
Deconstructing the Refactoring Process

from a Problem-solving and Decision-making Perspective

Thorsten Haendler1 and Josef Frysak2

1Institute for Information Systems and New Media, WU Vienna, Austria
2Institute of Business Informatics - Communications Engineering, JKU Linz, Austria

Keywords: Software Refactoring, Decision-making Process, Decision Problems, Refactoring Process Model, Managing

Technical Debt.

Abstract: Refactoring is the process of improving a software system’s internal technical quality by modifying and re-

structuring a system’s source code without changing its external behavior. Manual identification and asses-

sment of refactoring candidates as well as planning and performing the refactoring steps are complex and

tedious tasks, for which several tools and techniques for automation and decision support have been propo-

sed in recent years. Despite these advances, refactoring is still a neglected part of software engineering in

practice, which is attributed to several barriers that prevent software practitioners from refactoring. In this

paper, we present an approach for deconstructing the refactoring process into decision-problems and corre-

sponding decision-making sub-processes. Within this, we pursue the question of whether and how a theoretical

perspective can contribute to better understand the difficulties in the refactoring process (barriers) and to help

improving the refactoring support techniques (enablers). For this purpose, we follow a deductive reasoning

approach by applying concepts from decision-making research to deconstruct the refactoring process. As a

result, we present a process model, which integrates primary decision problems and corresponding decision-

making sub-processes in refactoring. Based on this process model, software companies can gain a better

understanding of decision-making in the refactoring process. We finally discuss the applied procedure and

reflect on limitations and potential of applying such a theoretical perspective.

1 INTRODUCTION

Refactoring is the process of improving a system’s in-

ternal technical quality by modifying and restructu-

ring a system’s source code without changing its ex-

ternal behavior (Fowler, 2009). Manual identification

and assessment of refactoring candidates (e.g., bad

smells) as well as planning and performing the refac-

toring steps are complex and tedious tasks, for which

several tools and techniques for automation and deci-

sion support have been proposed in recent years; such

as smell detectors, refactoring-recommendation tools

and quality-analyzer tools, see, e.g., (Fontana et al.,

2012; Fernandes et al., 2016; Campbell and Papape-

trou, 2013).

However, despite these advances, refactoring still

seems to be a neglected part of software engineer-

ing. A recent survey (Tempero et al., 2017) conducted

with 3,785 software developers in software projects

using object-oriented concepts shows that practitio-

ners mostly understand the value of refactoring, but

are often prevented from doing it. The study iden-

tified seven main factors (called barriers) that affect

the practitioners’ decision of whether or not refactor.

In particular, these barriers to refactoring are catego-

rized into the following seven categories: missing re-

sources, the risk to introduce an error, the difficulty

to perform the refactoring, an unclear ROI, technical

issues, constraints set by the management, and a lack

of appropriate tools support (Tempero et al., 2017).

The identified barriers affect decision makers on

different organizational levels: besides decisions on

the operational level (e.g., the difficulty to perform

the refactoring), there are also decisions located on

management level (e.g., ROI); few are on both le-

vels and interrelated (e.g., the allocation of resour-

ces). Due to the management issues addressed by

the barriers and due to the relevance of technical debt

for software projects (Kruchten et al., 2012), we sug-

gest a more general problem-solving and decision-

making perspective on software refactoring. In this

paper, decision-making is understood as a sub-area

Haendler, T. and Frysak, J.
Deconstructing the Refactoring Process from a Problem-solving and Decision-making Perspective.
DOI: 10.5220/0006915903630372
In Proceedings of the 13th International Conference on Software Technologies (ICSOFT 2018), pages 363-372
ISBN: 978-989-758-320-9
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

363

of problem-solving, which requires the selection of a

single one of at least two alternatives, that is, mutually

exclusive actions. These actions are designed to solve

a complex problem by achieving one or more goals.

However, an option may be to take no action at all, or

to postpone the decision and to search for more infor-

mation. In the case of refactoring, however, the latter

alternative measures are likely to increase the techni-

cal debt. On the other side, the resources freed up can

then be used in other areas of software development

and maintenance. Hence, the dilemma, whether or not

to engage in refactoring, and which refactorings to ap-

ply in order to maximize the benefits arising from the

expenditure of resources, is a key aspect of decision-

making in refactoring.

In this paper, we propose a theory-driven appro-

ach for deconstructing the refactoring process into

decision-making steps and for investigating the cha-

racter of the included decision problems. Research

in decision-making provides multiple concepts that

are very promising for re-structuring the refactoring

process in order to better understand the included dif-

ficulties. As a result, we propose a first version of

a process model for decision-making in software re-

factoring (see Fig. 2) which can help software practi-

tioners in better understanding the dependencies be-

tween refactoring activities as well as between the

different decision-maker levels. This process model

requires further empirical evaluation, which will be

approached in the next step. However, we illustrate

by example that our process model already can help

in understanding refactoring difficulties by allocating

refactoring barriers and support techniques to corre-

sponding affected and addressed process steps.

The remainder of this paper is structured as fol-

lows. In Section 2, we apply a deductive methodo-

logy for deconstructing the refactoring process into

process phases and decision problems. In Section 3,

we present as a result our process model for decision-

making in software refactoring, which reflects on

three primary decision problems and corresponding

sub-processes. Section 4 illustrates the applicability

of the process model by allocating refactoring barriers

and support techniques to process steps. In Section 5,

we discuss the performed procedure, reflect shortly on

related research and describe limitations and potential

of this approach. Section 6 concludes the paper.

2 DECONSTRUCTING

REFACTORING

In this paper, we aim at deconstructing the decision-

making process for refactoring. By deconstruction,

we understand the identification of individual steps/-

tasks, characteristics of decision problems, decision-

makers involved as well as the dependencies between

the steps in the refactoring process from the per-

spective of problem solving and decision-making. A

result of this procedure is an integrated process model

which reflects on these aspects and aims at helping

better understand decision-making in refactoring, see

Fig. 2. For this reason, we apply deductive reasoning,

also known as top-down logic. The reasoning starts

with stating two or more (often theory-based) linked

premises which lead to a new hypothesis or conclu-

sion (syllogism), see, e.g., (Evans et al., 1993). In our

case, we investigate whether deducing concepts and

classification schemes from general decision-making

research to the refactoring process can help better

understanding the difficulties in refactoring. Accor-

dingly, the following syllogism was applied:

• major premise: decision-making processes can

be structured into certain phases/steps, see, e.g.,

(Simon, 1977).

• minor premise: refactoring is a decision-making

process including multiple decision problems, see,

e.g., (Leppänen et al., 2015).

Following on these premises, the hypothesis can be

concluded that the refactoring process can be struc-

tured into the phases or steps of a decision-making

process for solving decision problems. In a broa-

der sense, this hypothesis also raises the questions

to which extent refactoring can be understood as a

decision-making process and which decision-making

problems are included? In order to verify this hypot-

hesis and answer these questions, we will describe in

the following the main concepts on process models

and decision problems from refactoring on the one

hand and from a decision-making perspective on the

other.

2.1 PROCESS MODELS

Process Models for Refactoring. For refactoring

only very few process models are established. Since

refactoring can be understood as a specific mainte-

nance activity aiming at improving maintainability of

the software system (in terms of a preventive main-

tenance), we also included process models for soft-

ware maintenance, of which several are established,

for instance, (Boehm et al., 1981; Osborne, 1987; Kit-

chenham et al., 1999). Throughout all these variants,

the process is driven by the occurrence of a problem

(e.g. triggered by a change request or a problem re-

port). Very similarly most models consist of the three

key phases comprehension (or investigation), (code)

modification and evaluation. In all mentioned mo-

ICSOFT 2018 - 13th International Conference on Software Technologies

364

Problem
recognition

Task
evaluation

Strategy
selection

Situation
analysis

Objective
setting

Search for
alternatives

Evaluation of
alternatives

Making the
decision

Decision review

Problem
recognition

Problem
de�nition

Design Choice Implementation Evaluation

Change request /
problem report

Modi�cation
Evaluation /
quality assessm.

Pain zone Situation
analysis

Refactoring planning Implementation Follow up

Problem
recognition

Beach and Mitchell,
1978

Te'eni and Ginzberg,
1991

Simon, 1997

Kitchenham et al.,
1999

Leppänen et al., 2015

Problem analysis Decision-Making
Implemen-
tation

Evaluation

G
e
n

e
r
ic

 d
e
c
is

io
n

-m
a
k
in

g

p
r
o
c
e
s
s
 m

o
d

e
ls

R
e
fa

c
to

r
in

g

p
r
o
c
e
s
s
 m

o
d

e
ls

Choice
Information
processing

Strategy
implem.

Simon, 1977 Intelligence Design Choice Decision review

p1 p2 p3

Investigation

Figure 1: Mapping decision-making process models (top) (Simon, 1977; Beach and Mitchell, 1978; Te’eni and Ginzberg,
1991; Simon, 1997) to refactoring process models (bottom) (Kitchenham et al., 1999; Leppänen et al., 2015).

dels only very little focus is set on decision-problems

and corresponding steps of decision-making. In par-

ticular, the model in (Kitchenham et al., 1999) des-

cribes that after the investigation phase, the mainte-

nance manager must decide whether or not to per-

form the modification. A recent example for a pro-

cess model explicitly for software refactoring is given

in (Leppänen et al., 2015). The model represents the

result of a case study with software developers from

three Finnish software companies on their daily re-

factoring practices. The resulting decision-making

process framework consists of the key phases pain

zone (e.g., triggered by a technical debt, poor design

or new requirements), situation analysis, refactoring

planning (including discussions on requirements and

possible solutions as well as task allocation), imple-

mentation (i.e. the actual code modification), and fi-

nally follow up, which represents the evaluation of the

refactoring in the broadest sense. The process steps of

Kitchenham et al. and Leppnen et al. are depicted in

Fig. 1 (bottom) and are contrasted by process models

for decision-making (top in Fig. 1; see below).

Decision-making Process Models in General. The

probably most well known approach to separate

decision-making processes into single phases from

the early days of decision-making research is the four

phases approach of Simon (Simon, 1977; Pomerol

and Adam, 2004), which in particular comprises the

phases intelligence, design, choice and review. Du-

ring the intelligence phase, the environment is obser-

ved to detect cues indicating problems, which potenti-

ally initiate a decision. Once such cues are identified,

the underlying problem is then analyzed in more de-

tail by collecting additional information on that pro-

blem. During design phase, alternative solutions for

the previously identified problem are derived. At

this phase, gathering further information is an inte-

gral part as well. Now, however, information search

aims at supporting the generation of alternative so-

lutions to the previously identified problem. In the

choice phase, the alternatives are then evaluated ac-

cording to various criteria. The end of this phase is

usually marked by the selection of one of the alterna-

tives. With the solution selected, deemed most ade-

quate to deal with the detected decision problem, the

solution is finally implemented and the outcomes ob-

served. Reviewing the observed outcomes in relation

to the ones estimated during decision-making then al-

lows to determine the effectiveness and accuracy of

the decision-making strategy for the particular case.

Still high in popularity in research community,

this model was expanded by many authors, see, e.g.,

(Asemi et al., 2011; Te’eni and Ginzberg, 1991;

Courtney, 2001; Huber, 1980; Mora et al., 2005), who

added additional phases or broke down the process

into more detail phases. Te’eni and Ginzberg (Te’eni

and Ginzberg, 1991), for instance, while agreeing on

single design and choice phases, split the intelligence

phase into a problem recognition and problem defi-

nition phase, and the review phase into a phase for

implementing the solution and one for evaluating the

outcomes. In addition, in their model they suggest

that this process is repeated iteratively.

Later, Simon also published an extended version

of his phase framework, see (Asemi et al., 2011).

Within this framework, the review phase is still po-

sitioned at the end of the process and the search for

alternatives phase corresponds to the design phase in

the small version. The intelligence phase, however,

has been replaced by a phase for situation analysis

and a subsequent phase, in which the decision goals

and criteria are in the focus. Furthermore, instead of

where the choice phase was situated, the process is di-

vided into a phase for evaluating alternatives and the

final decision-making phase.

From a slightly different perspective, in their

approach, Beach and Mitchell (Beach and Mit-

Deconstructing the Refactoring Process from a Problem-solving and Decision-making Perspective

365

chell, 1978) describe ”a typical model of individual

decision-making” to explore how a single decision

maker adapts his cognitive information processing to

different decision situations. This model was added,

as it shows how people identify a problem, evaluate

the problem, and then choose an appropriate decision-

making strategy based on that assessment. Once a de-

cision strategy deemed suitable for the decision pro-

blem has been selected, the information processing

including the search for and evaluation of information

is started in a further step. This step is then followed

by the implementation of the chosen decision strategy

and finally the selection of the best solution.

The process of Beach and Mitchel (top) Te’eni and

Ginzberg (second), and the latest version by Simon

(third) are presented in parallel in Fig. 1.

Findings. At the first glance, the mapping between

of the generic decision-making models and the pro-

cess models for refactoring provides some obvious

similarities, since, at a high level, the refactoring

process (e.g., the one by (Leppänen et al., 2015))

can be fitted into the five phases of which the first

two are problem-oriented: problem recognition (pain

zone) and problem analysis (situation analysis); the

third and fourth are decision-oriented: the actual

decision-making (refactoring planning) and decision

implementation (performing the refactoring, i.e. the

actual code implementation); and finally evaluation

(in terms of an optional follow up). On a second

view, we also identify some differences. Comparing

the amount of steps described by generic decision-

making approaches to the ones of refactoring, one

can see that especially the phases of problem analy-

sis and decision-making are more sophisticated in the

area of generic decision-making. Moreover, the gene-

ric approaches presuppose that only one major deci-

sion problem is in center of the decision-making pro-

cess. For the refactoring process, this would conclude

that refactoring planning addresses the main refacto-

ring decision problem, i.e. for example the identifi-

cation, comparison and selection of refactoring paths.

This obviously contradicts to the barriers observed in

(Tempero et al., 2017) (see above). The multitude of

barriers and the different organizational levels invol-

ved in the process suggest that there are several deci-

sion problems included in the refactoring process.1

1In Section 3, we propose a process model for selected
decision-making aspects in refactoring which also includes
the findings of 2.2.

2.2 Decision Problems

Table 1: Dimensions for characterizing decision problems;
dimension (1-9) are adapted from (Grünig and Kühn, 2013),
dimension (10) from (Gorry and Morton, 1989).

Dimension Characteristics

(1) Complexity Simple Complex

(2) Structuredness Well-structured Ill-structured

(3) Solution space Choice problem Design problem

(4) Framing Threat problem Opportunity problem

(5) Interrelatedness Independent decision

problem

Decision problem in a

decision sequence

(6) Problem level Original decision pro-

blem

Meta-problem (Sub-

problem)

(7) Actor type Individual Collective (Group)

(8) Goals/Criteria Single Multiple

(9) Certainty levels Decisions

under certainty

Decisions under

risk

Decisions un-

der uncertainty

(10) Hierarchy level Operational

(control)

Management

(control)

Strategy (plan-

ning)

Decision Problems in Refactoring. Independent

from the process models discussed in the previ-

ous section, multiple decision problems (and sub-

problems) in refactoring are addressed by research li-

terature, see, e.g., (Fernández-Sánchez et al., 2015;

Ribeiro et al., 2016) and Section 4. For the purpose

of this paper, we focus on the following three pro-

blem areas, which can be located in the process-model

mapping in Fig. 2.1 and should be answered after the

corresponding phase:

1. Management of Technical Debt (TD) (at manage-

ment level) with the question of Whether (and

when) to refactor?, see p1© in Fig. 1 and, e.g.,

(Kruchten et al., 2012).

2. Detection and assessment of refactoring candida-

tes with the question of What to refactor (first)?,

see p2© and, e.g., (Fowler, 2009; Ribeiro et al.,

2016).

3. Refactoring planning and performing the actual

refactoring steps with the question of How to re-

factor?, see p3© and, e.g., (Fowler, 2009; Suryana-

rayana et al., 2014).

Decision Problems in General. Decision-making

demands for choosing a single out of at least two al-

ternative actions. The action is necessary to solve the

problem of achieving one or more objectives. In some

cases, like refactoring, it may also be an option to take

no action at all or to postpone fixing the decision and

continue searching for more information. To classify

decision-making problems, a variety of characteris-

tics have been identified. In (Grünig and Kühn, 2013),

nine important dimensions of characteristics are dis-

tinguished, which are summarized in Table 1 (1-9):

First, a decision-making problem may be percei-

ved either easy or complex, depending on various fac-

tors such as the number of information cues or the

familiarity of the decision-maker with the particular

task (Liu and Li, 2012).

ICSOFT 2018 - 13th International Conference on Software Technologies

366

Table 2: Phases of decision-making with relevant process input and output as well as characteristics for three selected key
decision problems in refactoring.

Dimension Whether (and when) to refactor? What to refactor (first)? How to refactor?

Problem recognition How to identify/measure technical debt? How to review the system? How to identify options?

Problem analysis How to analyze the problem context? How to assess the refactoring candidates? How to compare options?

Decision-making How to plan resource? How to prioritize a refactoring candidate? How to plan refactoring steps?

Decision implementation How to allocate resources? How to select a candidate? How to perform the modification?

Evaluation How o measure ROI? How to evaluate the effects of refactoring re-

garding software design?

How to evaluate the effects of the refactoring

regarding software behavior?

Process input Software project Resources (time frame, tools, developers

etc.)

Resources (time frame, tools, developers

etc.), refactoring candidates

Process output Allocated resources (down) List of candidates (down), Refactored sy-

stem with intended software design (up)

Refactored system with correct behavior

(up)

Information needs Budget, release plan, project context and

state (condensed information)

Rules for candidate identification, prioritiza-

tion paradigm (detailed information)

Rules for performing refactorings (detailed

information)

(1) Complexity Complex

(2) Structuredness Partly ill-structured, partly well-structured (programmable, see Section 4.2)

(3) Solution space Choice (by having the option to allocate re-

sources or not) Design (by deciding to which

extent ressources shall be allocated)

Design (regarding the identification/asses-

sment of candidates)

Choice (by having multiple distinct refacto-

ring options)

(4) Framing Probably mainly perceived as a threat problem, see, e.g., (Tempero et al., 2017).

(5) Interrelatedness to what to refactor? (succeeding) to whether to refactor (preceding)? (prece-

ding) and how to refactor(succeeding)?

to what to refactor? (preceding)

(6) Associated sub-problems Exemplary sub-problems for each decision problem are stated above as phases of decision-making.

(7) Actor type (Project) manager(s) Software architect(s) and developer(s) (in

general: the software design expert)

Software developer(s)

(8) Goals/criteria Multicriteria

(9) Certainty level Decision under uncertainty (Decision under

risk, if probability of increase of technical

debt is measurable or can be estimated)

Decision under uncertainty (Decision under

risk, if probability of introducing new design

flaws can be measured or estimated)

Decision under uncertainty (Decision under

risk, if chances of refactoring success can

be estimated)

(10) Hierarchy level Management Operational Operational

Second, a decision-making problem can be either

well- or ill-structured. Ill-structured decision-making

problems are usually novel problems for which no

predefined methods are known to handle them and

which often possesses no single, correct solution.

Third, the solution space may either consist of a

set of immutable, predefined alternatives to choose

from, or may require the decision maker to design the

alternatives within a continuous solution space (Yoon

and Hwang, 1995).

Fourth, depending on the situation and the view

point adopted by the decision maker, a decision may

either be recognized as a threat of loss or an opportu-

nity to gain an advantage.

Fifth, a decision-making problem can appear lar-

gely independent of other decision-making problems

(static), or, as part of a sequence of decisions, can

have dependencies on other decisions, as described

for dynamic decisions (Atkins et al., 2002).

Sixth, the decision-making problem may repre-

sent the originating problem, or may represent a meta-

problem, such as how much information to collect for

a decision (Grünig and Kühn, 2013).

Seventh, decision-making also heavily depends

on the number of stakeholders involved. While

some decision-making problems allow decisions to be

made autocratically by one person, in other decision-

making problems multiple people contribute to the

decision-making process, and can thereby influence

the decision taken.

Eight, in some decision-making problems, the de-

cision maker only needs to focus on a single objective

or goal. However, in practice, a decision-making pro-

blem often requires to pursue multiple objectives or

goals, which means that several criteria must be con-

sidered at the same time in the decision-making pro-

cess (Yoon and Hwang, 1995).

Last but not least, decision-making problems can

be distinguished depending to the predictiveness of

their outcomes. In decisions under certainty, the out-

comes are known and believed to be certain. For deci-

sions under risk, at least the probability of their occur-

rence is known. In uncertainty decisions, on the other

hand, there are no indications as to whether these will

occur as predicted.

Moreover, from a business perspective, decision-

making problems can also be classified by the level

of management activities. According to the frame-

work of (Gorry and Morton, 1989), three levels can

be distinguished in this context: operational control,

management control and strategic planning, see (10)

in Tab. 1.

Findings. Based on the characteristics of decision

problems in general (stated in Table 1) and the proce-

dural aspects from Sect. 2.1, we characterize in the

following the three selected problem areas in refac-

toring. Table 2 summarizes the findings for the exa-

mined decision problems regarding the identified sub-

process phases, sub-process in- and output as well as

the problem characteristics.

Deconstructing the Refactoring Process from a Problem-solving and Decision-making Perspective

367

Problem recognition Problem analysis Decision-making Implementation Evaluation

Monitor software
project

M
a
n

a
g

e
m

e
n

t
le

v
e
l

O
p

e
r
a
ti

o
n

a
l
le

v
e
l

Plan resources

Candidates

 Whether (and when) to refactor?

What to refactor (first)?

How to refactor?

Allocate resources

Review system for
design problems
(smell candidates)

Select candidates

Identify refactoring
options for
candidate

Compare options, e.g.,
regarding effort and
site effects

Perform actual code
modi�cation
(refactoring steps)

Evaluate effects in
terms of system
behavior

Evaluate effects in
terms of software
design

[available]

[else]

[candidates
 identi�ed]

[else]

[true positives
 exist] prioritized

candidates

refactoring options

refactoring options

refactoring option

refactoring option

refactoring steps

refactoring steps

modi�ed source code

modi�ed source code

paradigm

assessed
candidates

candidates

assessed
candidates

candidates

resources

Software project

[feasible]

[refactoring steps too di�cult]

project context

project state

project state

availability of
resources

ressources

refactored system
with correct
behavior

refactored system with
intended sw. design

ROI[else]
[feasible]

prioritized
candidates

candidates

S
o
ft

w
a
r
e
 p

r
o
je

c
t

S
o
ft

w
a
r
e
 d

e
s
ig

n

&
 s

o
u

r
c
e
 c

o
d

e
S

o
u

r
c
e
 c

o
d

e

A1
A3 A4

B1
B5B4

C1 C2
C4

C5

[unintended effects]

[more candidates]
Refactored system with correct behavior

Refactored system with intended sw. design

ROI

A1C1 A3 A2
step addressed by refactoring decision support
not inlcuding a refactoring barrier

step including a refactoring barrier
not addressed by refactoring decision support

step addressed by refactoring decision support
including a refactoring barrier

step neither addr. by refactoring decision support
nor including a refactoring barrier

c
o
n

tr
o
l

�

o
w

in
fo

r
m

a
ti

o
n

 f
e
e
d

b
a
c
k
 �

o
w

[else]

[ongoing project monitoring]

[else]

[else]

[else]

[unintended effects or search for more design problems]

[else]

[more candidates]

Resources

[else]

[else]

Select option and plan
refactoring steps

C3

Resources

Assess the candidates
(and discard false
 positives)

B2

Analyze project
context

A2

[slow development progress
 or critical technical debt i.a.]

M���	re ROI
(and controlling)

A5

Prioritize candidates
according paradigm

B3

Figure 2: Proposed refactoring process model as result of the applied analysis. The model integrates the decision-making
sub-processes for primary decision problems in refactoring: whether (and when) to refactor? (top), what to refactor (first)?
(center), and How to refactor? (bottom). Each sub-process is ordered by key phases (horizontal) and by the organizational
level of decision makers and context (vertical), for details on the model, see Section 3; for details on the allocation of barriers
and support techniques to process steps, see Section 4.

3 A PROCESS MODEL FOR

DECISION-MAKING IN

REFACTORING

Fig. 2 depicts the proposed process model resulting

from deconstructing the refactoring process and from

analyzing the characteristics of the selected decision

problems (see Table 2). It represents an integrated

perspective on three interrelated sub-processes, each

focusing on one decision problem. Each decision-

making process is structured by the five key phases

of problem recognition, problem analysis, decision-

making, (decision) implementation, and (decision)

evaluation (as identified in Section 2.1) and specified

in terms of a UML2 activity diagram (Object Mana-

gement Group, 2015).

Organizational Levels and Communication Flows.

The sub-processes are located on different organi-

zational levels (i.e., management, operational) and

focus on different aspects of the software project

(i.e., project management, software design/architec-

ture, and source code; as depicted left-hand of the

sub-processes). The interrelations between the levels

are expressed via different kinds of flows:

• The control flow from management to organizati-

onal level is represented by inputs for the lower le-

vels in terms of sources (e.g., time frame, people,

tools; top-down) and (refactoring) candidates.

• Vice versa, the information feedback flow is repre-

sented by reporting the results of the evaluation to

the specific higher level (bottom-up).

This communication between the three levels corre-

sponds to the (aggregated) information needs of each

level described by (Gorry and Morton, 1989).

Refactoring Starting Points. Indicated by the

three start nodes in Fig. 2, the process can be started

at each of the three levels, be it on the Management

level or at both Operational levels.

• Following a top-down approach, the process may

be triggered by a management decision e.g., dri-

ven by noticing a slow development progress

(whether to refactor?).

• Through allocation of corresponding resour-

ces, the manager triggers the underlying sub-

process(es). The second sub-process, located at

the center of Fig. 2, may also be started directly

by a software architect or a developer who detects

design flaws while reviewing the system’s soft-

ICSOFT 2018 - 13th International Conference on Software Technologies

368

ware design (inside-out, what to refactor (first)?;

provided that the necessary resources have been

formerly allocated).

• Also the bottom sub-process how to refactor? can

be started based on a previously collected list of

candidates. This way a software developer who

is actually developing can process a list of refac-

toring candidates that has been collected before,

e.g., via an issue tracker such as Jira.

This flexibility in triggering the refactoring process

corresponds to (Fowler, 2009) who states that causes

and starting points for refactoring source code can be

very diverse. Moreover, all sub-processes are cyclic

and can repeat, e.g. for multiple candidates or in case

the evaluations indicate an error. From a practical per-

spective, these steps may not all be performed cons-

ciously. For example, they may be skipped intenti-

onally or may be done intuitively, see, e.g., (Kahne-

man, 2011).

An overview of existing support techniques for

software developers to address the process steps is i.a.

given in the next section.

4 BARRIERS AND ENABLERS IN

THE PROCESS MODEL

To illustrate the applicability of our process model in

Fig. 2 for supporting software practitioners in under-

standing the refactoring process, we allocate refac-

toring barriers and refactoring support techniques to

corresponding affected or addressed process steps.

4.1 Refactoring Barriers

(Tempero et al., 2017) identified seven categories of

refactoring barriers which can be allocated to process

steps as follows.

• missing resources (such as the time frame, group

size, or tools and technologies); as result of step
A3©) in Fig. 2 with effects on all steps in both un-

derlying sub-processes.

• the risk of introducing an error; relevant at multi-

ple levels, especially in step C4© in Fig. 2 and for

evaluating whether an error has been introduced

(see step C5©).

• the difficulty to perform the refactoring which is

relevant for step C4©in Fig. 2 as well as the prece-

ding steps which focus on identifying (step C1©),

comparing (step C2©), and selecting refactoring

option (step C3©).

• unclear ROI, on management levels in steps A1©
and A5© in Fig. 2, but also on operational levels,

e.g. step B3©.

• technical issues, e.g., as a lack of technologies

or tools (relevant in many steps, e.g., step C5© in

Fig. 2).

• constraints set by the management which are

again result of steps A3© and A4© via attributed re-

sources; but also in terms of corresponding cont-

rol and information flows.

• lack of appropriate tools (in multiple steps, see be-

low, can also be partially seen as a result of step
A3©).

This allocation shows that some barriers cross the

steps and are localized on multiple organizational le-

vels which makes them even harder to handle.

4.2 Refactoring Support

In recent years, several techniques and tools have

been proposed for decision-support in refactoring.

For an overview, see, e.g., (Simmonds and Mens,

2002; Mens and Tourwé, 2004; Mealy and Strooper,

2006; Fontana et al., 2012; Fontana et al., 2015; Fer-

nandes et al., 2016). For the purposes of this paper,

the tools and techniques are roughly divided into the

following categories. For each group, the addressed

process steps in Fig. 2 are stated.

• Smell-detection & refactoring recommendation

tools (such as JDeodorant (Tsantalis, 2017) or

Decor (Ptidej, 2017)) support in (semi-) automati-

cally identifying smell and refactoring candidates

via symptoms by analyzing the source code. For

this purpose, rules are used which apply metrics

and thresholds. Smell detectors address step B1©
in Fig. 2, refactoring recommendation tools also
C1©, C2© and C3©).

• Code-Quality and Design-Critique Tools (such as

JArchitect (CoderGears, 2017) or NDepend (ZEN

PROGRAM, 2017)) assist software engineers in

reviewing the source code or in investigating a sy-

stem’s design and architecture. Most of them pro-

vide several visualization techniques (e.g. matri-

ces, graphs) for reflecting static dependencies be-

tween system units (e.g., for assessing the as-is

software design, addressing step B5©).

• Refactoring Tools (such as IDEs like RCP Eclipse

or (Roberts et al., 1997)) provide the automatic or

guided/interactive execution of refactoring steps

(addressing step C4© in Fig. 2).

• Technical Debt Management and Analysis Tools

(such as SonarQube (Campbell and Papapetrou,

2013), Sonargraph (hello2morrow, 2017)) mea-

sure and quantify a system’s technical debt in

terms of a concrete score, mostly in terms of

person-hours necessary to fix the debt. For this,

they apply metrics and thresholds based on sta-

Deconstructing the Refactoring Process from a Problem-solving and Decision-making Perspective

369

tic analysis techniques. (addressing steps A1© and
A5©, and partially A3© in Fig. 2 (regarding the esti-

mation of person-hours needed).

• Automated Regression Testing Frameworks

(such as XJunit test frameworks) help to ensure

that the system still behaves as intended, i.e. that

no errors have been introduced by the code modi-

fications (addressing step C5©).

• Documented Knowledge on Refactoring Rules

Multiple catalogs exist which document rules

for performing refactoring-related tasks, such as

for symptom-based candidate identification or

for performing refactoring steps. Some of this

decision-making knowledge has already been im-

plemented into corresponding support systems

(see above). In particular, there is documented

knowledge for instance available for:

– detecting smell candidates via symptoms (see

e.g. (Fowler, 2009; Suryanarayana et al., 2014),

addressing step B1© in Fig. 2),

– identifying smell false positives, see, e.g., (Fon-

tana et al., 2016) (addressing B2©),

– paradigms for prioritizing candidates, see, e.g.,

(Ribeiro et al., 2016) (addressing step B3©),

– comparing and performing refactoring steps

(also see e.g. (Fowler, 2009; Suryanarayana

et al., 2014), addressing step C1©).

Some tools also combine certain functionalities, such

as for instance SonarGraph (hello2morrow, 2017),

JArchitect (CoderGears, 2017) or NDepend (ZEN

PROGRAM, 2017).

Table 3 shows the process steps of Fig. 2 with

exemplary barriers (included in step) and support

techniques (addressing the step). This confrontation

illustrates on the one hand that multiple steps are ad-

dressed by support techniques which have not been

identified as barriers (e.g., B5©, C1©). On the other

hand it becomes evident that some steps are not co-

vered sufficiently by corresponding refactoring sup-

port techniques (see, e.g., A3©). In the following the

barriers and support techniques are described in more

detail.

5 DISCUSSION

Motivated by the aim to better understand the diffi-

culties in the refactoring process, we applied in this

paper a theoretical perspective on decision problems

in the refactoring process. For this reason, we used

concepts of decision-making for deconstructing the

refactoring process. The result of this analysis is a

process model for decision-making in software refac-

toring (see Fig. 2) which comprises the sub-processes

Table 3: Exemplary allocation of barriers identified by
(Tempero et al., 2017) and of several refactoring decision-
support techniques to steps in the process model in Fig.2.

No Step Barriers Support

A1 Monitor software

project

unclear ROI TD management and ana-

lysis tools

A2 Analyze project con-

text

– –

A3 Plan resources missing resour-

ces, management

dependencies

(TD management and

analysis tools)

A4 Allocate resources – –

A5 Measure ROI unclear ROI TD management and ana-

lysis tools

B1 Review system – smell-detection tools, do-

cumented knowledge on

smell detection

B2 Assess candidates lack of tool sup-

port

documented knowledge

on smell false positives

B3 Prioritize candidates lack of tool sup-

port

documented knowledge

on prioritization para-

digms

B4 Select candidates – –

B5 Evaluate effects in

(software design)

– design-critique tools

C1 Identify refacto-

ring options for

candidate

– refactoring recommenda-

tion tools

C2 Compare options – refactoring recommenda-

tion tools

C3 Select option and

plan refactoring

steps

difficulty of refac-

toring, lack of tool

support

refactoring recommenda-

tion tools

C4 Perform code modi-

fication

difficulty of re-

factoring, risk

of introducing

unintended ef-

fects, lack of tool

support

refactoring tools

C5 Evaluate effects (sy-

stem behavior)

risk of introdu-

cing unintended

effects

automated regression tes-

ting frameworks

of the three interrelated decision problems expressed

by the questions whether, what, and how to refactor?

Due to many sub- and meta-problems which are part

of every cognitive process, not all probable decision

problems in refactoring could have been covered. So,

for each sub- or meta-problem, probably a separate

decision-making process could be specified.

So far only very few process models for refacto-

ring are available. To the best of our knowledge, the

framework proposed by (Leppänen et al., 2015) repre-

sents the only process model for refactoring that ex-

plicitly includes decision problems. It is based on an

empirical study with three software companies (and

expressed in terms of a state chart, see Section 2.1).

Or approach complements the state-of-the-art of re-

factoring research by providing a theory-based pro-

cess description in terms of a process model that in-

tegrates three key decision problems and correspon-

ding decision-making processes for refactoring. Ac-

cording to applied concepts of decision-making re-

search, the activities are structured into certain pha-

ses of decision-making and along hierarchical levels

with corresponding communication flows. Thus, the

process model requires an empirical evaluation which

will be approached in the next step.

For Section 4, only barriers were presented that

ICSOFT 2018 - 13th International Conference on Software Technologies

370

have been identified by (Tempero et al., 2017). In

addition, we here only included tools and techni-

ques from the software engineering domain. Probably

more related tools and techniques from other dom-

ains are available such as from project management,

resources management, management information sy-

stems or decision support systems.

6 CONCLUSION

In this paper, we applied a deductive approach for

deconstructing the refactoring process into distin-

guished phases, decision problems and correspon-

ding decision-making sub-processes. As a result, we

have developed a process model including decision-

making steps for three selected major decision-

problems in the refactoring process as well as re-

flecting the characteristics of the decision-making

sub-processes on different organizational levels.

We have also shown by example that our model

allows for allocating refactoring enablers (i.e. refac-

toring techniques and tools) and barriers to process

steps, which may help software practitioners in un-

derstanding the difficulties in the refactoring process

and the relationship between enablers and barriers.

For future work, we plan a survey with software

developers and managers to evaluate and refine the

proposed process model. Within this, we also seek

to investigate the role of support techniques and bar-

riers for each step. Furthermore, we intend to inves-

tigate how the decision-support techniques in refac-

toring and other related domains, such as project and

resource management, can be combined, especially

in order to support information and control flows be-

tween different organizational levels (also in terms of

an integrating project cockpit).

REFERENCES

Asemi, A., Safari, A., and Asemi Zavareh, A. (2011). The
Role of Management Information System (MIS) and
Decision Support System (DSS) for Managers Deci-
sion Making Process. International Journal of Busi-
ness and Management, 6(7):164.

Atkins, P. W. B., Wood, R. E., and Rutgers, P. J. (2002).
The Effects of Feedback Format on Dynamic Deci-
sion Making. Organizational Behavior and Human
Decision Processes, 88(2):587–604.

Beach, L. R. and Mitchell, T. R. (1978). A Contingency
Model for the Selection of Decision Strategies. The
Academy of Management Review, 3(3):439–449.

Boehm, B. W. et al. (1981). Software engineering eco-
nomics, volume 197. Prentice-hall Englewood Cliffs
(NJ).

Campbell, G. and Papapetrou, P. P. (2013). SonarQube in
action. Manning Publications Co.

CoderGears (2017). JArchitect. [last access: June 8, 2018].

Courtney, J. F. (2001). Decision making and knowledge
management in inquiring organizations: toward a new
decision-making paradigm for DSS. Decision Support
Systems, 31(1):17–38.

Evans, J. S. B., Newstead, S. E., and Byrne, R. M. (1993).
Human reasoning: The psychology of deduction. Psy-
chology Press.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figuei-
redo, E. (2016). A review-based comparative study
of bad smell detection tools. In Proceedings of the
20th International Conference on Evaluation and As-
sessment in Software Engineering, page 18. ACM.

Fernández-Sánchez, C., Garbajosa, J., and Yagüe, A.
(2015). A framework to aid in decision making for
technical debt management. In Managing Technical
Debt (MTD), 2015 IEEE 7th International Workshop
on, pages 69–76. IEEE.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Auto-
matic detection of bad smells in code: An experimen-
tal assessment. J. Object Technology, 11(2):5–1.

Fontana, F. A., Dietrich, J., Walter, B., Yamashita, A., and
Zanoni, M. (2016). Antipattern and code smell false
positives: Preliminary conceptualization and classifi-
cation. In Software Analysis, Evolution, and Reengi-
neering (SANER), 2016 IEEE 23rd International Con-
ference on, volume 1, pages 609–613. IEEE.

Fontana, F. A., Mangiacavalli, M., Pochiero, D., and Za-
noni, M. (2015). On experimenting refactoring tools
to remove code smells. In Scientific Workshop Pro-
ceedings of the XP2015, page 7. ACM.

Fowler, M. (2009). Refactoring: improving the design of
existing code. Pearson Education India.

Gorry, G. A. and Morton, M. S. (1989). A framework
for management information systems. Sloan Mana-
gement Review, 30(3):49–61.

Grünig, R. and Kühn, R. (2013). Successful Decision-
Making. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

hello2morrow (2017). Sonargraph. [last access: June 8,
2018].

Huber, G. P. (1980). Organizational science contributions
to the design of decision support systems. Decision
support systems: issues and challenges, pages 237–
275.

Kahneman, D. (2011). Thinking, fast and slow. Macmillan.

Kitchenham, B. A., Travassos, G. H., Von Mayrhauser, A.,
Niessink, F., Schneidewind, N. F., Singer, J., Takada,
S., Vehvilainen, R., and Yang, H. (1999). Towards an
ontology of software maintenance. Journal of Soft-
ware Maintenance, 11(6):365–389.

Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Techni-
cal debt: From metaphor to theory and practice. Ieee
software, 29(6):18–21.

Leppänen, M., Lahtinen, S., Kuusinen, K., Mäkinen, S.,
Männistö, T., Itkonen, J., Yli-Huumo, J., and Lehto-
nen, T. (2015). Decision-making framework for re-
factoring. In Managing Technical Debt (MTD), 2015

Deconstructing the Refactoring Process from a Problem-solving and Decision-making Perspective

371

IEEE 7th International Workshop on, pages 61–68.
IEEE.

Liu, P. and Li, Z. (2012). Task complexity: A review and
conceptualization framework. International Journal
of Industrial Ergonomics, 42(6):553–568.

Mealy, E. and Strooper, P. (2006). Evaluating software re-
factoring tool support. In Software Engineering Con-
ference, 2006. Australian, pages 10–pp. IEEE.

Mens, T. and Tourwé, T. (2004). A survey of software refac-
toring. IEEE Transactions on software engineering,
30(2):126–139.

Mora, M., Forgionne, G., Cervantes, F., Garrido, L., Gupta,
J. N., and Gelman, O. (2005). Toward a Compre-
hensive Framework for the Design and Evaluation
of Intelligent Decision-making Support Systems (i-
DMSS). Journal of Decision Systems, 14(3):321–344.

Object Management Group (2015). Unified Modeling Lan-
guage (UML), Superstructure, Version 2.5.0. [last
access: June 8, 2018].

Osborne, W. M. (1987). Building and sustaining software
maintainability. In Proceedings of the International
Conference on Software Maintenance, pages 13–23.

Pomerol, J.-C. and Adam, F. (2004). Practical decision
making–from the legacy of herbert simon to decision
support systems. In Actes de la Conférence Internati-
onale IFIP TC8/WG8, volume 3.

Ptidej (2017). DECOR. [last access: June 8, 2018].

Ribeiro, L. F., de Freitas Farias, M. A., Mendonça, M. G.,
and Spı́nola, R. O. (2016). Decision criteria for the
payment of technical debt in software projects: A sys-
tematic mapping study. In ICEIS (1), pages 572–579.

Roberts, D., Brant, J., and Johnson, R. (1997). A refactoring
tool for smalltalk. Urbana, 51:61801.

Simmonds, J. and Mens, T. (2002). A comparison of soft-
ware refactoring tools. Programming Technology Lab.

Simon, H. (1997). The poliheuristic theory of foreign policy
decision-making. Decision making on war and peace:
The cognitive-rational debate, 1:81.

Simon, H. A. (1977). The New Science of Management De-
cision. Prentice Hall PTR, Englewood Cliffs, NJ.

Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2014). Refactoring for software design smells: Ma-
naging technical debt. Morgan Kaufmann.

Te’eni, D. and Ginzberg, M. J. (1991). Human-computer
decision systems: The multiple roles of dss. European
journal of operational research, 50(2):127–139.

Tempero, E., Gorschek, T., and Angelis, L. (2017). Bar-
riers to refactoring. Communications of the ACM,
60(10):54–61.

Tsantalis, N. (2017). JDeodorant. [last access: June 8,
2018].

Yoon, K. P. and Hwang, C.-L. (1995). Multiple Attribute
Decision Making: An Introduction. Sage Publications,
Incorporated, Thousand Oaks, CA, new. edition.

ZEN PROGRAM (2017). NDepend. [last access: June 8,
2018].

ICSOFT 2018 - 13th International Conference on Software Technologies

372

