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Abstract: Graphical User Interface (GUI) testing, for instance by means of capture and replay tools, is 
computationally expensive. In this paper, we present an approach for GUI verification that is not GUI 
(verification) testing. Using this approach, we study the input provided by an actor to the GUI and the 
output of the GUI to the underlying functionality. We also verify relations between those inputs and outputs. 
We describe the approach and discuss some first steps towards its validation in terms of fault detection 
using a real, though simple GUI-based software as well as a synthetic GUI-based software. 

1 INTRODUCTION 

GUI-based software is more and more prevalent and 
verifying they function as expected is therefore more 
and more important, especially since users are less 
and less willing to accept failures. Our own 
experience (Alkhalid and Labiche, 2017) with the 
verification of GUI-based software, specifically with 
a capture and replay tool such as GUITAR (Nguyen 
et al., 2014) (as a representative example of what is 
available in the field), indicates that capture and 
replay tests do not necessarily entirely exercise the 
application logic functionality. This may suggest that 
GUI testing is not functional system testing applied 
directly on the UI. Another observation we made is 
that using a capture and replay tool such as GUITAR 
is extremely expensive, to the point that this may not 
be practical on real, large-scale GUI-based software. 
These observations led us to rethink the verification 
of a GUI-based software. 

In this paper, assuming a GUI-based software is 
designed according to the Entity-Control-Boundary 
(ECB) design principle (Bruegge and Dutoit, 2000), 
we suggest to decompose the verification of that 
software into the (static) verification of its UI part 
(i.e. no testing) combined with the (verification) 
testing of its application logic code at the system 
level (thereby bypassing the UI). For the (static) 
verification of the UI we rely on user-defined 
contracts that can be verified statically by a checker, 
in our case the Extended Static Checker (Flanagan et 
al., 2013) for Java; for the functional, system level 
tests, we rely on high-level functional requirements 

to derive tests. We evaluate our proposed solution on 
a real, though simple GUI-based software as well as 
a synthetic GUI-based software.  

The rest of the paper is structured as follows. 
Section 2 discusses related work. Section 3 describes 
our solution in details. Section 4 describes an initial 
attempt to validate our approach. We conclude in 
section 5. 

2 RELATED WORK 

The application of static analysis is not only the use 
of sophisticated tools such as symbolic execution 
(King, 1976) using Java Path Finder (NASA, 2015) 
for instance, abstract interpretation (Cousot and 
Cousot, 1977) for instance using Julia (Spoto 2005), 
program slicing (Weiser, 1981) using JSlice (Wang 
et al., 2017) as an example or theorem proving using 
Extended Static Checker (ESC) (Flanagan et al., 
2013) to analyze the code. Other types of code 
analysis, even without the use of sophisticated tools, 
can be considered to be static analysis. Arlt and 
colleagues (Arlt et al., 2012) applied static analysis 
of events relationships by checking the bytecode of a 
GUI application and its dependent libraries for GUI 
functional (black-box) system testing. This allowed 
them to infer dependencies between events. The 
relation is used to build an Event Dependency Graph 
(EDG), to select relevant event sequences among the 
event sequences generated from a black-box model.  

Zhang et al., (2011) analyze the dependent 
libraries of a GUI application for test case generation. 
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Yuan and Memon (2007) obtain GUI run-time 
feedback from the execution of a “seed test suite” 
and then use static analysis (with a data-flow static 
analyzer) to analyze this seed test suite and 
iteratively generate new test cases. The authors 
utilize the run-time state to explore a larger input 
space and improve fault-detection effectiveness. 
They automated this feedback-based technique into a 
GUI functional system testing process. Techniques 
similar to static analysis from the machine learning 
field, such as reinforced learning, have been used 
(Mariani et al., 2012) to discover the most relevant 
functionalities and to generate test cases that 
thoroughly sample these functionalities. This 
technique learns by itself how to interact with the 
software and simulate its functionalities. Other 
approaches use search-based techniques to execute 
actions and observe states of a certain behaviour in 
the source code (Gross et al., 2012) to generate test 
cases at the GUI level. 

3 PROPOSED SOLUTION 

Our solution is to verify the GUI using static 
analysis. The objective is that by adding the 
functional system logic tests, we can verify the whole 
software. Subsection 3.1 describes the ECB design 
principle. Subsection 3.2 presents our definition of 
input-output relation for the GUI layer of a GUI-
based software. Section 3.3 presents our fault model. 
Subsection 3.4 presents our solution. Subsection 3.5 
presents our implementation of the solution. 

3.1 Entity Control Boundary (ECB) 
Design Principle 

Our work assumes that the design of the GUI-based 
software under verification follows the Entity-
Control-Boundary (ECB) design principle which 
divides classes over three main categories (Bruegge 
and Dutoit, 2000; Bein, 2017; IBM, 2017; Pearce, 
2017): Entity classes represent the information the 
software needs to manipulate and determine the state 
of the software (i.e., the temporary and permanent 
information); Control classes realize the use cases, 
implement the logic of the software, and determine 
how the state of the software changes (i.e., when and 
how the state changes); Boundary classes realize the 
interactions between the software and the actors (e.g., 
human, hardware, other software), transmit requests 
and data and determine how the software is presented 
to the outside world (Bruegge and Dutoit, 2000; 
Bein, 2017; IBM, 2017; Pearce, 2017). When the 

software interacts with humans, Boundary classes 
necessarily represent GUI classes and are 
implemented with well-known packages (e.g., Swing 
in Java). This design principle also assumes that 
when a Boundary class transmits requests and data 
back and forth between the application logic (Control 
classes) and actors, thereby converting it from/into a 
form that can be dealt with in the Control classes, it 
does so without changing the semantics of the 
information, though possibly changing the type of the 
information (e.g., from an int variable to an 
Integer object) (Nunes and Cunha, 2000), 
(Bruegge and Dutoit, 2000) (page 182). Our work 
relies on this important design assumption. 

3.2 Input-Output Relation 

We refer to input variable as any variable in the GUI 
code that receives a value from the user. We refer to 
argument variable as any variable in the header of a 
method in a Control class. We use the term input-
output relation to refer to the relation between these 
two kinds of variables: an input is received from a 
human actor as an input variable which, through 
some control flow in the UI code, reaches an 
argument variable. This is a way to model the flow 
followed by data when a Boundary class converts 
data received from a human actor into a form that can 
be dealt with in a Control class. 

Our solution, which we discuss below, relies on 
the understanding of the multiplicities of this input-
output relation. This understanding will also help 
during the validation of our solution. We distinguish 
between six different kinds of multiplicities. In the 
Many to One (N-1) multiplicity, several input 
variables to Boundary classes are used to form (i.e. 
compute) one argument variable to a function in a 
Control class. In a One to One (1-1) multiplicity, one 
input variable to a Boundary class becomes one 
argument variable to a Control method. In a Many to 
Many (N-M) multiplicity, many input variables to 
Boundary classes contribute to many argument 
variables. In a Many or One to zero (1-N..0) 
multiplicity, one or more variables do not contribute 
to any argument variable to the Control class. In a 
One to Many (1-M) multiplicity there is one input 
variable to the GUI that contributes to many 
arguments of methods in Control classes. In a Zero to 
one or Many (0-1..M) multiplicity, there is no input 
variable to the GUI but one or many arguments to 
Control methods.  
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3.3 Fault Model 

A fault model assists practitioners during test case 
generation, and data or control flow analysis (Rajput, 
2013), and allows one to qualitatively assess fault 
detection of a specific verification technique (Harris, 
2003). We explain some faults that we expect to 
discover with our approach. They relate to the 
functional behaviour of the UI part of the software, 
specifically how the UI transmits data from the user 
to Control classes; non-functional properties of the 
UI are out of our scope. 

The first type of faults in our fault model is an 
unexpected change of value of an input variable; the 
GUI changes the value entered by the user before 
passing it to a Control class when it should not; the 
input variable (integer, Boolean, String) is expected 
to equal the argument variable. The second type of 
faults is incorrect change in the syntax of the input. 
For example, the developer may split one string 
entered by the user (input variable) and pass it to two 
methods in the Control when it should be passed as 
two argument values to only one method. This type 
of faults is not a broader description of the first type 
because here we have a mathematical function (that 
is not an equality) that describes the output as a 
function of the input. The third type of faults is that 
the values of two input variables get swapped with 
each other. We consider this kind of faults as a 
combination of two faults belonging to the second 
type. 

3.4 Solution 

Our solution is to study such input-output relations to 
make sure that the GUI code receives the input 
provided by the user to the GUI classes and passes it 
to the Control classes without semantic change. We 
suggest to use static analysis techniques to achieve 
this goal. In essence, our solution is to statically 
verify that the UI code does indeed implement the 
ECB principle correctly. And we argue that from a 
functional point of view, if the UI satisfies this 
condition and functional system-level tests applied to 
the application logic (i.e. Control classes) pass, then 
we have functionally verified the entire GUI-based 
software. 

We have a similar handling for the different 
variable types. For each argument variable there must 
exist a mathematical function or expression that can 
express possible values of this variable as a function 
of one or more input variables. In the simplest case 
where an input variable is passed as is to a Control 
method, this mathematical function is an equality: the 

argument variable must equal the input variable. The 
next question that needs to be answered is: what is 
the mathematical expression, relating input variables 
and argument variables, and how this expression can 
be verified statically? 

One solution is to ask the designer to specify such 
expressions and rely on some static analysis 
technology to verify that this expression is indeed 
true on all execution paths in the code. This however 
puts some burden on the designer. An alternative can 
be to use some advanced static analysis such as 
abstract interpretation and let the analyzer discover 
expressions that relate argument variables and input 
variables; it is up to the designer or tester to then 
validate whether this expression is correct. Again, the 
solution puts some burden on an engineer. Given we 
are working on case studies written in Java, we can 
investigate the use of the Java Modeling Language 
(JML) and the Extended Static Checker (ESC) 
(Flanagan et al., 2013) for implementing the first 
solution and the use of Julia for implementing the 
second solution. Regardless of the technology being 
used, we can expect to be subject to some technical 
limitations, even though the field of static analysis 
has made tremendous progress in the last decade. As 
discussed below, we opted for the first solution. 

3.5 Implementation of Our Solution 

Our solution is to rely on programmer-defined JML 
expressions that describe how argument variables 
ought to relate to input variables and then ask ESC to 
statically verify whether such expressions always 
hold. Because we are interested in argument 
variables, that is variables that are passed to methods 
of Control classes, these expressions are necessarily 
pre-conditions. Let us assume that the GUI is 
supposed to present a numerical input as is to a 
Control class. With a static checker, we can check if 
there is a difference in value, as specified in a JML 
precondition, between the input variable to the GUI 
and the argument passed to the Control class. In case 
the static checker reports that there is a violation of 
the precondition due to a difference between the 
input and the output of the GUI, then the static 
checker has revealed a fault. If the static checker 
does not report any violation (difference), then there 
is no fault. This way, the static checker is used for 
fault detection in the GUI. In order to specify such 
preconditions, a few additional questions must be 
answered: (1) Where to place the pre-condition? (2) 
how to make the input variable (input by the user) 
available/visible to that precondition so that the 
mathematical expression specifying the input-output 
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relation can be specified as a JML expression? Since 
the mathematical expression/function specifies a 
relation involving an argument variable, the 
precondition of course specifies the Control class 
method that receives that argument variable as input. 
This method can either be a constructor or a 
“regular” method of the Control class. 

Given that we assume we work on a GUI-based 
software built with the Java programming language, 
we must abide to the visibility rules of variables and 
attributes in Java when answering the second 
question. Since the input variable is defined in a 
Boundary class, and Boundary and Control classes 
are different, since this input variable may (likely) be 
a local variable in a Boundary class method, this 
variable is not visible to a precondition in a Control 
class method. We therefore add public static 
variables in the GUI classes to hold the value entered 
by the user (the input variables). Then, we must 
search for places in the Boundary classes where calls 
(methods or constructors) are made to Control 
classes, analyze which (local) variables in the calling 
methods are used as arguments in those calls, and 
identify which user inputs are used to set values of 
those arguments. This is a standard data flow 
problem that can be easily solved with a tool such as 
Atlas (Kothari, 2017). Once this is done, we set the 
value of the added static variable to the variable (user 
input) that has been identified. 

3.6 A Simple Example 

We use a simple, synthetic software to explain the 
solution described above. The software was designed 
using the ECB design principle. The Entity class is 
MyTextEntity, which has a functionality for 
creating some text files on the hard disk and printing 
text on the standard output stream. TextControl is 
a Control class that receives inputs from the 
Boundary class and makes a call to the Entity class. 
RadioComponent, CopyTextComponent and 
MainExeFrame are Boundary classes which receive 
the input from the user, process it and pass it to the 
Control class. 
 

 

Figure 1: The main window of simple software after 
typing the input and clicking the copy button. 

Figure 1 shows the main window of the software. 
When the user enters an input, using the text field, 
and presses the copy button, the software shows the 
result at the bottom of the window with the user-
selected colour (radio buttons). The figure illustrates 
a fault: the software added 1 to the input value, which 
should have been 1, not 2. 

Figure 2 shows a sample of the code from class 
CopyTextComponent, specifically an excerpt of the 
actionPerformed() method of the 
CopyTextComponent instance. This instance 
obtains a value from the GUI (line 1) and stores it in 
the userInput variable. Then (line 2), it declares a 
variable called callArgument. The callArgument 
variable takes the value of userInput and adds the 
value 1 to it: this is the fault.  Then it passes it to the 
Control class instance: call to the constructor of the 
TextControl class. Then, the call proceeds to the 
method printCopyMessage(). 

 
1 int userInput=Integer.parseInt( 

inputExpression.getText());  
// get the user input from the text field 

2 int callArgument = userInput + 1;  
// process the entered value by adding 1. 

3 TextControl t = new 
TextControl(Integer.toString(callArgumen
t)); 
// passing the value to a Control  

4 t.printCopyMessage(evt.toString(),0); 

Figure 2: Excerpt of the GUI code. 

In this example, we need to make sure that the 
input given to the TextControl instance is the right 
input–in this case, the string value received from the 
text field. The code converts the string to an integer 
and increases the value by one. The code converts the 
value (after the increment) to a string and passes the 
string to the Control class instance. Our procedure, 
discussed earlier, is to identify the call site to the 
Control class (here it is line 3 in Figure 2), and 
identify the input variable that leads to an argument 
used in the call site (here it is variable userInput 
that receives a value at line 1 in Figure 2). As 
mentioned earlier this can be facilitated by the use of 
a tool such as Atlas. Our procedure is then to add a 
public static variable to record the input value: here 
we record the value received by userInput. Figure 3 
shows the modified CopyTextComponent. We 
define a public static variable in class 
CopyTextComponent called 
verification_variable. (Code showing this 
addition omitted.) The variable is used to store the 
value entered by the user: the same value as 
userInput. We also add a local variable 
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output_variable (line 5) to contain the data that 
is passed to the Control class. Adding this local 
variable will help ESC analyze the code. Our 
experiment shows that without such a local variable 
ESC does not evaluate this part of code. 

 
1 Sting s = inputExpression.getText(); 
2 int userInput=Integer.parseInt(s);  

// get the user input from the text 
field 

3 int callArgument = userInput + 1;  
// process the entered value by adding 
1. 

4 verfication_variable = s; 
5 output_variable= 

Integer.toString(callArgument);   
6 TextControl t = new 

TextControl(output_variable); 
// passing the value to a Control  

7 t.printCopyMessage(evt.toString(),0); 

Figure 3: Modified Boundary code as per our solution. 

The next step of our solution is to add a 
precondition before the constructor of TextControl 
since it is the constructor that is called in the 
Boundary class (CopyTextComponent): Figure 4.  

1 /* process equality check on the entered 
value and value that reach the 
Control. 

2 // @ requires s == 
CopyTextComponent.verificaton_variable 

3 */ 
4 TextControl(String s){ ... 

Figure 4: The adding of a precondition in the source code. 

ParseException{CopyTextComponent.java:109: 
Warning: Precondition possibly not 
established (Pre) 
TextControl t = new 
TextControl(output_variable); 
^ 
Associated declaration is ".\ 
CopyTextComponent.java", line 16, col 6: 
    @ requires s == 
CopyTextComponent.verificaton_variable; 
      ^ 
Execution trace information: 
    Executed then branch in 
"CopyTextComponent.java", line 93, col 55. 

Figure 5: Excerpt of the file generated by ESC. 

The precondition specifies that it is required, 
when entering the Control class constructor, that the 
value of argument s (the output variable) equals the 
value of the public static attribute value we added to 
record the input variable. Then, ESC, when 
analyzing the modified code, generates an output 
file: excerpt in Figure 5. ESC reports a violation of 

the precondition. (Note that line numbers reported 
by ESC in the figure do not match the lines numbers 
we have in the figures of this paper; this is because 
we re-numbered the lines in the paper to simplify the 
discussion.) 

4 VALIDATION 

We first discuss validation with synthetic examples 
in light of the input-output relations, and their 
multiplicities, that we discussed earlier, and then 
validation with a real, though simple, GUI-based 
software in terms of fault detection. 

4.1 Applicability 

In this section, we validate the applicability of our 
solution on several types of multiplicity. Hence we 
argue that our approach will work on those scenarios. 
Consequently, we hope that such validation shows 
the capability to generalize our results. We use a 
synthetic case study to demonstrate how our 
verification technique is applicable for several 
multiplicities of the input-output relation. We use 
faulty preconditions instead of generating faults in 
the software. There are three buttons in this case 
study, each of them shows one possible relation 
between the input to the GUI and the output to the 
logic. The first button simulates the first type of 
multiplicities which is 1-1. Clicking on that button 
shows another window where the user can enter a 
text and clicks a button. When the user enters "String 
Input" and clicks the button, the GUI takes the input 
entered by the user in the text field and passes it to 
the Control. The GUI has a label that shows a text 
"String passed as is to control" at the bottom of the 
window. To verify this 1-1 relation, we proceeded as 
described earlier (added static variable, added 
precondition): the precondition is an equality 
between two variables (the static variable of the 
Boundary class, the argument of the Control 
method). With this precondition, ESC does not 
complain. However, if we change the precondition 
(e.g., inequality instead of equality), thereby 
simulating a fault in the Boundary class, then ESC 
warns about a violation of the precondition. 

Figure 6 shows the UI of an example of 1-N 
relation and the corresponding JML precondition. In 
this example the UI receives an integer value as an 
input; based on the value of that integer, the software 
creates an array of elements. The values of those 
elements and their indexes appear on the output. The 
GUI shows the output. We use another example to 

On Graphical User Interface Verification

377



simulate a N-1 relation. In this synthetic example, the 
software receives several values as inputs. Then, it 
outputs the sum of those values. Similarly to the 
previous cases, we added static variables (for 
recording the values of input variables) and a JML 
precondition: the argument of the Control method 
should be the sum of inputs to the GUI. Details are 
not shown because of space constraints. We also 
simulated faults in the GUI with alternative JML 
preconditions, i.e., other than the correct one; each 
time ESC complained as it detected violations of the 
alternative preconditions whereas it was able to 
confirm the correct precondition was always 
satisfied. 

These examples show that our approach to verify 
the input-output relation between the UI (Boundary 
classes) and the application logic (Control classes) 
applies to several kinds of multiplicities. We think 
that the three multiplicities discussed above (1-1, 1-N 
and N-1) are the most common types of 
multiplicities. Hence, we believe that our solution 
will work on all other types of multiplicities 
discussed in section 3.2, though more studies to 
confirm this assertion are warranted. We think that 
this would help us to generalize our solution.  

4.2 Fault Detection 

 
15 /*@ public normal_behavior 
16    @ requires a + b + c == 3 + (3* 
OneToManyComponent.verification_user_input);
17 @*/ 
18 public OneToManyControl (int a, int b, 
int c) … 

Figure 6: JML code to verify the 1-N relation. 

We first discuss the software under test and then the 
experiment. Results are discussed last. Our software 
under test performs a number of computations on 
Boolean expressions provided by the user through a 
GUI. The Software Under Test (SUT) provides three 
main functionalities: computing and displaying the 
truth table of a Boolean expression, computing and 
displaying the Disjunctive Normal Form (DNF) of a 
Boolean expression, and deriving tests according to 

the variable negation testing strategy for a Boolean 
expression (Weyuker et al., 1994). Our case study 
has one main window with three buttons. Clicking on 
any of the buttons generates a child window to 
handle the corresponding functionality. The truth 
table window accepts a string representing a Boolean 
expression (text field) and generates its truth table 
upon request (Compute Truth Table button). 
The DNF Expression window computes (Compute 
DNF button) the disjunctive normal form of the 
Boolean expression provided in the top text field and 
displays the result in the bottom text area. In the third 
window the input must be provided as a series of 
terms of the DNF of a Boolean expression. The user 
must enter those terms in input text fields, one term 
per text field. 

First we formulated three preconditions for our 
case study because each functionality involves only 
one call to a Control class method. For each of these 
preconditions, we ran ESC twice: one time using a 
valid precondition and another time using a modified 
(incorrect) precondition. Hence, we simulate that 
ESC reports on issues when there are some (modified 
precondition) and is silent when there is no issue 
(original precondition). In our case study, there is one 
argument variable to one truth table Control class 
method, one argument variable to one DNF Control 
class method, and three or more argument variables 
(in fact it is an array) to one variable negation 
Control class method.  

For the truth table window, there is only one text 
input that is the Boolean expression. In this example, 
there is no intermediate variable between the GUI 
and the Control. In other words, the value is taken 
from the GUI and passed directly to the Control. In 
fact, this Control class is called by all three 
functionalities / user interfaces. Its precondition must 
reflect that. For the DNF component functionality, 
the situation is similar as we need to handle only one 
input in the GUI of the DNF. We proceeded similarly 
to the previous case: addition of a local variable, 
addition of public static variable, JML precondition 
checking the equality between the static variable and 
the argument of the constructor of the control class. 
As for the variable negation component, the situation 
is different as there are three inputs by default from 
the GUI and the user can add more inputs. The input-
output relation in this GUI is an example of a N-1 
input-output relation. The user inputs are used to 
create an array that is passed to the Control; each 
element in the array is a string coming from a text 
field. We need to define some verification (public 
static) variables. We should define those static 
variables at specific points of the code. We had to 
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make a few more code modifications for this third 
functionality compared to the previous cases. We 
defined two arrays; adding arrays is simply due to the 
fact that the data we need to record (input variables) 
is an array; in previous cases, the data was a simpler 
type. The first array is to store the verification 
variables. We pass the second array to the Control 
class. The original code passes an iterator of values 
to the Control class. In the precondition of the 
Control class, we have to inspect every item inside 
the iterator as a verification procedure. Since dealing 
with an iterator is not as easy as dealing with arrays 
in JML, we instead look for a place in the application 
logic code (Control) where the elements of the 
array/iterator can be checked. This does not happen 
in the constructor but in a method immediately called 
by the constructor. To perform the verification, we 
added an “abstract” method (empty body) and 
specified the required verification in JML as its 
precondition. 

For fault detection, similarly to the previous case, 
we asked ESC to verify correct and incorrect 
preconditions. ESC did not complain about all three 
valid preconditions and complained about all three 
invalid (incorrect) preconditions. Hence, we conclude 
that ESC is capable of fault detection. In our context 
ESC takes around 2 to 3 minutes to analyze the code. 
This is much less than the time consumed by 
GUITAR. GUITAR tests the underlying functionality 
only if we update the test cases with valid inputs and 
takes approximately 20 minutes to replay a test suite 
on the case study we used here regardless if it is 
updated or not (Alkhalid and Labiche, 2017). We 
therefore argue that the manual work of GUI 
functional system testing requires much more efforts 
than the manual work of our solution. For example, 
updating test cases with a valid input is a much more 
effort-consuming task than adding verification 
variables and preconditions to the code. 

5 CONCLUSION 

Recognizing that GUI testing in the sense of 
executing system level functional tests through the 
GUI is expensive and likely leads to redundant 
testing efforts, we investigate the use of static 
analysis to verify the GUI part of the GUI-based 
software. We describe the notion of input-output 
relation at the GUI level that is data flow 
relationships that exist between data provided by the 
user to the UI and data provided by UI to the 
application logic code. We use this notion of input-
output, describing various multiplicities of the 

relation, to structure the discussion of our solution 
(including a fault model). We then present an 
approach to statically verify how the GUI 
implements those relations, without testing. We 
implement the approach using the Extended Static 
Checker (ESC) that relies on Java Modeling 
Language preconditions that specify the input-output 
relations to be verified. In essence our approach 
assumes the UI is designed by following the Entity-
Control-Boundary (ECB) design principle: class 
responsibilities lead to Entity classes (hold the data, 
the state of the software), Boundary classes 
(interacting with actors), and Control classes 
(realizing use cases); Boundary classes may change 
the syntax of data they collect from actors and pass to 
Control but not their semantics. The solution is a 
verification that the ECB principle holds: the JML 
preconditions being checked by ESC specify what it 
means for the UI to not change the semantics of the 
data. 

Our solution overcomes other solutions of GUI 
functional system testing, at least in principle (we 
have not made any experimental comparisons). We 
made steps towards the validation of our solution. In 
the evaluation of our work, instead of a faulty 
software, we decided to use faulty preconditions. 
Hence, we run the ESC twice, once on a correct 
precondition and another time on an incorrect one. In 
doing so, we argue we simulate a fault in the code. 
Our results, though limited by the size of the GUI-
based software we used, as well as some limitations 
of ESC, looks encouraging. 

Our future work includes the evaluation of our 
solution on other case studies, as well as the use of 
more advanced static checkers than ESC that would 
overcome ESC’s limitations. Theoretical analysis and 
experimental evaluation should also validate whether 
mutating preconditions actually simulates faults in 
the functional behaviour of the UI code in our 
context. 
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