instance using Julia (Spoto 2005),
program slicing (Weiser, 1981) using JSlice (Wang
et al., 2017) as an example or theorem proving using
Extended Static Checker (ESC) (Flanagan et al.,
2013) to analyze the code. Other types of code
analysis, even without the use of sophisticated tools,
can be considered to be static analysis. Arlt and
colleagues (Arlt et al., 2012) applied static analysis
of events relationships by checking the bytecode of a
GUI application and its dependent libraries for GUI
functional (black-box) system testing. This allowed
them to infer dependencies between events. The
relation is used to build an Event Dependency Graph
(EDG), to select relevant event sequences among the
event sequences generated from a black-box model.

Zhang et al., (2011) analyze the dependent
libraries of a GUI application for test case generation.

Alkhalid, A. and Labiche, Y.
On Graphical User Interface Verification.
DOI: 10.5220/0006916603730380
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 373-380
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

373

Yuan and Memon (2007) obtain GUI run-time
feedback from the execution of a “seed test suite”
and then use static analysis (with a data-flow static
analyzer) to analyze this seed test suite and
iteratively generate new test cases. The authors
utilize the run-time state to explore a larger input
space and improve fault-detection effectiveness.
They automated this feedback-based technique into a
GUI functional system testing process. Techniques
similar to static analysis from the machine learning
field, such as reinforced learning, have been used
(Mariani et al., 2012) to discover the most relevant
functionalities and to generate test cases that
thoroughly sample these functionalities. This
technique learns by itself how to interact with the
software and simulate its functionalities. Other
approaches use search-based techniques to execute
actions and observe states of a certain behaviour in
the source code (Gross et al., 2012) to generate test
cases at the GUI level.

3 PROPOSED SOLUTION

Our solution is to verify the GUI using static
analysis. The objective is that by adding the
functional system logic tests, we can verify the whole
software. Subsection 3.1 describes the ECB design
principle. Subsection 3.2 presents our definition of
input-output relation for the GUI layer of a GUI-
based software. Section 3.3 presents our fault model.
Subsection 3.4 presents our solution. Subsection 3.5
presents our implementation of the solution.

3.1 Entity Control Boundary (ECB)
Design Principle

Our work assumes that the design of the GUI-based
software under verification follows the Entity-
Control-Boundary (ECB) design principle which
divides classes over three main categories (Bruegge
and Dutoit, 2000; Bein, 2017; IBM, 2017; Pearce,
2017): Entity classes represent the information the
software needs to manipulate and determine the state
of the software (i.e., the temporary and permanent
information); Control classes realize the use cases,
implement the logic of the software, and determine
how the state of the software changes (i.e., when and
how the state changes); Boundary classes realize the
interactions between the software and the actors (e.g.,
human, hardware, other software), transmit requests
and data and determine how the software is presented
to the outside world (Bruegge and Dutoit, 2000;
Bein, 2017; IBM, 2017; Pearce, 2017). When the

software interacts with humans, Boundary classes
necessarily represent GUI classes and are
implemented with well-known packages (e.g., Swing
in Java). This design principle also assumes that
when a Boundary class transmits requests and data
back and forth between the application logic (Control
classes) and actors, thereby converting it from/into a
form that can be dealt with in the Control classes, it
does so without changing the semantics of the
information, though possibly changing the type of the
information (e.g., from an int variable to an
Integer object) (Nunes and Cunha, 2000),
(Bruegge and Dutoit, 2000) (page 182). Our work
relies on this important design assumption.

3.2 Input-Output Relation

We refer to input variable as any variable in the GUI
code that receives a value from the user. We refer to
argument variable as any variable in the header of a
method in a Control class. We use the term input-
output relation to refer to the relation between these
two kinds of variables: an input is received from a
human actor as an input variable which, through
some control flow in the UI code, reaches an
argument variable. This is a way to model the flow
followed by data when a Boundary class converts
data received from a human actor into a form that can
be dealt with in a Control class.

Our solution, which we discuss below, relies on
the understanding of the multiplicities of this input-
output relation. This understanding will also help
during the validation of our solution. We distinguish
between six different kinds of multiplicities. In the
Many to One (N-1) multiplicity, several input
variables to Boundary classes are used to form (i.e.
compute) one argument variable to a function in a
Control class. In a One to One (1-1) multiplicity, one
input variable to a Boundary class becomes one
argument variable to a Control method. In a Many to
Many (N-M) multiplicity, many input variables to
Boundary classes contribute to many argument
variables. In a Many or One to zero (1-N..0)
multiplicity, one or more variables do not contribute
to any argument variable to the Control class. In a
One to Many (1-M) multiplicity there is one input
variable to the GUI that contributes to many
arguments of methods in Control classes. In a Zero to
one or Many (0-1..M) multiplicity, there is no input
variable to the GUI but one or many arguments to
Control methods.

ICSOFT 2018 - 13th International Conference on Software Technologies

374

3.3 Fault Model

A fault model assists practitioners during test case
generation, and data or control flow analysis (Rajput,
2013), and allows one to qualitatively assess fault
detection of a specific verification technique (Harris,
2003). We explain some faults that we expect to
discover with our approach. They relate to the
functional behaviour of the UI part of the software,
specifically how the UI transmits data from the user
to Control classes; non-functional properties of the
UI are out of our scope.

The first type of faults in our fault model is an
unexpected change of value of an input variable; the
GUI changes the value entered by the user before
passing it to a Control class when it should not; the
input variable (integer, Boolean, String) is expected
to equal the argument variable. The second type of
faults is incorrect change in the syntax of the input.
For example, the developer may split one string
entered by the user (input variable) and pass it to two
methods in the Control when it should be passed as
two argument values to only one method. This type
of faults is not a broader description of the first type
because here we have a mathematical function (that
is not an equality) that describes the output as a
function of the input. The third type of faults is that
the values of two input variables get swapped with
each other. We consider this kind of faults as a
combination of two faults belonging to the second
type.

3.4 Solution

Our solution is to study such input-output relations to
make sure that the GUI code receives the input
provided by the user to the GUI classes and passes it
to the Control classes without semantic change. We
suggest to use static analysis techniques to achieve
this goal. In essence, our solution is to statically
verify that the UI code does indeed implement the
ECB principle correctly. And we argue that from a
functional point of view, if the UI satisfies this
condition and functional system-level tests applied to
the application logic (i.e. Control classes) pass, then
we have functionally verified the entire GUI-based
software.

We have a similar handling for the different
variable types. For each argument variable there must
exist a mathematical function or expression that can
express possible values of this variable as a function
of one or more input variables. In the simplest case
where an input variable is passed as is to a Control
method, this mathematical function is an equality: the

argument variable must equal the input variable. The
next question that needs to be answered is: what is
the mathematical expression, relating input variables
and argument variables, and how this expression can
be verified statically?

One solution is to ask the designer to specify such
expressions and rely on some static analysis
technology to verify that this expression is indeed
true on all execution paths in the code. This however
puts some burden on the designer. An alternative can
be to use some advanced static analysis such as
abstract interpretation and let the analyzer discover
expressions that relate argument variables and input
variables; it is up to the designer or tester to then
validate whether this expression is correct. Again, the
solution puts some burden on an engineer. Given we
are working on case studies written in Java, we can
investigate the use of the Java Modeling Language
(JML) and the Extended Static Checker (ESC)
(Flanagan et al., 2013) for implementing the first
solution and the use of Julia for implementing the
second solution. Regardless of the technology being
used, we can expect to be subject to some technical
limitations, even though the field of static analysis
has made tremendous progress in the last decade. As
discussed below, we opted for the first solution.

3.5 Implementation of Our Solution

Our solution is to rely on programmer-defined JML
expressions that describe how argument variables
ought to relate to input variables and then ask ESC to
statically verify whether such expressions always
hold. Because we are interested in argument
variables, that is variables that are passed to methods
of Control classes, these expressions are necessarily
pre-conditions. Let us assume that the GUI is
supposed to present a numerical input as is to a
Control class. With a static checker, we can check if
there is a difference in value, as specified in a JML
precondition, between the input variable to the GUI
and the argument passed to the Control class. In case
the static checker reports that there is a violation of
the precondition due to a difference between the
input and the output of the GUI, then the static
checker has revealed a fault. If the static checker
does not report any violation (difference), then there
is no fault. This way, the static checker is used for
fault detection in the GUI. In order to specify such
preconditions, a few additional questions must be
answered: (1) Where to place the pre-condition? (2)
how to make the input variable (input by the user)
available/visible to that precondition so that the
mathematical expression specifying the input-output

On Graphical User Interface Verification

375

relation can be specified as a JML expression? Since
the mathematical expression/function specifies a
relation involving an argument variable, the
precondition of course specifies the Control class
method that receives that argument variable as input.
This method can either be a constructor or a
“regular” method of the Control class.

Given that we assume we work on a GUI-based
software built with the Java programming language,
we must abide to the visibility rules of variables and
attributes in Java when answering the second
question. Since the input variable is defined in a
Boundary class, and Boundary and Control classes
are different, since this input variable may (likely) be
a local variable in a Boundary class method, this
variable is not visible to a precondition in a Control
class method. We therefore add public static
variables in the GUI classes to hold the value entered
by the user (the input variables). Then, we must
search for places in the Boundary classes where calls
(methods or constructors) are made to Control
classes, analyze which (local) variables in the calling
methods are used as arguments in those calls, and
identify which user inputs are used to set values of
those arguments. This is a standard data flow
problem that can be easily solved with a tool such as
Atlas (Kothari, 2017). Once this is done, we set the
value of the added static variable to the variable (user
input) that has been identified.

3.6 A Simple Example

We use a simple, synthetic software to explain the
solution described above. The software was designed
using the ECB design principle. The Entity class is
MyTextEntity, which has a functionality for
creating some text files on the hard disk and printing
text on the standard output stream. TextControl is
a Control class that receives inputs from the
Boundary class and makes a call to the Entity class.
RadioComponent, CopyTextComponent and
MainExeFrame are Boundary classes which receive
the input from the user, process it and pass it to the
Control class.

Figure 1: The main window of simple software after
typing the input and clicking the copy button.

Figure 1 shows the main window of the software.
When the user enters an input, using the text field,
and presses the copy button, the software shows the
result at the bottom of the window with the user-
selected colour (radio buttons). The figure illustrates
a fault: the software added 1 to the input value, which
should have been 1, not 2.

Figure 2 shows a sample of the code from class
CopyTextComponent, specifically an excerpt of the
actionPerformed() method of the
CopyTextComponent instance. This instance
obtains a value from the GUI (line 1) and stores it in
the userInput variable. Then (line 2), it declares a
variable called callArgument. The callArgument
variable takes the value of userInput and adds the
value 1 to it: this is the fault. Then it passes it to the
Control class instance: call to the constructor of the
TextControl class. Then, the call proceeds to the
method printCopyMessage().

1 int userInput=Integer.parseInt(

inputExpression.getText());
// get the user input from the text field

2 int callArgument = userInput + 1;
// process the entered value by adding 1.

3 TextControl t = new
TextControl(Integer.toString(callArgumen
t));
// passing the value to a Control

4 t.printCopyMessage(evt.toString(),0);

Figure 2: Excerpt of the GUI code.

In this example, we need to make sure that the
input given to the TextControl instance is the right
input–in this case, the string value received from the
text field. The code converts the string to an integer
and increases the value by one. The code converts the
value (after the increment) to a string and passes the
string to the Control class instance. Our procedure,
discussed earlier, is to identify the call site to the
Control class (here it is line 3 in Figure 2), and
identify the input variable that leads to an argument
used in the call site (here it is variable userInput
that receives a value at line 1 in Figure 2). As
mentioned earlier this can be facilitated by the use of
a tool such as Atlas. Our procedure is then to add a
public static variable to record the input value: here
we record the value received by userInput. Figure 3
shows the modified CopyTextComponent. We
define a public static variable in class
CopyTextComponent called
verification_variable. (Code showing this
addition omitted.) The variable is used to store the
value entered by the user: the same value as
userInput. We also add a local variable

ICSOFT 2018 - 13th International Conference on Software Technologies

376

output_variable (line 5) to contain the data that
is passed to the Control class. Adding this local
variable will help ESC analyze the code. Our
experiment shows that without such a local variable
ESC does not evaluate this part of code.

1 Sting s = inputExpression.getText();
2 int userInput=Integer.parseInt(s);

// get the user input from the text
field

3 int callArgument = userInput + 1;
// process the entered value by adding
1.

4 verfication_variable = s;
5 output_variable=

Integer.toString(callArgument);
6 TextControl t = new

TextControl(output_variable);
// passing the value to a Control

7 t.printCopyMessage(evt.toString(),0);

Figure 3: Modified Boundary code as per our solution.

The next step of our solution is to add a
precondition before the constructor of TextControl
since it is the constructor that is called in the
Boundary class (CopyTextComponent): Figure 4.

1 /* process equality check on the entered
value and value that reach the
Control.

2 // @ requires s ==
CopyTextComponent.verificaton_variable

3 */
4 TextControl(String s){ ...

Figure 4: The adding of a precondition in the source code.

ParseException{CopyTextComponent.java:109:
Warning: Precondition possibly not
established (Pre)
TextControl t = new
TextControl(output_variable);
^
Associated declaration is ".\
CopyTextComponent.java", line 16, col 6:
 @ requires s ==
CopyTextComponent.verificaton_variable;
 ^
Execution trace information:
 Executed then branch in
"CopyTextComponent.java", line 93, col 55.

Figure 5: Excerpt of the file generated by ESC.

The precondition specifies that it is required,
when entering the Control class constructor, that the
value of argument s (the output variable) equals the
value of the public static attribute value we added to
record the input variable. Then, ESC, when
analyzing the modified code, generates an output
file: excerpt in Figure 5. ESC reports a violation of

the precondition. (Note that line numbers reported
by ESC in the figure do not match the lines numbers
we have in the figures of this paper; this is because
we re-numbered the lines in the paper to simplify the
discussion.)

4 VALIDATION

We first discuss validation with synthetic examples
in light of the input-output relations, and their
multiplicities, that we discussed earlier, and then
validation with a real, though simple, GUI-based
software in terms of fault detection.

4.1 Applicability

In this section, we validate the applicability of our
solution on several types of multiplicity. Hence we
argue that our approach will work on those scenarios.
Consequently, we hope that such validation shows
the capability to generalize our results. We use a
synthetic case study to demonstrate how our
verification technique is applicable for several
multiplicities of the input-output relation. We use
faulty preconditions instead of generating faults in
the software. There are three buttons in this case
study, each of them shows one possible relation
between the input to the GUI and the output to the
logic. The first button simulates the first type of
multiplicities which is 1-1. Clicking on that button
shows another window where the user can enter a
text and clicks a button. When the user enters "String
Input" and clicks the button, the GUI takes the input
entered by the user in the text field and passes it to
the Control. The GUI has a label that shows a text
"String passed as is to control" at the bottom of the
window. To verify this 1-1 relation, we proceeded as
described earlier (added static variable, added
precondition): the precondition is an equality
between two variables (the static variable of the
Boundary class, the argument of the Control
method). With this precondition, ESC does not
complain. However, if we change the precondition
(e.g., inequality instead of equality), thereby
simulating a fault in the Boundary class, then ESC
warns about a violation of the precondition.

Figure 6 shows the UI of an example of 1-N
relation and the corresponding JML precondition. In
this example the UI receives an integer value as an
input; based on the value of that integer, the software
creates an array of elements. The values of those
elements and their indexes appear on the output. The
GUI shows the output. We use another example to

On Graphical User Interface Verification

377

simulate a N-1 relation. In this synthetic example, the
software receives several values as inputs. Then, it
outputs the sum of those values. Similarly to the
previous cases, we added static variables (for
recording the values of input variables) and a JML
precondition: the argument of the Control method
should be the sum of inputs to the GUI. Details are
not shown because of space constraints. We also
simulated faults in the GUI with alternative JML
preconditions, i.e., other than the correct one; each
time ESC complained as it detected violations of the
alternative preconditions whereas it was able to
confirm the correct precondition was always
satisfied.

These examples show that our approach to verify
the input-output relation between the UI (Boundary
classes) and the application logic (Control classes)
applies to several kinds of multiplicities. We think
that the three multiplicities discussed above (1-1, 1-N
and N-1) are the most common types of
multiplicities. Hence, we believe that our solution
will work on all other types of multiplicities
discussed in section 3.2, though more studies to
confirm this assertion are warranted. We think that
this would help us to generalize our solution.

4.2 Fault Detection

15 /*@ public normal_behavior
16 @ requires a + b + c == 3 + (3*
OneToManyComponent.verification_user_input);
17 @*/
18 public OneToManyControl (int a, int b,
int c) …

Figure 6: JML code to verify the 1-N relation.

We first discuss the software under test and then the
experiment. Results are discussed last. Our software
under test performs a number of computations on
Boolean expressions provided by the user through a
GUI. The Software Under Test (SUT) provides three
main functionalities: computing and displaying the
truth table of a Boolean expression, computing and
displaying the Disjunctive Normal Form (DNF) of a
Boolean expression, and deriving tests according to

the variable negation testing strategy for a Boolean
expression (Weyuker et al., 1994). Our case study
has one main window with three buttons. Clicking on
any of the buttons generates a child window to
handle the corresponding functionality. The truth
table window accepts a string representing a Boolean
expression (text field) and generates its truth table
upon request (Compute Truth Table button).
The DNF Expression window computes (Compute
DNF button) the disjunctive normal form of the
Boolean expression provided in the top text field and
displays the result in the bottom text area. In the third
window the input must be provided as a series of
terms of the DNF of a Boolean expression. The user
must enter those terms in input text fields, one term
per text field.

First we formulated three preconditions for our
case study because each functionality involves only
one call to a Control class method. For each of these
preconditions, we ran ESC twice: one time using a
valid precondition and another time using a modified
(incorrect) precondition. Hence, we simulate that
ESC reports on issues when there are some (modified
precondition) and is silent when there is no issue
(original precondition). In our case study, there is one
argument variable to one truth table Control class
method, one argument variable to one DNF Control
class method, and three or more argument variables
(in fact it is an array) to one variable negation
Control class method.

For the truth table window, there is only one text
input that is the Boolean expression. In this example,
there is no intermediate variable between the GUI
and the Control. In other words, the value is taken
from the GUI and passed directly to the Control. In
fact, this Control class is called by all three
functionalities / user interfaces. Its precondition must
reflect that. For the DNF component functionality,
the situation is similar as we need to handle only one
input in the GUI of the DNF. We proceeded similarly
to the previous case: addition of a local variable,
addition of public static variable, JML precondition
checking the equality between the static variable and
the argument of the constructor of the control class.
As for the variable negation component, the situation
is different as there are three inputs by default from
the GUI and the user can add more inputs. The input-
output relation in this GUI is an example of a N-1
input-output relation. The user inputs are used to
create an array that is passed to the Control; each
element in the array is a string coming from a text
field. We need to define some verification (public
static) variables. We should define those static
variables at specific points of the code. We had to

ICSOFT 2018 - 13th International Conference on Software Technologies

378

make a few more code modifications for this third
functionality compared to the previous cases. We
defined two arrays; adding arrays is simply due to the
fact that the data we need to record (input variables)
is an array; in previous cases, the data was a simpler
type. The first array is to store the verification
variables. We pass the second array to the Control
class. The original code passes an iterator of values
to the Control class. In the precondition of the
Control class, we have to inspect every item inside
the iterator as a verification procedure. Since dealing
with an iterator is not as easy as dealing with arrays
in JML, we instead look for a place in the application
logic code (Control) where the elements of the
array/iterator can be checked. This does not happen
in the constructor but in a method immediately called
by the constructor. To perform the verification, we
added an “abstract” method (empty body) and
specified the required verification in JML as its
precondition.

For fault detection, similarly to the previous case,
we asked ESC to verify correct and incorrect
preconditions. ESC did not complain about all three
valid preconditions and complained about all three
invalid (incorrect) preconditions. Hence, we conclude
that ESC is capable of fault detection. In our context
ESC takes around 2 to 3 minutes to analyze the code.
This is much less than the time consumed by
GUITAR. GUITAR tests the underlying functionality
only if we update the test cases with valid inputs and
takes approximately 20 minutes to replay a test suite
on the case study we used here regardless if it is
updated or not (Alkhalid and Labiche, 2017). We
therefore argue that the manual work of GUI
functional system testing requires much more efforts
than the manual work of our solution. For example,
updating test cases with a valid input is a much more
effort-consuming task than adding verification
variables and preconditions to the code.

5 CONCLUSION

Recognizing that GUI testing in the sense of
executing system level functional tests through the
GUI is expensive and likely leads to redundant
testing efforts, we investigate the use of static
analysis to verify the GUI part of the GUI-based
software. We describe the notion of input-output
relation at the GUI level that is data flow
relationships that exist between data provided by the
user to the UI and data provided by UI to the
application logic code. We use this notion of input-
output, describing various multiplicities of the

relation, to structure the discussion of our solution
(including a fault model). We then present an
approach to statically verify how the GUI
implements those relations, without testing. We
implement the approach using the Extended Static
Checker (ESC) that relies on Java Modeling
Language preconditions that specify the input-output
relations to be verified. In essence our approach
assumes the UI is designed by following the Entity-
Control-Boundary (ECB) design principle: class
responsibilities lead to Entity classes (hold the data,
the state of the software), Boundary classes
(interacting with actors), and Control classes
(realizing use cases); Boundary classes may change
the syntax of data they collect from actors and pass to
Control but not their semantics. The solution is a
verification that the ECB principle holds: the JML
preconditions being checked by ESC specify what it
means for the UI to not change the semantics of the
data.

Our solution overcomes other solutions of GUI
functional system testing, at least in principle (we
have not made any experimental comparisons). We
made steps towards the validation of our solution. In
the evaluation of our work, instead of a faulty
software, we decided to use faulty preconditions.
Hence, we run the ESC twice, once on a correct
precondition and another time on an incorrect one. In
doing so, we argue we simulate a fault in the code.
Our results, though limited by the size of the GUI-
based software we used, as well as some limitations
of ESC, looks encouraging.

Our future work includes the evaluation of our
solution on other case studies, as well as the use of
more advanced static checkers than ESC that would
overcome ESC’s limitations. Theoretical analysis and
experimental evaluation should also validate whether
mutating preconditions actually simulates faults in
the functional behaviour of the UI code in our
context.

ACKNOWLEDGEMENTS

This research has been funded by the Natural
Sciences and Engineering Research Council of
Canada.

REFERENCES

Alkhalid, A. and Y. Labiche (2017). How does GUI
testing exercise application logic functionality? 2017
IEEE 41st COMPSAC. Torino, IEEE. 2: 90-95.

On Graphical User Interface Verification

379

Arlt, S., A. Podelski, et al. (2012). Lightweight static
analysis for GUI testing. 2012 IEEE 23rd
International Symposium on Software Reliability
Engineering, IEEE.

Bein, A. (2017). "Simplicity by Design." Retrieved 2017,
from http://www.oracle.com/technetwork/issue-
archive/2011/11-jan/o11java-195110.html.

Bruegge and Dutoit (2000). "Object-Oriented Software
Engineering: Using UML, Patterns and Java."

Cousot, P. and R. Cousot (1977). Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints.
Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages,
ACM.

Flanagan, C., K. R. M. Leino, et al. (2013). "PLDI 2002:
Extended static checking for Java." ACM Sigplan
Notices 48(4S): 22-33.

Gross, F., G. Fraser, et al. (2012). Search-based system
testing: high coverage, no false alarms. Proc. of the
2012 International Symposium on Software Testing
and Analysis, ACM.

Harris, I. G. (2003). "Fault models and test generation for
hardware-software covalidation." IEEE Design & Test
of Computers 20(4): 40-47.

IBM. (2017). "Guideline: Entity-Control-Boundary
Pattern." Retrieved 2017, from http://epf.eclipse.org/
wikis/openup/core.tech.common.extend_supp/guidanc
es/guidelines/entity_control_boundary_pattern_C4047
897.html.

King, J. C. (1976). "Symbolic Execution and Program
Testing." Communications of the ACM

Kothari, S. (2017). "Atlas." Retrieved 2017, from
http://www.ensoftcorp.com/atlas/.

Mariani, L., M. Pezze, et al. (2012). Autoblacktest:
Automatic black-box testing of interactive
applications. 2012 IEEE Fifth International
Conference on Software Testing, Verification and
Validation, IEEE.

NASA. (2015). "Java path finder." Retrieved 2015, from
http://babelfish.arc.nasa.gov/trac/jpf/wiki.

Nguyen, B. N., B. Robbins, et al. (2014). "GUITAR: an
innovative tool for automated testing of gui-driven
software." Automated Software Engineering 21(1): 65-
105.

Nunes, N. J. and J. O. F. O. Cunha (2000). Towards a
UML profile for interaction design: the Wisdom
approach. International Conference on the Unified
Modeling Language, Springer.

Pearce, J. (2017). "The Entity-Control-Boundary Pattern."
Retrieved 2017, from http://www.cs.sjsu.edu/~pearce/
modules/patterns/enterprise/ecb/ecb.htm.

Rajput, D. (2013). "Fault Models and Test Generation for
Covalidation Techniques in Hardware & Software"
Advance in Electronic & Electric Engin. 3(7): 817-
826.

Spoto, F. (2005). Julia: A generic static analyser for the
java bytecode. The 7th Workshop on Formal
Techniques for Java-like Programs, FTfJP’2005,

FTfJP’2005, Glasgow, Scotland, July 2005. Available
at www.sci.univr.it/~spoto/papers.html.

Wang, T., A. Roychoudhury, et al. (2017). "JSlice - a Java
Dynamic Slicing Tool."

Weiser, M. (1981). Program slicing. Proc. of the 5th
International Conference on Software Engineering,
IEEE Press.

Weyuker, E., T. Goradia, et al. (1994). Automatically
generating test data from a Boolean specification.
IEEE Transactions on Software Engineering. 20: 353-
363.

Yuan, X. and A. M. Memon (2007). Using GUI run-time
state as feedback to generate test cases. 29th
International Conference on Software Engineering
(ICSE'07), IEEE.

Zhang, S., D. Saff, et al. (2011). Combined static and
dynamic automated test generation. Proceedings of the
2011 International Symposium on Software Testing
and Analysis, ACM.

ICSOFT 2018 - 13th International Conference on Software Technologies

380

